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Abstract: Real wars involve a considerable number of uncertainties when determining firing 
scheduling. This study proposes a robust optimization model that considers uncertainties in wars. 
In this model, parameters that are affected by enemy’s behavior and will, i.e., threats from enemy 
targets and threat time from enemy targets, are assumed as uncertain parameters. The robust 
optimization model considering these parameters is an intractable model with semi-infinite 
constraints. Thus, this study proposes an approach to obtain a solution by reformulating this model 
into a tractable problem; the approach involves developing a robust optimization model using the 
scenario concept and finding a solution in that model. Here, the combinations that express uncertain 
parameters are assumed by scenarios. This approach divides problems into master and 
subproblems to find a robust solution. A genetic algorithm is utilized in the master problem to 
overcome the complexity of global searches, thereby obtaining a solution within a reasonable time. 
In the subproblem, the worst scenarios for any solution are searched to find the robust solution even 
in cases where all scenarios have been expressed. Numerical experiments are conducted to compare 
robust and nominal solutions for various uncertainty levels to verify the superiority of the robust 
solution. 
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1. Introduction 

Artillery refers to a type of heavy military ranged weapon that hits remote targets by operating 
the weapon system as a unit. It differs from small arms or tanks in armored forces that are used by 
infantry to engage in short-range gunfights against enemies. The process of operating artillery is as 
follows: First, target information such as a target properties, size, and location are acquired; second, 
decision-making on firing method is followed to ensure efficient and effective hits against the target; 
and third, artillery units hit the target. The number of casualties owing to artillery bombardment has 
been the largest in World War I, World War II, and other wars until the development of modern 
warfare. Thus, many countries have recognized the power and importance of artillery and have made 
considerable effort to develop weapon system technologies, artillery operation tactics, and firing 
methods. Thus, with the development of state-of-the-art technologies, target information has become 
more accurate owing to information collection assets, and improved and intelligent ammunition 
performance has increased the destructive power of artillery and the accuracy of hit ratio. In addition, 
studies on artillery operation tactics such as shoot-and-scoot tactics [1] and firing methods have been 
increasingly conducted. 
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This study investigates different firing methods to determine artillery firing scheduling. Studies 
on firing methods are largely divided into weapon-target assignment problems (WTAPs) and fire-
scheduling problems (FSPs). Existing studies on WTAPs are as follows: Reference [2] introduced a 
WTAP for the first time and proposed that this problem could be approximated to a linear model 
even though it was probabilistic and nonlinear. Reference [3] proved that the WTAP is NP-complete 
and that the computation time increases exponentially as the problem size increases. References [4,5] 
solved the WTAP using a modified evolution algorithm, and Reference [6] solved the WTAP using a 
hybrid algorithm. Reference [7] modified the WTAP into integer programming and network flow 
problems and developed an exact algorithm and a heuristic algorithm. The FSP was first introduced 
by Reference [8]; they proposed a greedy heuristic to minimize the makespan. Reference [9] assumed 
that the probability of target destruction decreased with time and proposed a scheduling heuristic to 
minimize the total threat from surviving targets. Reference [10] developed a robust optimization (RO) 
model that minimized the total threat exposed to friendly forces by considering enemy threat 
parameters as uncertain parameters since the intangible combat power of enemy targets could not be 
predicted or estimated accurately. Reference [11] proposed a two-phase method that could evaluate 
the total threat of an enemy that is inflicted on friendly forces when the enemy threat level is 
uncertain. Existing studies on WTAPs and FSPs obtain solutions by assuming that the threat times of 
all targets that should be hit by artillery units are the same. However, the threat times of targets 
would likely differ in actual wars. Thus, this study proposes an artillery firing scheduling 
methodology that minimizes the total enemy threat that is inflicted on friendly forces by considering 
that the targets’ threat times are different. 

The artillery firing scheduling problem considered in this study is the single machine 
earliness/tardiness problem (SMETP). An artillery unit in this study is regarded as a single machine, 
and the target that should be hit by the artillery unit is considered a job. Here, the time from attacking 
the target by an artillery unit to the target’s destruction is considered the processing time and the 
threat of a target inflicted on friendly forces before its destruction is defined as a penalty. If the threat 
time of each target is considered as the release time, then if an artillery unit does not hit their target 
as soon as the target threat occurs, a tardiness penalty is inflicted. Reference [12] first analyzed the 
SMETP, and Reference [13] proved the SMETP is NP-hard. Since then, studies on SMETPs have 
focused on meta-heuristic approaches to solve the complexity of local searches. Reference [14] 
proposed a hybrid meta-heuristic that combined tabu search concepts and genetic algorithms (GAs) 
to solve the SMETP. Reference [15] proposed a hybrid heuristic that combined local search heuristics 
with an evolutionary algorithm. Reference [16] proposed an evolutionary approach based on an 
imperialist competitive algorithm, and Reference [17] proposed an improved bee algorithm that uses 
GA operators in the global search stage. The present study also uses GA to overcome the complexity 
of firing sequence combinations in the global search stage. However, while the aforementioned 
studies assumed that all parameters were certain in the SMETP, the current study proposes an 
approach to find a robust solution considering parameter uncertainty. 

Parameter uncertainty analyses can be divided into stochastic programming and robust 
optimization approaches. Stochastic programming optimizes expected performances using prior 
knowledge on the probability distribution of uncertain data. Accordingly, accurate information about 
the probability distribution of uncertain data should be known in stochastic programming, and data 
values should not change until decision-making has been executed [18]. However, it is difficult to 
acquire accurate information about uncertain data’s probability distribution. RO searches for a 
solution that is immune to uncertain parameters. A robust solution presents the best worst-case 
solution; this solution is more conservative than a stochastic programming solution. However, RO 
approaches do not require information about uncertain data’s probability distribution. Uncertain 
parameters are expressed in two sets: scenario and interval datasets using expert opinions or 
historical data [19]. The RO approach was first introduced by Reference [20] and was extended by 
References [21,22]. It is now applied in various domains. However, studies on RO approaches have 
been extremely limited in military operation fields. Only two studies by References [10] and [11] 
discussed the RO approach. Reference [11] considers target threat level as an uncertain parameter by 
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assuming a problem situation where the enemy unit size cannot be accurately determined. In 
Reference [11], a deterministic optimization model and an RO model that minimize enemy’s firearm 
threat exposed to the friendly force were developed by distinguishing between when the enemy 
threat parameter is certain and when it is uncertain. Furthermore, a two-phase approach was 
developed based on the concept of “cardinality-constrained uncertainty.” This approach evaluates 
the enemy’s firearm threat to friendly forces by adjusting the degree of uncertainty when the enemy 
threat is uncertain. Reference [10] considered target threat level as an uncertain parameter by 
assuming a problem situation where the quantitative true value of the enemy combat power is 
unknown. In Reference [10], the combat power of the enemy targets was assumed as the target threat 
parameter and the model was developed by considering this as an uncertain parameter because it is 
difficult to determine the quantitative true value of the parameter. References [10] and [11] only 
consider the single factor (target threat level) out of various factors as an uncertain factor because 
problem complexity and the robustness issue of solutions are negatively affected as the number of 
considered uncertain factors increases. However, this study considered two factors at the same time 
as uncertain parameters, the target threat level and target threat time, but proved that only the 
uncertain target threat time influenced the solution’s robustness. 

In this paper, an RO approach using the scenario concept was developed. If the enemy threat 
and enemy threat time values occurred in a predefined section, the random parameter expression 
combination was defined as a virtual scenario and a method of finding the solution with the RO 
concept was developed. This approach is divided into master and subproblems. For the master 
problem, the optimal robust solution is found and the genetic algorithm is used to solve the 
complexity of global search. In the subproblem, the worst scenario in certain fire scheduling is found 
and the objective value is allocated by the fitness function score of the genetic algorithm. 

The main contributions of this paper are as follows: 

1. This study proposed an artillery firing scheduling model to minimize the total threat of an 
enemy that is inflicted on friendly forces by considering uncertain parameters such as the 
enemy’s threat level and threat time. 

2. The combination that realizes uncertain enemy’s threat level and threat time parameters were 
expressed by discrete scenarios, and the model was developed by which a robust solution could 
be searched using the RO concept. 

3. This study reduced the problem complexity by proving that the worst scenario occurs when the 
uncertain threat level is at maximum value and the uncertain threat time is at minimum value 
or at maximum value. That is, only uncertain threat times influenced the solution’s robustness, 
thereby reducing the problem’s complexity. 

4. Simulation experiments proved that a robust solution was better than a nominal solution. 

The rest of this paper is organized as follows: Section 2 presents a deterministic firing scheduling 
model and an RO model that minimizes the total threat of an enemy and proposes an RO approach 
using the scenario concept. Section 3 evaluates the performance of the proposed RO approach 
through numerical experiments. Section 4 analyzes the results of the study and highlights future 
research directions. 

2. Models and Methods 

Artillery units perform missions to destroy remote enemy targets by firing ammunition. Enemy 
targets that should be hit by artillery units are assigned from a higher level of command as a mission 
or requested from friendly maneuvering forces. These enemy targets have different properties and 
sizes, and their threat times to friendly forces differ. Furthermore, when artillery units hit enemy 
targets, the time taken to attack each target until it is destroyed differs. The overall process of artillery 
units to hit all enemy targets sequentially is defined as a fire operation, and the process of hitting a 
single target is defined as a fire task. Then, artillery units determine the priority of fire tasks as 
artillery units cannot perform two or more fire tasks together in a fire operation. The criteria to 
determine the priority of fire tasks in a fire operation are minimization of the completion time of fire 
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operations, minimization of the average fire task time, and minimization of the enemy’s total threat 
inflicted on friendly forces. 

This study models the problem of determining the priority of fire tasks, with the aim of 
minimizing the total threat of enemies inflicted on friendly forces during a fire operation. 
The following assumptions are made in this study: 
(1) Artillery units can only hit one target at a time and can only hit the next target after completing 

the current fire operation.  
(2) The time taken from attacking an energy target with artillery units to destroying the target is 

determined by the properties and size of the enemy’s target. 
(3) The threat level of the target per unit time is constant until artillery units fire the target. 
(4) Once the artillery units start hitting a target, the threat level of the target per unit time decreases 

linearly; the target is destroyed after passing the required time to destroy the target and, then, 
the threat level (per unit time) becomes zero. 

(5) Enemy targets that are not under attack by artillery units may deal damage to friendly forces as 
much as the threat level per unit time. 

(6) Artillery units can start firing from the time when the threat of an enemy target arises. 
 

The notations used in this paper are defined as follows: 

Notation Definition 
Decision variable 

𝑥௝ Firing start time of target j 
𝑦௝௝ᇱ If target j takes precedence over target j’ 1, otherwise 0 
𝑥௝௞ If target j is fired for kth 1, otherwise 0. 
𝑡௞ The kth firing time of artillery units 

Parameter 
𝑗 Target j, j ∈ N = {1, … , n} 
𝑓௝ Nominal threat level of target j 
𝑓ሚ௝ Uncertain threat level of target j 
𝑓௝ Maximum threat level of target j 
𝑓௝ Minimum threat level of target j 
𝑓௞ Threat level of the kth firing target. 
𝑎௝ Threat time of target j 
𝑎෤௝ Uncertain threat time of target j 
𝑎௝ Max threat time of target j 
𝑎௝ Min threat time of target j  
𝑎௞ Threat time of the kth firing target. 
𝑝௝ Amount of time required to destroy target j  
𝑟௝ Threat removal rate of target j per unit time  𝑟௝ = 𝑓௝/𝑝௝ 
M Big positive value 

2.1. Deterministic Optimization Modeling 

Suppose that there are j ∈ N = {1, … , n} targets to be fired in a fire operation. Although each 
target has a different threat level per unit time 𝑓௝ and a different threat time 𝑎௝, information about 
these parameters is certain. Moreover, the time 𝑝௝ that artillery units have to hit and destroy target j 
is predefined and these values are also certain. In such a case, the deterministic modeling of the 
artillery firing scheduling (DFS) problem that minimizes the total threat of an enemy inflicted on 
friendly forces is as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ෍ ቊ𝑓௝(𝑥௝ − 𝑎௝) +
𝑓௝

ଶ

2𝑟௝

ቋ

௡

௝ୀଵ

 (DFS) (1) 
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subject to   

𝑥௝ +
𝑓௝

𝑟௝

≤ 𝑥௝ᇲ + 𝑀൫1 − 𝑦௝௝ᇲ൯ 𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗 (2) 

𝑥௝ᇱ +
𝑓௝ᇱ

𝑟௝ᇱ

≤ 𝑥௝ + 𝑀𝑦௝௝ᇲ  𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗 (3) 

𝑦௝௝ᇲ = 0 𝑜𝑟 1 𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗 (4) 
𝑥௝ ≥ 𝑎௝ ∀ 𝑗 (5) 

Equation (1) is an objective function that minimizes the total threat an enemy inflicts on friendly 
forces. 𝑓௝(𝑥௝ − 𝑎௝) is a threat observed from time 𝑎௝, when a threat from target j is observed, to time 

𝑥௝, when firing starts. Further, 
௙ೕ

మ

ଶ௥ೕ
 is a threat observed from when firing starts to when target j is 

destroyed. Based on these assumptions, once the artillery units start firing at target j, the threat level 
of target j per time 𝑓௝ decreases linearly and the threat from target j to friendly forces for 𝑝௝ is 

௙ೕ௣ೕ

ଶ
, 

which is equivalent to 
௙ೕ

మ

ଶ௥ೕ
. Equations (2)–(4) are constraints that determine the target firing sequence, 

which limits the current target firing that is allowed until the time required to destruct the target has 
elapsed from the previous target firing time. For example, when target j is hit before target j’, the 
condition 𝑦௝௝ᇲ = 1 is satisfied and time 𝑥௝ᇱ to hit target j’ should be set to after the time required to 

destruct the target 
௙ೕ

௥ೕ
(= 𝑝௝) has elapsed from target j firing time 𝑥௝. Equation (5) limits the firing by 

artillery units allowed from time 𝑎௝ when target j’s threat occurs. 

2.2. Robust Optimization Modeling 

Information regarding enemies during a real war cannot be accurately predicted and accessed. 
Enemies will strive to deceive opponent forces and to minimize exposure of their own activities. This 
is because a war can be won if the opponents are at a disadvantage. Thus, it is difficult to accurately 
predict and evaluate factors such as enemy’s threat level and threat time during a war. To address 
this, this study develops RO modeling to determine firing scheduling and assumes that the enemy’s 
threat level and threat time are uncertain discrete parameters. Further, it is assumed that 𝑓ሚ belongs 
to an uncertainty set 𝑈𝐹 and that 𝑎෤ belongs to an uncertainty set 𝑈𝐴. Here, an enemy’s threat level 
and threat time are independent values and their probability distribution cannot be determined. That 
is, 𝑓௝ and 𝑎௝ in Equations (1)–(3),(5) are uncertain values. 

Generally, it is assumed that data uncertainty in the following nominal linear optimization 
problem lies only in the elements of matrix A: 

minimize  cx  
subject to  Ax ≤ b 

l ≤ x ≤ u. 
 

However, even if parameter c is uncertain in the objective function, the problem can be alleviated 
by minimizing y  in the objective equation by using a new variable y  and including constraint 

∑ ൜𝑓ఫ
෩(𝑥௝ − 𝑎ఫ෥ ) +

௙ണ෩
మ

ଶ௥ೕ
ൠ௡

௝ୀଵ ≤ 𝑦 to Ax ≤ b [22]. 

The robust fire scheduling (RFS) modeling that determines a firing sequence to minimize total 
threat inflicted on friendly forces in uncertain situations is then produced as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑦 (RFS 1) (6) 
subject to   

෍ ൝𝑓ఫ
෩(𝑥௝ − 𝑎ఫ෥ ) +

𝑓ఫ
෩ଶ

2𝑟௝

ൡ

௡

௝ୀଵ

≤ 𝑦   𝑓ሚ௝ ∈ 𝑈𝐹௝ ,  𝑎෤௝ ∈ 𝑈𝐴௝ 
(7) 

𝑥௝ +
𝑓ఫ
෩

𝑟௝

≤ 𝑥௝ᇲ + 𝑀൫1 − 𝑦௝௝ᇲ൯ 𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗,  𝑓ሚ௝ ∈ 𝑈𝐹௝ , 
(8) 

𝑥௝ᇱ +
𝑓ఫᇱ
෪

𝑟௝ᇱ

≤ 𝑥௝ + 𝑀𝑦௝௝ᇲ  𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗,  𝑓ሚ௝ ∈ 𝑈𝐹௝ , 
(9) 



Appl. Sci. 2019, 9, 2811 6 of 15 

𝑦௝௝ᇲ = 0 𝑜𝑟 1 𝑗, 𝑗ᇱ = 1, 2, … , 𝑛;  𝑗ᇱ ≠ 𝑗 (10) 

𝑥௝ ≥ 𝑎ఫ෥  ∀ j  𝑎෤௝ ∈ 𝑈𝐴௝ (11) 

2.3. RO Approach Using Scenario Concept 

The above RO model is an intractable problem with semi-infinite constraints. Thus, an approach 
using scenario concept is developed to reformulate the problem into a tractable problem and to 
identify a robust solution. We assume that the enemy’s threat level and threat time are discrete 
parameters, occurring in sections [𝑓௝ , 𝑓௝] and [𝑎௝ , 𝑎௝], respectively. Let S be the semi-infinite set of 

possible realizations of timings of threat and threat levels. A possible scenario s ∈ S represents a 
unique set of timings of threat and threat levels. The possible scenario s can then be realized with an 
unknown probability. Let X be the set of possible target firing schedules. A possible schedule x ∈ X 
represents a unique schedule of X. In addition, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑋, 𝑆)  is defined as a function that 
evaluates a performance of solution X regarding scenario S. The deterministic optimization model 
can then be expressed as presented in Equation (12) because it searches for the optimal solution 
regarding a specific single scenario s. 

min
௫∈௑

𝑓(𝑥, 𝑠) (12) 

Equation (12) searches for a firing sequence x that minimizes 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑋, 𝑆) in scenario s in 
which the enemy’s threat level and threat time parameters are unique. The RO model is a method 
that searches for a robust solution that is immune to all scenarios, S, in which uncertain parameters 
are realized in a predefined section. In general, there are three measures of robustness: absolute 
robustness, absolute robust deviation, and relative robustness [19]. Absolute robustness helps 
minimize the maximum absolute cost in the possible outcome set. Absolute robust deviation helps 
minimize the maximum regret. Here, regret refers to an absolute difference between the realized 
result and the optimal solution that corresponds to the realized result. Relative robustness helps 
minimize the maximum relative deviation of the realized outcome from the corresponding optimal 
solution. In this firing sequence determination model, absolute robustness is selected as the metric 
for robustness. This is because uncertain parameters considered in this problem are determined by 
the opponent’s will and enemies strive to ensure that the opponents are at a disadvantage as much 
as possible in a special situation, such as war. Here, if absolute robustness is selected as the measure 
of robust, the robust optimal solution searches for the worst scenario from all scenarios sets where 
uncertain parameters are realized for any solution, and it makes the objective equation optimal (best) 
among those solutions. 

Finding the worst scenario in any solution (scheduling) x can be expressed as follows: 

𝑓ௐைோௌ்(𝑥) = max
௦∈ௌ

 𝑓(𝑥, 𝑠) (13) 

When all scenarios are realized, the best solution is searched for from all feasible solutions, which 
can be expressed as follows: 

min
௫∈௑

𝑓ௐைோௌ்(𝑥) = min
௫∈௑

max
௦∈ௌ

𝑓(𝑥, 𝑠) (14) 

We search for the best worst-case solutions for all scenarios. 
RFS 1 is reformulated to RFS 2 to search for the robust solution with the idea of RO: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑦 (RFS 2) (15) 

subject to   

෍ ෍ ൝𝑓ሚ௝𝑥௝௞(𝑡௞ − 𝑎෤௝) +
𝑓ሚ௝

ଶ

2𝑟௝

𝑥௝௞ൡ

௡

୩ୀଵ

௡

௝ୀଵ

≤ 𝑦  𝑓ሚ௝ ∈ 𝑈𝐹௝ ,  𝑎෤௝ ∈ 𝑈𝐴௝ 
(16) 

𝑡ଵ = ෍ 𝑎෤௝𝑥௝ଵ

௡

௜

  𝑎෤௝ ∈ 𝑈𝐴௝ 
(17) 
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𝑡௞ = max ቎ቌ𝑡௞ିଵ + ෍ 𝑥௝௞ିଵ

𝑓ሚ௝

𝑟௝

௡

௝ୀଵ

ቍ , ෍ 𝑎෤௝𝑥௝௞

௡

௝

቏ k ≥ 2,  𝑓ሚ௝ ∈ 𝑈𝐹௝ ,  𝑎෤௝ ∈ 𝑈𝐴௝ 
(18) 

෍ 𝑥௝௞

௡

௝ୀଵ

= 1 ∀ k 
(19) 

෍ 𝑥௝௞

௡

௞ୀଵ

= 1 ∀ j 
(20) 

𝑥௝௞ = 0 𝑜𝑟 1 ∀ j, k (21) 
Equation (17) refers to the first fire task time of artillery units when a firing sequence is provided, 

which is the time at which the first firing target emerges. Equation (18) is the kth fire task time of artillery 
units when a firing sequence is given. The possible kth fire task time starts when the (k − 1)th fire task 
is complete and the kth firing target emerges. 

In RFS 2, solution x refers to a firing sequence, which can be expressed as follows: 

matrix 𝑥 = ൛𝑥௝௞ = 1 𝑜𝑟 0, 𝑗, 𝑘 = 1, 2, … , 𝑛 | 𝐼𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑗 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑓𝑖𝑟𝑖𝑛𝑔, 𝑥௝௞ = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥௝௞ = 0 ൟ  

A set of feasible solutions, X, can be expressed as follows according to Equations (19)–(21): 

X = ቐ𝑥 | ෍ 𝑥௝௞

௡

௝ୀଵ

= 1, ∀ k; ෍ 𝑥௝௞

௡

௞ୀଵ

= 1, ∀ j;  𝑥௝௞ = 0 𝑜𝑟 1, ∀ j, k ቑ  

In RFS 2, the objective equation and constraint of 𝑓ௐைோௌ்(𝑥), which searches for the worst scenario 
(WS) for a solution 𝑥, are as follows: 

𝑓ௐைோௌ்(𝑥) = max
௦∈ௌ

 𝑓(𝑥, 𝑠) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍ ൝𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
𝑓ሚ௞

ଶ

2𝑟௞

ൡ

௡

௞ୀଵ

 WS 1 (22) 

subject to   

𝑡ଵ = 𝑎෤ଵ  (23) 

𝑡௞ = max ቈቆ𝑡௞ିଵ +
𝑓ሚ௞ିଵ

𝑟௞ିଵ

ቇ , 𝑎෤௞቉ k ≥ 2,  𝑓ሚ௞ ∈ 𝑈𝐹௞ ,  𝑎෤௞ ∈ 𝑈𝐴௞ (24) 

WS 1 has uncertain parameters in the objective equation and a constraint, and it is still an 
intractable problem. 

Theorem 1. For any solution 𝑥 ∈ 𝑋, the worst scenario occurs only when 𝑓ሚ௝ is at maximum value in ∀j  
and when 𝑎෤௝ is at minimum value or maximum value. 

WS 2, which is equivalent to the WS 1 model, can be reformulated as follows based on Theorem 1. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   ෍ ൝𝑓௞ (𝑡௞ − 𝑎௞) +
𝑓௞

ଶ

2𝑟௞

ൡ

௡

୩ୀଵ

 WS 2 (25) 

subject to   

𝑡ଵ = 𝑎ଵ   (26) 

𝑡௞ = max ൥ቆ𝑡௞ିଵ +
𝑓௞ିଵ

𝑟௞ିଵ

ቇ , 𝑎௞൩ k ≥ 2 (27) 

𝑎௞ ∈ [𝑎௞ , 𝑎௞  ] k ≥ 2 (28) 

WS 2 has finite constraints. Now, problem min
௫∈௑

max
௦∈ௌ

𝑓(𝑥, 𝑠)  is divided into master and 

subproblems, as shown in Figure 1, to find the solution. 
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Figure 1. Robust optimization (RO) approach using scenario concept. 

“Master problem” refers to finding the robust optimal solution using GA, and “subproblem” 
refers to finding the worst scenario for any solution 𝑥 . Model WS 2 helps search for the worst 
scenario, and the objective value is assigned to the individual fitness function score in the master 
problem. GA was first invented by Reference [23]. GA is a probabilistic and population-based 
algorithm, which was inspired by the field of genetics. Generally, GA is applied to problems in which 
the search space is large for discrete optimization problems [24,25]. This study employed GA to 
overcome the complexity of solution combination and realistic situations to determine artillery firing 
schedules within a brief period of time during wars, as suggested by Reference [17]. In this study, the 
representation method was encoded to a vector (permutation σ) that contained the target 
information. For example, permutation (3, 1, 4, 2) means that targets 3, 1, 4, and 2 are determined as 
the first, second, third, and fourth fire tasks, respectively. The initial solution setup in this model is 
created by the determination criterion that 𝑟௝  is decreased [11]. In this selection, a stochastic universal 
selection (SUS) technique was used by referring to a previous study [26], in which comparative 
experiments were conducted with several selection techniques. Partially matched crossover (PMX), 
which can avoid chromosome duplication, was applied for the crossover operator, as suggested by 
Reference [27]. The 2-Opt method, which swaps two different genes selected randomly with 
probability 𝑃௠, was applied for mutation. The termination condition is determined at the maximum 
CPU time by considering the realistic situation that artillery firing scheduling should be completed 
within this shortest possible time, and the available time of operation preparation is uncertain. 

3. Numerical Experiments and Results 

3.1. Experimental Design 

In this section, we report numerical experiments to verify the effectiveness of the proposed 
algorithm. The experiment method is as follows: Robust solution (RS) and nominal solution (NS) are 
determined, and uncertain threat and threat time parameters of the enemy are created randomly to 
compare the performance of the two solutions. The Monte Carlo simulation method was used to 
compare the two solutions, and the objective function values of the two solutions are compared by 
sampling uncertain data in the predefined section [28]. The experiment employed IBM ILOG CPLEX 
Optimization software package and C#, and the computer used in the experiment was equipped with 
an Intel(R) Core i5-6600 processor and 3.3 GHz CPU with 8 GB of RAM. 

The parameters in the experiment were generated randomly, as was done in References [9,11]. 
Target’s threat level, 𝑓௝, and time to destroy a target, 𝑝௝, are generated randomly in sections (3,10) 
and (1,5), respectively. Target’s threat time was generated randomly in section (0, ∑ 𝑝௝

௡
௝ୀଵ ) when 

considering real wars. Experiments were conducted with four cases with different number of targets: 
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n = 5, 10, 15, and 20. Uncertainty level θ was selected from set {0.2, 0.4, 0.6, 0.8}. Each experiment had 
15 cases with different random seeds. The numerical experiments were conducted with 240 (4 × 4 ×

15) examples. 

3.2. Preliminary Experiment and Results 

The method proposed in this paper is an approach based on GA. GA is a probability-based 
algorithm in which probability parameter values used in the operator influence the algorithm 
performance. Thus, population size and probability of crossover (𝑃஼) and probability of mutation 
(𝑃௠), which were parameter factors of the operator used in the algorithm, were determined in the 
preliminary experiment [29]. 

Table 1. Experimental factors and their levels. 

Factors Levels Values 
Population Size 3 𝑛, 2𝑛, 4𝑛 

Probability of Crossover (𝑃஼) 3 0.1, 0.5, 0.9 
Probability of Mutation (𝑃௠) 3 0.01, 0.05, 0.1 

The preliminary experiment was performed with the deterministic optimization model, and 
parameter combinations that exhibited the best performance were determined after configuring 27 
(3 × 3 × 3) parameter combinations in Table 1. From target number 𝑛 = 15 , three examples were 
randomly generated and iterative experiments for each were conducted 30 times. If the solution was 
not updated for more than 1000 times, the experiment was set to terminate. 

Table 2. Parameter verification test results of genetic algorithm. 

Case Best Worst ST.DEV Computation Times (Sec) 
1 873 873 0 00:02.202 
2 757.5 757.5 0 00:02.052 
3 585 585 0 00:01.967 

The parameter combinations that showed the best result in the preliminary experiment were 
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = 2𝑛 , 𝑃௖ = 0.9 , and 𝑃௠ = 0.1 . The iterative experiments using the parameter 
combinations were conducted, and the results showed that all combinations reached the same 
solution within several seconds as summarized in Table 2. 

3.3. Simulation Experiment and Results 

The NS is determined from the DFS model, assuming that all parameters are certain, and the 
robust solution (RS) is determined from the RO model, assuming that enemy’s threat level and threat 
time parameters are uncertain; NS and RS are compared in the experiment. Experiments were 
conducted considering four different number of targets: n = 5, 10, 15, and 20. Here, the uncertain 
threat, 𝑓ሚ௝, of enemies belongs to the uncertain set 𝑈𝐹௝ = ൛𝑓ሚ௝: 𝑓௝ − 𝑓௝𝜃௝ ≤ 𝑓ሚ௝ ≤ 𝑓௝ + 𝑓௝𝜃௝ൟ, in which 𝜃௝ 
refers to a uncertainty level selected from {0.2, 0.4, 0.6, 0.8}. The uncertain threat time, 𝑎෤௝, of enemies 
belongs to the uncertain set 𝑈𝐴௝ = ൛𝑎෤௝: 𝑎௝ − 𝑎௝𝜃௝ ≤ 𝑎෤௝ ≤ 𝑎௝ + 𝑎௝𝜃௝ൟ, which is selected from {0.2, 0.4, 0.6, 
0.8}. The Monte Carlo simulation was conducted to compare the NS and RS; 15 scenarios were 
created, and 10,000 sets of uncertain data were sampled for each scenario to compare the objective 
value. The uncertain threat 𝑓ሚ௝ of enemies is randomly selected from section (𝑓௝ − 𝑓௝𝜃௝ , 𝑓௝ + 𝑓௝𝜃௝), and 
the uncertain threat occurrence time 𝑎෤௝ of enemies is randomly selected from (𝑎௝ − 𝑎௝𝜃௝ , 𝑎௝ + 𝑎௝𝜃௝). 

Table 3 presents the computation time required to search for the optimal robust solution in the 
CPLEX software. As presented in Table 3, as the number of targets (n) increases, the corresponding 
computation time increases exponentially. In particular, when the number of targets (n) is eight or 
larger, the solution cannot be found within three hours by using the CPLEX software. However, firing 
scheduling should be determined within three hours in a real-world operation. Thus, the 
optimization method could not be used when the number of targets (n) was eight or larger, and it 
was verified that the methodology proposed in this study had to be used. 
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Table 3. CPU times of RO approach using scenario concept with IBM ILOG CPLEX Optimization 
software package. 

Size (n) 5 6 7 8 
Computation time (s) 3.25 16.63 317.92 18330.58 

Table 4 presents the results of 10,000 simulations for each target number (n) and an uncertainty 
level (θ) in 15 cases. In Table 4, N refers to the number of better objective values between RS and NS 
among 150,000 simulation results. For example, when n = 5 and θ = 0.2, the simulation execution 
result for 150,000 iterations exhibited that 78,556 iterations yielded better results using RS and that 
71,444 iterations yielded better results using NS. As shown in Figure 2, RS had a higher number of 
better results than that of NS for all target sizes. 

 

Figure 2. Number of better objective values between robust solution (RS) and nominal solution (NS) 
among 600,000 simulation results. 

Also, the average values of the objective values obtained using RS were smaller than those of 
NS. The minimum value of the objective value obtained using RS was smaller than that of NS overall, 
although NS had smaller minimum values than RS in some cases. For example, when n = 10 and θ = 
0.4, the minimum value of the objective value using RS was 129.8, whereas that using NS was 116.2. 

 
Figure 3. The maximum value of the objective value among 150,000 simulation results for each given 
uncertain level value (n = 15). 
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The maximum value of the objective value exhibited that RS was better than NS in all problem 
sizes and uncertainty levels. That is, the maximum value of the objective value using NS was always 
larger than that using RS. Here, the objective value means the total threat of the enemy inflicted on 
friendly forces. The smaller the objective value, the better. As shown in Figure 3, when n = 15 and θ 
= 0.2, 0.4, 0.6, 0.8, the maximum values of the objective value using RS were 5808.1, 7061.3, 8156.1, 
and 9755.3, respectively, and those using NS were 6755.3, 8104.5, 9522.5, and 11007.7, respectively. 
These results prove that the robust solution is the best worst-case solution. This is a very meaningful 
result considering uncertain war situations. Because enemies are always attempting to create 
disadvantageous conditions for opponents as much as possible, a solution that considers the worst 
case is required when determining firing scheduling and this solution must be excellent. The solution 
searched by the methodology proposed in this study always provides better results in the worst case 
than the NS. 

Table 4. Simulation experimental results to compare objective values at various target numbers (n) 
and uncertainty levels (θ). 

n θ 
Objective Values 

N Mean Min Max SD 
RS NS RS NS RS NS RS NS RS NS 

5 

0.2 78556 71444 219.4 224.3 14.9 16.5 854.0 944.4 100.4 101.1 
0.4 80509 69491 224.1 232.9 13.7 14.2 1037.2 1101.6 110.3 113.5 
0.6 87927 62073 231.2 243.8 11.0 15.5 1234.8 1286.5 127.6 131.1 
0.8 82380 67620 247.4 252.2 7.9 11.8 1440.2 1481.5 146.4 152.8 

10 

0.2 79594 70406 1005.4 1017.2 126.1 153.2 2836.8 3224.9 339.2 335.8 
0.4 81412 68588 1048.8 1074.9 129.8 116.2 3317.4 3830.4 392.5 384.7 
0.6 81318 68682 1109.7 1137.1 115.3 125.4 3818.8 4619.8 453.0 450.4 
0.8 77851 72149 1208.8 1215.2 78.0 115.4 4590.6 5483.9 544.5 526.2 

15 

0.2 79777 70223 2419.8 2440.9 487.1 581.7 5808.1 6755.3 667.4 672.1 
0.4 78634 71366 2551.7 2572.0 335.1 411.5 7061.3 8104.5 782.5 789.4 
0.6 77349 72651 2738.9 2750.1 276.8 412.1 8156.1 9522.5 931.5 933.9 
0.8 76909 73091 2942.0 2961.9 319.5 398.0 9755.3 11007.7 1082.8 1094.7 

20 

0.2 78184 71816 4522.8 4554.4 1133.6 1428.9 9839.7 10619.7 1098.4 1098.2 
0.4 79791 70209 4828.3 4874.5 1223.0 1178.7 11858.9 12586.1 1318.2 1314.6 
0.6 79531 70469 5201.3 5264.8 1265.3 1277.1 13889.3 14999.9 1597.1 1568.7 
0.8 77533 72467 5698.1 5729.0 958.4 1106.9 15636.2 16937.6 1852.1 1844.3 

4. Conclusions and Discussions 

This study proposed a method that determined firing scheduling to minimize the total threat 
from enemies inflicted on friendly forces. Here, the firing sequence was determined by considering 
parameters such as enemy’s threat level, threat time, and time required to destroy the target. 
However, the enemy’s threat level and threat time are enemy-related parameters, for which it is 
difficult to obtain the quantitative true value. Thus, those parameters should be considered as 
uncertain parameters. This is because enemies strive to deceive opponents and minimize exposing 
their actions as much as possible. Accordingly, this study considered enemy threat level and threat 
time as uncertain parameters and proposed a methodology to find the best worst-case solution. This 
study assumed the random realization of enemy threat level and threat time parameters as arbitrary 
war scenarios to identify the most robust solution and developed a method to find this solution using 
the robust optimization concept. 

It is advantageous to determine firing scheduling in war as quickly as possible. This is because 
more operation preparation time will be available by reducing the time to determine firing 
scheduling. In this study, the fire scheduling model was divided into master and subproblems to 
identify the most robust solution. In the master problem, GA was utilized to overcome the complexity 
of global search and to shorten the solution search time. The commercial optimization program 
CPLEX was unable to identify the solution within three hours when the target number (n) was eight 
or larger in the numerical experiment, whereas the methodology proposed in this study was able to 
identify the solution even if the target number was large. 
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Fire scheduling is a special circumstance that requires decision making in a relationship with 
enemies as competitors. In such war scenarios, parameters that affect decision making are uncertain 
and worse cases are likely to occur. For competitors, it would be advantageous to create the worst 
situations for opponents. Thus, a robust solution for fire scheduling must be found regardless of 
uncertain circumstances. The model proposed in this study provides the best solution in the worst 
situation. The RS performance obtained using the proposed methodology was verified through 
numerical experiments, which indicated that RS always had better results than those of NS in the 
worst case, regardless of uncertainty level and problem size. 

For future research, a model that determines fire scheduling will be developed to consider 
realistic limitations such as preparation time for changing targets during artillery firing and 
uncertainty of the enemy’s intangible combat power. Next, studies on air defense weapon scheduling 
and missile scheduling should also consider uncertainty as a similar field of this study. Thus, a 
methodology based on the methodology proposed in this study must be developed to solve problems 
by considering unique operation situations and constraints that should be considered for each field. 
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Appendix A 

Proof of Theorem 1. Given the solution (sequence of shooting), the objective and constraints to find 
the worst scenario among the shooting sequences are as follows. 

maximize  ෍ ൝𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
𝑓ሚ௞

ଶ

2𝑟௞

ൡ

௡

௞ୀଵ

  (A1) 

subject to   

𝑡ଵ = 𝑎ଵ  (A2) 

𝑡௞ = max ቈቆ𝑡௞ିଵ +
𝑓ሚ௞ିଵ

𝑟௞ିଵ

ቇ , 𝑎෤௞቉ k ≥ 2,  𝑓ሚ௞ ∈ 𝑈௞ ,  𝑎෤௞ ∈ 𝑈௞ (A3) 

In this case, the combination scenario of 𝑓ሚ௞  and 𝑎෤௞ , which absolutely maximizes the objective 
equation for all 𝑘, is a worst scenario. 
The following three cases can be considered depending on the value of 𝑘. □ 

Case 1. When 𝒌 = 1, 
Let 𝐹௪ be Equation (31). Then, 

𝐹௪ = ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
௙ሚೖ

మ

ଶ௥ೖ
ൠ௡

௞ୀଵ = 𝑓ሚଵ(𝑡ଵ − 𝑎෤ଵ) +
௙ሚభ

మ

ଶ௥భ
 + 𝑓ሚଶ(𝑡ଶ − 𝑎෤ଶ) +

௙ሚమ
మ

ଶ௥మ
 + ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +

௙ሚೖ
మ

ଶ௥ೖ
ൠ௡

௞ୀଷ  

𝑡ଵ = 𝑎ଵ, 𝑡ଶ = max ቂቀ𝑡ଵ +
௙ሚభ

௥భ
ቁ ,  𝑎෤ଶቃ. 

 

① If 𝑡ଵ = 𝑎෤ଵ and 𝑡ଶ = 𝑡ଵ +
௙ሚభ

௥భ
, 

then 𝐹௪ =
௙ሚభ

మ

ଶ௥భ
 + 𝑓ሚଶ ቀ𝑎෤ଵ +

௙ሚభ

௥భ
− 𝑎෤ଶቁ +

௙ሚమ
మ

ଶ௥మ
 + ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +

௙ሚೖ
మ

ଶ௥ೖ
ൠ௡

௞ୀଷ . 

That is, 𝑡ଵ +
௙ሚభ

௥భ
 ≥  𝑎෤ଶ, 𝑎෤ଵ +

௙ሚభ

௥భ
− 𝑎෤ଶ ≥ 0. 

∀𝑘 𝑓ሚ௞, 𝑎෤௞, 𝑟௞, and 𝑡௞ are nonnegative values, and ∀𝑘 𝑓ሚ௞, and 𝑎෤௞ are independent values. 
Therefore, when 𝑓ሚଵ = 𝑓ଵ, 𝑎෤ଵ = 𝑎ଵ, 𝐹௪ is maximized, and this is a worst scenario. 

② If 𝑡ଵ = 𝑎෤ଵ and 𝑡ଶ = 𝑎෤ଶ, 

then 𝐹௪ =
௙ሚభ

మ

ଶ௥భ
 + ௙ሚమ

మ

ଶ௥మ
 + ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +

௙ሚೖ
మ

ଶ௥ೖ
ൠ௡

௞ୀଷ . 

Therefore, when 𝑓ሚଵ = 𝑓ଵ, 𝐹௪ is maximized and this is a worst scenario. 
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Case 2. When 2 ≤ 𝒌 ≤ 𝒏−𝟏, 

𝐹௪ = ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௞ିଵ

௤ୀଵ + 𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
௙ሚೖ

మ

ଶ௥ೖ
 + 𝑓ሚ௞ାଵ(𝑡௞ାଵ − 𝑎෤௞ାଵ) + ௙ሚೖశభ

మ

ଶ௥ೖశభ
 

+ ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௡

௤ୀ௞ାଶ  

𝑡௞ = max ቂቀ𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
ቁ , 𝑎෤௞ቃ. 

 

① If 𝑡௞ = 𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
 and 𝑡௞ାଵ = 𝑡௞ +

௙ሚೖ

௥ೖ
, 

then 𝐹௪ = ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௞ିଵ

௤ୀଵ + 𝑓ሚ௞ ቀ𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
− 𝑎෤௞ቁ +

௙ሚೖ
మ

ଶ௥ೖ
 + 𝑓ሚ௞ାଵ ቀ𝑡௞ +

௙ሚೖ

௥ೖ
− 𝑎෤௞ାଵቁ + ௙ሚೖశభ

మ

ଶ௥ೖశభ
 

+ ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௡

௤ୀ௞ାଶ . 

That is, 𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
 ≥  𝑎෤௞, 𝑡௞ +

௙ሚೖ

௥ೖ
 ≥  𝑎෤௞ାଵ. 

Therefore, when 𝑓ሚ௞ = 𝑓௞, 𝑎෤௞ = 𝑎௞, 𝐹௪ is maximized, and this is a worst scenario. 

② If 𝑡௞ = 𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
 and 𝑡௞ାଵ = 𝑎෤௞ାଵ, 

then 𝐹௪ = ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௞ିଵ

௤ୀଵ + 𝑓ሚ௞ ቀ𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
− 𝑎෤௞ቁ +

௙ሚೖ
మ

ଶ௥ೖ
 + ௙ሚೖశభ

మ

ଶ௥ೖశభ
 

+ ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௡

௤ୀ௞ାଶ . 

That is, 𝑡௞ିଵ +
௙ሚೖషభ

௥ೖషభ
 ≥  𝑎෤௞. 

Therefore, when 𝑓ሚ௞ = 𝑓௞, 𝑎෤௞ = 𝑎௞, 𝐹௪ is maximized, and this is a worst scenario. 

③ If 𝑡௞ = 𝑎෤௞ and 𝑡௞ାଵ = 𝑡௞ +
௙ሚೖ

௥ೖ
= 𝑎෤௞ +

௙ሚೖ

௥ೖ
, 

then 𝐹௪ = ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௞ିଵ

௤ୀଵ +
௙ሚೖ

మ

ଶ௥ೖ
 + 𝑓ሚ௞ାଵ ቀ𝑎෤௞ +

௙ሚೖ

௥ೖ
− 𝑎෤௞ାଵቁ + ௙ሚೖశభ

మ

ଶ௥ೖశభ
 

+ ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௡

௤ୀ௞ାଶ . 

That is, 𝑎෤௞ +
௙ሚೖ

௥ೖ
 ≥  𝑎෤௞ାଵ. 

Therefore, when 𝑓ሚ௞ = 𝑓௞, 𝑎෤௞ = 𝑎௞, F୵ is maximized, and this is a worst scenario. 
④ If 𝑡௞ = 𝑎෤௞ and 𝑡௞ାଵ = 𝑎෤௞ାଵ, 

then 𝐹௪ = ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +
௙ሚ೜

మ

ଶ௥೜
ൠ௞ିଵ

௤ୀଵ +
௙ሚೖ

మ

ଶ௥ೖ
 + ௙ሚೖశభ

మ

ଶ௥ೖశభ
+  ∑ ൜𝑓ሚ௤(𝑡௤ − 𝑎෤௤) +

௙ሚ೜
మ

ଶ௥೜
ൠ௡

௤ୀ௞ାଶ . 

Therefore, when 𝑓ሚ௞ = 𝑓௞, 𝐹௪ is maximized and this is a worst scenario. 

Case 3. When 𝒌 = 𝒏, 

𝐹௪ = ෍ ൝𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
𝑓ሚ௞

ଶ

2𝑟௞

ൡ

௡ିଵ

௞ୀଵ

+ 𝑓ሚ௡(𝑡௡ − 𝑎෤௡) +
𝑓ሚ௡

ଶ

2𝑟௡

  

① If 𝑡௡ = 𝑡௡ିଵ +
௙ሚ೙షభ

௥೙షభ
, 

then 𝐹௪ = ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
௙ሚೖ

మ

ଶ௥ೖ
ൠ௡ିଵ

௞ୀଵ + 𝑓ሚ௡ ቀ𝑡௡ିଵ +
௙ሚ೙షభ

௥೙షభ
− 𝑎෤௡ቁ +

௙ሚ೙
మ

ଶ௥೙
 and 𝑡௡ିଵ +

௙ሚ೙షభ

௥೙షభ
 ≥  𝑎෤௡. 

Therefore, when 𝑓ሚ௡ = 𝑓௡, 𝑎෤௡ = 𝑎௡, 𝐹௪ is maximized, and this is a worst scenario. 
② If 𝑡௡ = 𝑎෤௡, 

then 𝐹௪ = ∑ ൜𝑓ሚ௞(𝑡௞ − 𝑎෤௞) +
௙ሚೖ

మ

ଶ௥ೖ
ൠ௡ିଵ

௞ୀଵ +
௙ሚ೙

మ

ଶ௥೙
 

Therefore, when 𝑓ሚ௡ = 𝑓௡, 𝐹௪ is maximized and this is a worst scenario. 
In conclusion, for solution 𝑥 ∈ 𝑋, the worst scenario is a when 𝑓ሚ௞ is 𝑓௞, and 𝑎෤௞ occurs when 𝑎௞ or 𝑎௞. 
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