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Abstract: Biometric identification and verification are essential mechanisms in modern society. Palm vein
recognition is an emerging biometric technique, which has several advantages, especially in terms of
security against forgery. Contactless palm vein systems are more suitable for real-world applications,
but two of the major challenges of the state-of-the-art contributions are image deformations and time
efficiency. In the present work, we propose a new method for palm vein recognition by combining
DAISY descriptor and the Coarse-to-fine PatchMatch (CPM) algorithm in a parallel matching process.
Our proposal aims at providing an effective and efficient technique to obtain similarity of palm vein
images considering their displacements as discriminatory information. Extensive evaluation on three
publicly available databases demonstrates that the discriminability of the proposed approach reaches the
state-of-the-art results while it is considerably superior in time efficiency.

Keywords: individuals identification; palm vein recognition; biometric; sparse matching;
multi-core algorithm

1. Introduction

Nowadays, individuals identification and verification through their unique physiological (fingerprint,
face, iris, etc.) or behavioral (voice, gait, signature, etc.) traits by using biometric techniques are essential
mechanisms in modern society. Governments and private stakeholders have increased their interest
to adopt biometric-based identity management systems. In this context, market researchers estimate a
significant growth for global biometrics. The global biometrics technology market is expected to reach
$59.31 BN by 2025, according to a new study by Grand View Research [1]. This report forecasts the
increasing use of biometrics technology in several areas with different applications enabling the industry to
grow at a significant rate over the next six years. Some of these areas are consumer electronics to enhance
customer experiences; government and defense services; banking and finance to increase efficiency and
prevent fraud, among others.

A biometric system is a pattern recognition system which aims to identify or verify the identity of a
person by matching traits of individual anatomy, physiology or other behavioral characteristics from an
acquired image (query) with the features of pre-stored images (template database) [2,3]. Any physiological
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or behavioral attribute can qualify for being a biometric trait unless it satisfies the criteria such as:
universality, distinctiveness, collectability, performance, acceptability, and circumvention [2]. Based on
the criteria, there are several distinctive characteristics, or biometric traits, which have been studied and
tested. Among them are: fingerprint [4,5], face [6,7], iris [8,9], palmprint [10,11], voice [12,13], finger and
palm vein [14,15], gait [16,17], signature [18], DNA [19,20], and others. An extensive review of biometric
technology is presented in [21].

Currently, fingerprinting technology is the most used due to the preliminary biometric technology
as well as the low cost of imaging sensors. However, during the last few years, a considerable growth
in terms of revenue has been evident for face, iris and vein recognition technologies [21]. In particular,
techniques based on finger and palm veins for biometric recognition of people, also known as vascular
biometrics, have all been emerging in recent years [22].

The vein recognition technique uses the blood vessels under the skin for individuals’ identification.
Especially in fingers and palms, veins present important biometric characteristics such as universality,
distinctiveness, permanence, and acceptability. In addition, in comparison with other biometric features
(e.g., fingerprint, face, gait, voice, and others), it has three distinct advantages [23]: (1) can only be captured
in a living body, avoiding fraud with parts of deceased people or other non-presential fraud techniques;
(2) is very difficult to copy or falsify; (3) does not suffer damages due to external factors, as the fingerprint
suffers due to skin wear. Furthermore, the palm vein offers significant advantages such as high accuracy
rates, high resistance to criminal tampering, speed of authentication and compactness in size [24], as it is
shown in Table 1. These advantages guarantee the high security of this recognition method, which has
greatly increased the attention of the scientific community.

Table 1. Comparative analysis of characteristics of different types of biometric technologies, from [24].

Biometric Technology Security Acceptability Cost Privacy Size

Palm vein patterns High High Medium High Medium
Fingerprint Medium High Low Low Low

Face Low Low Medium Low Medium
Iris High High Medium to High Medium High

In this paper, we present a novel palm vein recognition method for individuals’ identification.
Particularly, the palm veins network is better than finger-vein because it is less susceptible to a change in
skin color, unlike a finger or the dorsal hand. In addition, there are more vein patterns in palm images due
to the fact that the geometry of the blood vessels are more complex comparing against fingers.

Most of the works in palm vein recognition have been focused on palm vein extraction in recent
years [15]. Geometry based approaches [25,26] extract palm vein patterns by using spatial methods from
segmented blood vessels. Methods based on statistical techniques [27–31] characterize the texture of
vein images at the pixel level of the image. Other works based on machine learning [32–36] adopt a
subspace method to project the palm vein image into subspace built from training data. In addition,
some authors propose using local invariant features [37–39] as a solution to problems of rotation, scale,
and axis changes. On the other hand, the feature matching process depends on the feature extraction
used. Thus, geometry-based matching [26,30,37,38], feature-based matching [28,40,41], and machine
learning [35,42–44] are some of the techniques used by researchers to evaluate the performance of palm
vein recognition.

According to the review of Soh et al. [15], most of the research works are focused on a contactless palm
vein recognition system. A palm vein contactless system is more suitable for real-world scenarios. However,
a contactless design system produces issues such as non-uniform illumination and affine transformation
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which is not suitable for some methods. Besides that, palm vein images, as well as finger images, are
severely affected by deformations, which occur due to scale change, axis change, and also affect the
accuracy of the system. Among the works available in the state-of-the-art, the approach of [45] stands out
for its recognition performance for finger-vein recognition. The technique proposed in [45] demonstrates
that deformations and displacements of finger-vein images can be used as discriminatory information,
unlike the existing methods that try to prevent their influence. Figure 1 illustrates the deformation effects
for different samples of palm vein images, where the variations of the vein patterns in form and scale
are noticeable.

Figure 1. Effects of deformations on different samples of palm vein images from the CASIA Multi-Spectral
Palmprint Image Database V1.0 [46].

In terms of methodology, Meng et al. [45] incorporate an optimized correspondence to obtain the
displacements of the pixels in two dimensions (2D) because of the deformations during the capturing
process. The final similarity between two images of finger-veins is estimated from the texture of
uniformity [47] of the displacement matrices obtained. In spite of the important contribution made
in [45], their proposal has the disadvantage of involving a high computation in the process of comparison
between images, which is more noticeable for palm vein images that are bigger than finger-vein images.
Thus, their approach could not achieve real-time recognition or be implemented in the real world with
large databases.

In their work, the authors of [45] propose using dense correspondences of SIFT features, known as
Dense SIFT flow [48], to obtain the pixel-based displacements between two vein images. This is the main
reason of high computation in the matching process. However, other approaches interpolate the optical
flow from sparse descriptor matching correspondences directly, known as sparse matching algorithms;
these have recently shown great success in efficiency and accuracy [49–52]. Among these methods,
the approach presented by Li et al. [52] is highlighted because it introduces a fast approximate structure for
the matching process, which avoids finding the correspondences of every pixel and leads to a significant
speed-up with acceptable accuracy.

Taking into account a large database, where it is necessary to identify individuals in real-time or
for massive identification, an acceleration of the matching process of palm vein images is necessary.
In this sense, the execution time of the recognition process has a great influence and it is fundamental
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for a real-world implementation. Thus, the proposal of this paper reduces the execution time of
the dense correspondences between palm vein images, by both using an efficient sparse matching
algorithm that achieves state-of-the-art accuracy but running much faster than the dense matching method,
and implementing a multi-core parallel scheme for accessing and querying the database. The proposed
method aims to provide an effective and efficient technique to obtain similarity of palm vein images
considering their displacements as discriminatory information.

Our proposal aims to prove that deformation information of palm vein images is an effective method
for palm vein recognition. Thus, we propose using a sparse matching algorithm as an alternative for
estimating the displacement, in contrast to [45] that uses a dense matching process. Hence, the goal of this
work is to propose a new method for contactless palm vein systems, which should be able to overcome
problems of real-world systems and suitable for real-time individuals identification. Consequently,
our approach has three main contributions:

• First, we introduce a new perspective to deal with deformations on contactless palm vein systems,
which is based on the ideas presented in [45]. Our method uses deformations as discriminative
information for palm vein recognition. Thus, we reduce the influence of deformations for real-world
systems by ensuring the robustness of palm vein recognition. To the best of our knowledge,
the method we present is the first that aims to reduce the influence of deformations by using it
as discriminative information for palm vein recognition.

• Second, in order to reduce the number of comparisons during the matching process, we propose
using a sparse matching algorithm [52], which employs a novel coarse-to-fine matching scheme based
on a combination of random search and propagation between hierarchical levels. This method is
robust to image displacements and more efficient than dense correspondences using SIFT proposed
by [45], in terms of execution time achieving a speed-up above 15×. The details of the proposed
descriptor and matching algorithm are presented in Sections 3.2 and 3.3.

• Third, with the aim of increasing the number of queries per second, considering a real-world
implementation, a master–worker scheme is proposed under a multi-core platform. The master
process is responsible for controlling queries and collecting the results, and, on the other hand,
the worker processes are used to obtain the similarity score between images. See Section 4 for
more details.

The rest of the paper is organized as follows. First, Section 2 reviews the fundamental concepts and
techniques related to palm vein recognition and image matching methods based on optical flow. Section 3
introduces the theoretical aspects that support the proposed method based on displacement information.
In Section 4, the proposed multi-core scheme for people massive identification using palm vein patterns is
presented. Finally, the experimental results are discussed in Section 5, and the conclusions are given in
Section 6.

2. Related Works

2.1. Palm Vein Recognition

A general outline of a palm vein recognition system is shown in Figure 2. Typically, it consists of
four main processes: image acquisition, pre-processing, feature extraction, and recognition. The capture is
made by infrared devices that obtain an image of the vein pattern on the hand. During the pre-processing,
the image is segmented to obtain the region of interest (ROI), and different techniques are applied to
improve the quality of the image. Feature extraction process computes the representation of the vein
patterns, which will later be used in the process of automatic recognition. The main contributions of the
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literature related to the subject are focused on stages of feature extraction and recognition because these
are decisive components in the accuracy of the results [15].

Image 
acquisition

Pre-processing

Feature 
extraction

Storage

Enrollment Verification / Identification

Image 
acquisition

Pre-processing

Feature 
extraction

Matching

Decision
Genuine or 
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Figure 2. General scheme of a palm vein recognition system.

Palm vein recognition stands out among all the biometric systems because of its great level
of recognition accuracy [15] and there are several works that propose multiple approaches [25–44].
Geometry-based approaches extract features from segmented blood vessels by using spatial methods
such as Gabor filter [26] and vector grams of maximal intra-neighbor difference [25]. The main handicap
of this type of techniques is that the segmentation and extraction of blood vessels is a very difficult
process. It lacks precision and produces information loss on tiny and blurred pixels, which affects its
performance. Methods based on statistical techniques characterize the texture of vein images at the pixel
level of the image. Typically, these types of techniques include local binary patterns (LBP) [27,28] and their
different variants local derivative pattern (LDP) [29], Local Tetra Patterns (LTrP) [30], and local directional
texture pattern (LDTP) [31]. In general, its performance is affected because the pixel-to-pixel processing is
extremely sensitive to deformations. Subspace-based methods are adopted on machine learning to reduce
or simplify the data structure by projecting the palm vein image into subspace built from training data.
In this category, Elnasir and Shamsuddin [32,33] propose two approaches based on Linear Discrimination
Analysis (LDA), Perwira et al. [35] use principal component analysis (PCA), while Xu [34] introduces
Partial Least Square for palm vein identification, and Zhou et al. [36] improve subspace methods by using
Radon Transform. In addition, some authors propose using local invariant features such as SIFT [37],
RootSIFT [38], and SURF [39], as a solution to problems of rotation, scale, and axis changes.

On the other hand, the feature matching process depends on the feature extraction used. Thus,
matching methods can be categorized into three groups. Firstly, geometry-based matching compares
points and lines features on the blood vessels by measuring metrics like Cosine Similarity Distance [30],
Hamming Distance [26], and Euclidean Distance [37,38]; second, feature-based matching [28,40,41] which
performs better than geometry-based methods on low-quality images; third, and a little more recently,
some authors propose machine learning techniques to improve classification results, such as probabilistic
neural network [35], artificial neural network [42], and convolutional neural network (CNN) [43,44].

As reported by Soh et al. [15], most of the research works are focused on contactless palm vein
recognition system. A palm vein contactless system is more suitable for real-world scenario. However,
a contactless design system produces issues such as non-uniform illumination and affine transformation
which is not suitable for some methods. Besides than that, palm vein images, as well as finger images,
are severely affected by deformations, which occur due to scale change, axis change, and also affect the
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accuracy of the system. The image quality is usually solved using visual improvement techniques such
as histogram equalization [38,53]. Regarding the vein image deformations, the work of [45] should be
highlighted, which introduces a new perspective to deal with the problem of deformations for finger-vein
recognition. Their contribution is different from other works that try to reduce the influence of deformations
by implementing a more precise segmentation of ROI [53], or using a more robust feature extraction [27,30],
among others. The features obtained at the pixel level in [45] are based on the observation that the
displacement of pixels generated in the matching process, due to the deformations of vein images,
are convenient as discriminatory information.

Understanding the ideas introduced by Meng et al. [45], the information that allows for
distinguishing a correspondence of images between genuine and imposter matching is based on two
principles—see Figure 3: (1) the displacement of a pixel and its neighbors are similar because the pixels in
a local region tend to be similar in deformations; (2) the number of pixels that have the same displacement
tends to be larger in genuine matching because two similar images share the same vein structure. For these
reasons, the displacement at the pixel level is obtained by treating the correspondence process as an
optimization problem based on the proposal of [48]. Thus, the displacement matrices are generated from
the dense correspondences of SIFT descriptors [54], from which the feature of uniformity texture [47] is
extracted being the final degree of similarity. This new perspective solves the problem of deformations and
avoids the segmentation of blood vessel structures for finger-vein recognition. In addition, the recognition
method used is more robust and much more discriminatory than traditional approaches.

(a)

(b)

Figure 3. Comparison of displacements for genuine and imposter matching, image from [45]. (a) genuine
matching: the displacements tend to be similar in length and direction for matched pixels; (b) imposter
matching: the displacements vary in distance and in various directions for matched pixels.

Our proposal aims to prove these principles are also met for palm vein recognition, but we use a sparse
matching algorithm which is more efficient than dense correspondences using SIFT proposed in [45]. To the
best of our knowledge, the method we present is the first that aims to reduce the influence of deformations
by using it as discriminative information for palm vein recognition. At the same time, our approach
reduces the execution time of the matching process of palm vein images being able to use in individual
massive identification. Our experimental results show that a higher speed-up is obtained by combining
the effectiveness and efficiency of a sparse matching algorithm with a multi-core parallel implementation.
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2.2. Image Matching Based on Optical Flow

Image alignment, registration, and correspondence are central topics in computer vision. Image
alignment becomes even more difficult in the object recognition scenario, where the goal is to align different
instances of the same object category [48]. Some authors have proposed image matching techniques
inspired by optical flow methods, which are able to produce dense, pixel-to-pixel correspondences between
two images [48–52,55]. This approach to obtain the correspondence between two images is formulated as
an estimation of a 2D flow field.

On this context, the approaches in the state-of-the-art can be categorized in dense [48,55] and
sparse [49–52] matching algorithm, based on which pixel level is used to compute the correspondence.
Dense algorithms use the information of every pixel to obtain a dense correspondence, on the contrary,
sparse methods employ sparse feature points.

In the first category, DenseSIFT flow proposed by Liu et al. [48] consists of matching densely sampled,
pixel-wise SIFT features [54] between two images, while preserving spatial discontinuities. The matching
process is simulated as an optimization objective by using a message passing scheme, the dual-layer loopy
belief propagation algorithm [56], and a coarse-to-fine matching scheme. The approach introduced in [48]
was tested on face recognition by the authors and it was improved by Meng et al. [45] for finger-vein
recognition. Moreover, the proposal in [55] extends coarse matching to dense matching by enforcing
affine constraints and a variational flow refinement. Both approaches, and on the whole dense matching
methods, have shown excellent performance but at the expense of high computation costs.

On the other hand, sparse matching approaches consider the image as a collection of textural segments,
each represented by local image patches. Generally, in order to find a correspondence for a patch, the closest
patch is taken disregarding the relation with the other patches. Timofte and Van Gool [49] propose a
method called SparseFlow, which also uses the other patches, as they help at selecting the appropriate
textural subspaces. Final correspondences are selected as patch pairs where each patch is the sparse
match of the other in a bijection, that means the sparse matching works both ways. SparseFlow performs
well for small to medium displacements at a low computational cost, being one of the fastest CPU
methods. DeepMatching algorithm introduced by Revaud et al. [51] is another sparse method inspired
by deep convolutional approaches. This technique computes the correspondence by using a multi-layer
architecture, which breaks down patches into a hierarchy of sub-patches. It explicitly handles non-rigid
deformations, with bounds on the deformation tolerance, and incorporates a multi-scale scoring of
the matches. Additionally, Li et al. [52] introduce a simple but fast and powerful matching method,
which works in a coarse-to-fine scheme, called CPM (Coarse-to-fine PatchMatch). It combines an efficient
random search strategy and a propagation procedure between the adjacent levels from top to bottom.
The fast approximate structure proposed in [48] for the matching process avoids finding the matching of
every pixel and leads to a significant speed-up with controllable accuracy.

Our proposal addresses previous limitations of [45] for finger-vein recognition, which is based on
dense correspondence method and is time-consuming. In our case, we introduce the use of a sparse
matching algorithm to estimate the similarity between palm vein images. It improves the effectiveness
and efficiency of the matching process by achieving state-of-the-art accuracy and running much faster
than the baseline method.

3. Methodology

In this section, we present a thorough description of the palm vein recognition process performed
by our method, paying special attention to the contributions introduced in our approach. The proposed
methodology is based on the deformation information proposed in [45]. Our proposal is composed of four
steps for both stages, enrollment and verification/identification. Initially, finger-vein images are captured
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using a veins scanner device, and a near-infrared (NIR) light (760–940 nm) is often used in palm vein image
acquisition. On a second step, a pre-processing of the captured images is performed for ROI segmentation
and the quality improvement of the image. Then, the DAISY descriptor [57] is computed and it performs
the CPM [52] process to obtain the displacement matrices. Finally, the feature of the uniformity texture [47]
of the displacement is calculated, which allows knowing the final result of the correspondence between
two veins images as a similarity score. Figure 4 illustrates the diagram of the different processing steps
and stages, which are detailed in the following sections.

Image 
acquisition

Pre-processing

Feature 
extraction: DAISY 

descriptor

Storage

Enrollment Verification / Identification

Image 
acquisition

Pre-processing

Feature 
extraction: DAISY 

descriptor
CPM Matching

Decision
Genuine or 

Imposter

Parallel 

queries

Figure 4. Flowchart of our approach for palm vein recognition based on deformation information.
The modifications and/or contributions with respect to [45] are highlighted in bold text.

3.1. Pre-Processing of Finger-Vein Images

Palm vein images are normally captured by using an NIR light. Usually, in contactless systems,
the captured image contains the whole hand including fingers. Moreover and much more significant,
the captured vein images present a low contrast due to NIR acquisition process. Hence, pre-processing
of palm vein images is a very important operation as the initialization step for feature extraction and
matching procedures. Regarding this, the image enhancement procedures, as well as ROI segmentation,
are crucial to extracting the latent information of palm vein patterns. The pre-processing procedure in our
method is composed of three sub-processes with the aim to obtain an enhanced image: ROI segmentation,
intensity normalization, and histogram equalization, which are exemplified in Figure 5.

ROI of a palm vein image refers to the region of palm which reserves the most useful information for
the recognition process. Thus, one essential rule in the extraction of ROI is that it should have sufficient vein
features for extraction and matching [58]. Furthermore, in contactless imaging, it should be noted that palm
vein images present a lot of translational and rotational variations. Therefore, in our approach, we applied
the ROI extraction method proposed by Kang and Wu [28], which is suitable for contactless palm vein
recognition. The process involves various pre-processing steps, such as background segmentation, image
rotation, and ROI extraction and normalization, making the feature extraction and matching processes
much more robust to axis changes and variations.
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Figure 5. Examples of images obtained by applying sub-processes of pre-processing procedure for ROI
segmentation, intensity normalization and histogram equalization: (a) original image; (b) background
segmentation; (c) description of Pre f , five fingertips and four finger-webs, P1 and P2; (d) the angle θ between
P1P2 and the horizontal line L; (e) segmented ROI from rotated palm image; (f) normalized palm vein ROI;
(g) uniform intensity ROI image; and (h) final enhanced palm vein ROI after CLAHE.

First, the acquired images are binarized to differentiate the palm and the background region by a
modified OTSU algorithm [59], as shown in Figure 5b. Next, taking the middle point of the wrist cut line
as reference point (Pre f ), the radial distance function (RDF) in-between contour points is calculated to
estimate five fingertips (local maximums) and four finger-webs (local minimums), which can be taken
as landmarks for image rotation and ROI extraction. Then, the points P1, which corresponds to the the
midpoint of the two valley points on both sides of the index finger, and P2, that similarly corresponds to
the midpoint of the valley points on both sides of the little finger, are selected as datum points, as shown
in Figure 5c. This method is better to other approaches [26,53,60] which use the valley point between
the small finger and ring finger, and the valley point between the middle finger and the index finger as
reference points, and in that way they omit an information-rich region at the edge of the palm. Thus,
taking the straight line P1P2 formed by the points P1 and P2, since θ represents the angle between P1P2 and
the horizontal line L (Figure 5d), let d denote the distance between P1 and P2, and let a be the scaling factor.
Hence, we obtain the following relationships as in [28]:

θ = tan−1(xP2 − xP1)/(yP2 − yP1), (1)

d =
√
(xP2 − xP1)

2 + (yP2 − yP1)
2, (2)

a = d/c, (3)

where (xP1 , yP1) and (xP2 , yP2) are the coordinates of points P1 and P2, respectively, and c is the side length
of the normalized ROI, which is fixed in 192 in order to reduce the processing time and to standardize
the size of palm vein images for the matching process. Consequently, to eliminate the influences of palm
rotation, the palm image is rotated an angle θ. Later, distance d is computed between the rotated points P′1
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and P′2 and a square region of side length d is selected to define the palm vein ROI, as shown in Figure 5e.
Finally, we perform scaling of ROI by a factor and the normalized ROI is obtained; Figure 5f shows an
example of the segmented ROI.

The intensity normalization process is carried out in the pre-processing step aiming to solve another
problem that occurs during the image acquisition procedure, which is related to lighting conditions.
The images have different intensity ranges due to the difference in illumination and hand position.
The normalization process lowers the pixel gray value variation along the vein patterns and normalizes
the pixel intensity distribution. Instead of the well-known global normalization used by different
authors [58,61,62], we propose applying the block-local normalization introduced by Zhou and Kumar [53]
to ensure common range intensities between 0 and 255 in all ROI segmented images. Local normalization
considers the average of the pixels of the local area and not the entire image as with global normalization.
In addition, the local or block-local normalization is more appropriate than global normalization because
of the varying of gray in different areas of the image. As in [53], the palm vein image is divided into
slightly overlapping 32× 32 blocks (three pixels overlapping between two blocks to address the blocky
effect), and their mean values constitute the coarse estimates of background illumination for individual
blocks. The uniform intensity image is achieved by subtracting the estimated background illumination
from each original template; Figure 5g illustrates an example of the resulted image.

Once the intensity normalization process takes place, as the final pre-processing step, the contrast of
the ROI image is enhanced by using the Contrast Limited Adaptive Histogram Equalization (CLAHE) [63]
in which contrast enhancement is carried out in a local neighborhood. This approach is different to some
authors that use histogram equalization to globally enhance the contrast in palm vein images [40,41,53].
Thereby, the pre-processing procedure enhances fine details of vein patterns that have been blurred
as a natural effect of NIR image acquisition, as shown in Figure 5h. Moreover, the CLAHE operator
prevents over amplification of noise in relatively homogeneous regions of the image, as it computes several
histograms, each corresponding to a section of the image, and uses them to redistribute the values locally
on a predefined neighborhood. In our approach, the size of the neighborhood is empirically fixed to be a
15× 15 sized window and the contrast is limited to 255.

3.2. Feature Extraction of DAISY Descriptor

Rather than a dense SIFT descriptor used by Meng et al. [45], we found that the DAISY descriptor [57]
is more suitable for practical usage. The DAISY descriptor retains the robustness of SIFT, being optimal for
sparse matching while it can be computed efficiently at every single image pixel.

In order to obtain the DAISY descriptor, in the feature extraction, we first compute orientation maps
from the original images. Each orientation map is then convolved several times with Gaussian kernels of
different sizes to obtain convolved orientation maps for different sized regions. As our primary motivation
is to reduce the computational requirements, it is noticeable that the convolutions can be implemented very
efficiently especially by using separable Gaussian filters. Moreover, it is possible to compute convolutions
with a large Gaussian kernel at a low computational cost, from several consecutive convolutions with
smaller kernels. At each pixel location, DAISY consists of a vector made of values from the convolved
orientation maps located on concentric circles centered on the location. In our approach, we use the
standard set of parameters proposed by DAISY’s authors in [57] and the algorithm implementation in
OpenCV library [64]. Hence, in practice, we use the most generic parameter set proposed in [57] for all of
the experiments presented in this paper. Thus, the parameter settings for DAISY descriptor are fixed as:
Radius (R) = 15, Radius Quantization (Q) = 3, Angular Quantization (T) = 8, and Histogram Quantization
(H) = 8.
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The efficiency of DAISY comes from the fact that most computations are separable convolutions
and also the computation avoids more than once the histograms common to nearby descriptors. In [57],
the authors give a formal complexity analysis of both DAISY and SIFT. It should be noted that dense SIFT
is a time-consuming algorithm and it is complicated to be parallelized. On the other hand, the DAISY
descriptor is very efficient from its own conception and the computation pipeline enables a very efficient
memory access pattern and the early separation of the histogram layers greatly improves efficiency. Thus,
its implementation allows being parallelized very easily, both in multi-core and GPU parallel platforms.
Furthermore, we can consider a more efficient implementation of the convolution operation using the FFT
algorithm, which would boost the algorithm performance.

3.3. Sparse Matching of Palm Vein Images

To obtain the displacement matrices, it is necessary to find the correspondence between the veins
images to be compared. For this, it is considered that the best correspondence for a point must present the
most similar features. In this regard and different to [45] which is based on a dense matching algorithm,
we propose using a sparse matching method combining a random search strategy with a coarse-to-fine
scheme for optical flow with large displacements. Our method introduces the CPM algorithm proposed
in [52] for palm vein identification. The key idea of CPM is that matching correspondences with larger patch
size are often more discriminative. In addition, the proposed technique implements a fast approximate
structure for the matching process, which finds the best correspondence of some seeds and it avoids
finding the matching of every pixel, leading to a significant speed-up. In the following, we present the
main characteristics of the matching process of our methodology.

Formally in [52], CPM is defined for two images I1, I2 ⊂ R2, and a collection of seeds S = {sm} at
position {p(sm)}, aiming to determine the flow of each seed as follows:

f (sm) =M(p(sm))− p(sm) ∈ R, (4)

whereM(p(sm)) is the corresponding matching position in I2 for seed sm in I1, and the seeds are the
cross points of the regular image grid with a spacing of d pixels, obtaining only one seed in every d× d
non-overlapping block. Hence, a neighbor system is obtained according to the spatial adjacency of the
seeds on the image grid.

CPM performs a neighborhood propagation and random search iteratively in an interleaved manner.
Seeds are examined in scan order on odd iterations and in reverse scan order on even iterations. Then,
flow values are propagated from neighbor seeds to current seed if they have already been examined in the
current iteration, as the next equation:

f (sm) = arg min
f (si)

(C( f (si))), si ∈ {sm} ∪Nm, (5)

where C( f (·)) denotes the match cost between patch centered at p(sm) in I1 and patch centered at
p(sm) + f (·) in I2; and Nm is the set of spatially adjacent seed neighbors of sm that is already examined in
current iterations.

Afterward, a random search is performed for the current seed sm by testing some candidate flow
around the current best flow f (sm), at an exponentially decreasing scope started from a maximum search
radius. As in [52], the ratio α between the two consecutive search scopes is fixed to 1/2 and the matching
process is performed for a fixed number of iteration n.

Another important improvement implemented by Li et al. [52] is the coarse-to-fine scheme for
propagation, which is a simple but powerful hierarchical structure to handle the ambiguity of small
patches. First, a pyramid with k levels is constructed for both I1 and I2 with a downsampling factor
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η = 0.5. Then, the matches are found for every seed {sl} on the lth level of the pyramids for both images,
where l ∈ {0, 1, . . . , k− 1}. It should be noted that the seeds on each level preserve the same neighboring
relation as the finest level, and the number of seeds is the same on each level.

After the construction of the pyramid, the algorithm propagates the flow of each seed from top to
bottom on the pyramid with a random search. First, the flow of the seeds on the top level { f (sk−1)} is set
randomly. Later, the flow of seeds on the next level { f (sk−2)} is initialized with the flow of the previous
one, and similarly for each level l < k− 1 the computed flow serves as an initialization of the next level
as follows:

{ f (sl)} = 1
η
· { f (sl+1)}, l < k− 1. (6)

Finally, a propagation with random search within a small search radius r is performed iteratively to
obtain the flow of the seeds on each level. The search radius r is defined for every level of the pyramid
except the top level which is set to the maximum image dimension.

In [50,52], the authors evaluated the impact of different parameter settings of CPM. They analyzed
the impact of varying the parameter set {d, n, k, r} on the computation complexity and the quality of the
matches, finding that the parameter set {d, n, k, r} = {3, 6, 5, 4} obtains the best results. Thus, we use the
same parameter settings in our approach for all the experiments.

3.4. Displacement Uniformity

Previously, we present an efficient coarse-to-fine matching technique for correspondences estimation.
Thus, the displacement matrices are derived from the correspondences obtained before. As in [45],
our method determines the texture feature of uniformity [47] from the displacement matrices. With this
feature, the final similarity between two veins images to be compared is evaluated. Since hx and hy are the
histograms of the displacement matrices, where h(i) denotes the number of pixels with a displacement
value equal to i, the uniformity is defined as follows:

f = ∑
i∈l

(
hx(i) + hy(i)

2MN

)2

, (7)

where M and N represent the height and width of the veins image, respectively. The value of l varies in the
range [min(∆X, ∆Y), max(∆X, ∆Y)]. Consequently, the value of f lies between 0 and 1. According to [45],
when two images correspond to the same palm vein patterns, the uniformity texture of the displacement
tends to be relatively high. On the contrary, when it comes to two images of different palms, the uniformity
tends to be small. In this way, the uniformity of the displacement is used to discriminate between true or
false vein patterns.

4. Palm Vein Recognition under Multi-Core Platform

In the previous section, our proposed methodology was presented. In this work, we introduce
some improvement with respect to the baseline method proposed in [45] for finger-vein recognition.
Our approach aims to reduce the computation time for both feature extraction and matching processes,
achieving a significant speed-up for massive individuals identification. In correspondence with this,
we propose accelerating the process of comparison of finger-vein images by using a multi-core platform.

In recent years, the popularization of multi-core processors, computer clusters, and computational
grids have driven the design of parallel applications. Following this trend in the present work,
a multi-thread parallel algorithm has been implemented by using OpenMP [65].

An ideal parallelization of the system would be based on a scheme where each pair of images to be
compared is related to a processor or processing thread. However, this approach would not be feasible
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in the problem to be treated, due to the number of images that are compared. Thus, in the proposed
solution, each processing thread is responsible for a group of images. With the aim that no synchronization
problems are generated between the different threads, a master–worker scheme is used. The master process
is responsible for controlling the queries and collecting the results, and, on the other hand, the worker
processes are used to estimate the similarity from the subset of vein images they manage. In Figure 4,
we illustrate parallel queries under the aforementioned scheme with multiple arrows between storage and
CPM process.

In our approach, we use a task distribution scheme in Round-Robin fashion for the computation of
similarity tests by worker processes. Let N denote the total number of similarity tests, and let P be the
total number of processes. Each worker process computes one similarity test in Round-Robin fashion,
as shown in Figure 6; then, each process computes N/P similarity tests.

Process 0

Process 1

Process 2

Process 3

Figure 6. Task distribution scheme where each row represents a similarity test.

5. Results

In this section, the performance of the proposed method for palm vein recognition is evaluated.
Three different datasets have been tested in our experiments: CASIA Multi-Spectral Palmprint
Image Database V1.0 (CASIA-MS-PalmprintV1 for short) [46], collected by the Chinese Academy of
Sciences’ Institute of Automation (CASIA); VERA Palm vein database [66], by Idiap Research Institute;
and PUT Vein database [67], created by Institute of Control and Information Engineering (CIE). All three
are publicly available and they can be found in the evaluations of most of the works presented in the
literature. The first two databases are based on contactless acquisition, while the other one used a contact
acquisition device.

The CASIA Multi-Spectral Palmprint Image Database [46] is the most relevant dataset for palm print
and palm vein recognition. It contains 7200 palm images captured from 100 different people using a
self-designed multiple spectral imaging device. All palm images are eight bit gray-level JPEG files with
a resolution of 768× 576 pixels. For each hand, two sessions of palm images were captured with a time
interval of more than one month. In each session, there are three samples that contain six palm images that
were captured using six different wavelengths (visible, 460, 630, 700, 850 and 940 nm) of the illumination.
Between two samples, the authors allowed a certain degree of variations of hand postures aiming to
increase the diversity of intra-class samples and simulate practical use. In this paper, we only use a portion
of the database. To evaluate the proposed method, we use 1200 palm vein images of both hands, which
were captured at a wavelength of 850 nm.
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VERA Palm vein database [66] consists of 2200 images depicting human palm vein patterns. Palm vein
images were acquired at a wavelength of 940 nm from 110 volunteers (70 male and 40 female) for both left
and right hands. For each subject, images were obtained in two sessions of five pictures each per hand.
All palm images are 8 bit gray-level using PNG format with a resolution of 480× 680. The database was
acquired by a contactless device. However, the distance between the user hand and the camera lens is
measured by an ultrasound sensor and an LED signal that indicates the user the correct position of the
hand for the acquisition, which seems to be more natural and feasible.

PUT Vein database [67] consists of 2400 images from 50 volunteers, half of palm vein pattern
(1200 images) and the other half contains a wrist vein pattern (another 1200 images), for both left and
right hands. Images were acquired by a contact acquisition system where the user covers the acquisition
window with his or her palm or wrist, cutting off external light sources. Thus, all images have stable
lighting conditions at a wavelength of 880 nm. For each subject, images were obtained in three series of
four pictures each. Series were separated by intervals of at least one week on the same day of the week at
the same time of day. Each obtained image is a 1280× 960 bitmap saved in BMP format.

Typically, and depending on the application context, a biometric system operates in two different
modes [2]: verification and identification. The verification mode is a positive recognition process, where the
user claims a particular identity to the system by submitting its biometric trait sample. In response,
the biometric system validates the claimed identity by making a 1:1 (one-to-one) comparison between the
submitted sample and the enrolled template associated with this particular individual. The applications
include user authentication on computers, ATMs, e-commerce, mobile devices, among others. On the
other hand, in the identification mode, the biometric system tries to recognize an individual by making
1:N (one-to-many) comparisons with the submitted biometric sample to all the enrolled templates in
the database, without knowing a specific identity for the user. Identification is a negative recognition
process that prevents an individual from using multiple identities or where the user denies holding a
particular identity. The applications include the issuance of ID cards and passports, border crossing,
criminal identification, and missing individuals recognition in natural disasters.

Thus, in order to analyze the applicability of the proposed method in different areas, the following
sections present the results of our approach compared in verification and identification modes.
In our experiments, we follow the nom L&R protocol from [66], where the left and right hand of the
same subject are considered different subjects. In addition, as our main contribution is based on the use of
a sparse matching algorithm for palm vein recognition, our experiments also were carried out for different
sparse matching methods, in addition to CPM [52]: DeepMatching [51] and SparseFlow [49].

The experiments were implemented using C++ with OpenMP and OpenCV libraries. We also
use the original source codes for implementations of DenseSIFT [48], CPM [52], DeepMatching [51],
and SparseFlow [49]. Table 2 shows the characteristics of the server used for the experiments, on the
sequential and multi-core versions.

Table 2. Details of the server used for the experiments.

Processor
2 × Intel Xeon Gold 6140 CPU @ 2.30 GHz

Total physical cores: 36
24.75 MB L3 Cache

Memory 128 GB

Operative System GNU Debian System Linux
kernel 4.9.0-8-amd64

Compiler gcc version 6.3.0, flags: -03
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5.1. Experimentation in Verification Mode

In this mode, a set of matching scores are obtained for intra-class and inter-class comparisons.
Consequently, Table 3 shows the number of intra-class and inter-class matching pairs on each dataset,
together to its description, respectively.

Table 3. Number of intra-class and inter-class matching pairs for the experiments in verification mode on
each database.

Database Intra-Class Comparisons Inter-Class Comparisons

CASIA-MS-PalmprintV1
3000 1,432,800

(100 persons× 2 hands× C2
6)

(100 persons× 2 hands× 6 samples
×199 di f f erent hands× 6 samples)

VERA Palm vein
9900 4,818,000

(110 persons× 2 hands× C2
10)

(110 persons× 2 hands× 10 samples
×219 di f f erent hands× 10 samples)

PUT Vein
6600 1,425,600

(50 persons× 2 hands× C2
12)

(50 persons× 2 hands× 12 samples
×99 di f f erent hands× 12 samples)

Figure 7 shows the distributions of genuine and imposter matching scores of the proposed method on
different databases. Matching scores for the three datasets present a slightly similar distribution. There is
an overlap for genuine and imposter matching scores. However, it is noticeable that scores for imposter
matching are denser and closer to 0. In addition, both distributions are separable for all databases, which
suggests that the CPM is able to find similarities for similar palm vein images while distinguishing image
samples from different fingers.
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Figure 7. Distribution of matching scores on database: (a) CASIA-MS-PalmprintV1; (b) VERA Palm vein;
and (c) PUT Vein.

The accuracy of our method is examined by computing the EER (equal error rate), FRR (false rejection
rate) at-zero-FAR (false acceptance rate), and FAR at-zero-FRR. Table 4 shows the results on different
datasets, while Figure 8 depicts the ROC curves obtained for FAR and FRR results on the databases.
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Figure 8. ROC curves of proposed method on database: (a) CASIA-MS-PalmprintV1; (b) VERA Palm vein;
and (c) PUT Vein.

Table 4. Results of the proposed method on the databases in verification mode.

Database EER FRR at-Zero-FAR FAR at-Zero-FRR

CASIA-MS-PalmprintV1 0.0072 0.0502 0.8066
VERA Palm vein 0.0067 0.0380 0.9620

PUT Vein 0.0019 0.0383 0.0065

The results of FAR and FRR plotted on the ROC curves, see Figure 8, ensure the high accuracy of
the proposed method, which is also evident in Table 4. The EERs of the proposed method are under 1%
for all reported databases. Previous values demonstrate the effectiveness of our proposal. Furthermore,
the results of FRR at-zero-FAR are very low in the three cases, the FAR at-zero-FRR being very close to 1
for CASIA-MS-PalmprintV1 and VERA Palm vein database. These values give us a better interpretation of
the performance when either no impostor or no genuine palm vein exemplar is mismatched, respectively.

Experimental results demonstrate the effectiveness of CPM as a matching method for palm vein
recognition in verification mode. However, our proposal aims to provide an alternative to calculate
the displacement between palm vein images to be capable of using a large database. In this sense,
the experimental results for verification task prove that sparse matching, particularly the CPM, is a
good alternative to the dense matching process proposed in [45] for finger-vein recognition, which is a
time-consuming algorithm. In order to reaffirm the above, Section 5.3 analyzes the performance in terms
of execution time and Section 5.5 compares the proposed method against the state-of-the-art approaches.

5.2. Experimentation in Identification Mode

In the identification mode, a biometric system tries to identify an unknown individual by comparing
the testing sample against every known template in the database. Thus, a matching or similarity score
is calculated for each 1:N pair and the testing sample is labeled with the identity of the most similar
template. In this experiment, we analyze the effectiveness of the proposed method in the identification
mode. For this purpose, the first half of the palm vein samples of each person is used as testing samples and
randomly selected one palm vein image from the remaining half as a template of the database. Therefore,
Table 5 shows the number of templates and similarity tests on each database, together with its description,
respectively. For each testing sample, the ranking of its true label is calculated by descending sorting of
the matching scores. It should be noted that we executed the experiment ten times in order to obtain an
unbiased result.
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Table 5. Number of templates and similarity tests for the experiments in identification mode on
each database.

Database Templates Similarity Tests

CASIA-MS-PalmprintV1
200 120,000

(100 persons× 2 hands) (100 persons× 2 hands×
3 testing samples× 200 templates)

VERA Palm vein
220 242,000

(110 persons× 2 hands) (110 persons× 2 hands×
5 testing samples× 220 templates)

PUT Vein
100 60,000

(50 persons× 2 hands) (50 persons× 2 hands
6 testing samples× 100 templates)

The cumulative match curves of the proposed method are shown in Figure 9. Table 6 shows the
identification accuracy. As it can be seen, the proposed approach achieves average recognition rates above
99% on two datasets and above 98% for CASIA-MS-PalmprintV1. Moreover, the lowest perfect rank of
the proposed method is less than 31 on all tested databases. Given previous results, we can say that our
proposal, by combining DAISY descriptor and CPM algorithm, has an excellent performance for palm
vein recognition in identification mode.

0 10050 150

Rank

200
0.975

0.98

0.985

0.99

0.995

1

R
ec

o
g
n
it

io
n
 r

at
e

(a)

0.975

0.98

0.985

0.99

0.995

1

R
ec

o
g
n
it

io
n
 r

at
e

0 10050 150

Rank

250200

(b)

0.975

0.98

0.985

0.99

0.995

1

R
ec

o
g

n
it

io
n

 r
at

e

0 4020 60

Rank

10080

(c)
Figure 9. Cumulative match curves on database: (a) CASIA-MS-PalmprintV1; (b) VERA Palm vein;
and (c) PUT Vein.

Table 6. Results of the proposed method on the databases in identification mode.

Database Rank-One Recognition Rate Lowest Rank of Perfect Recognition

CASIA-MS-PalmprintV1 0.9809 (±0.0049) 31
VERA Palm vein 0.9914 (±0.0037) 26

PUT Vein 0.9953 (±0.0031) 19

5.3. Impact of the Sparse Matching on the Time Efficiency

One of the main contributions of our approach is to reduce the execution time of the dense
correspondences between palm vein images; in this experiment, we analyze the impact of the sparse
matching on the time efficiency of the recognition pipeline. Thus, we propose using CPM as sparse
matching algorithm, that as we have seen in previous experiments, it achieves a good performance in
verification and identification tasks. Now, we examine the time efficiency of our proposal and also we
compare its results against the baseline method proposed in [45]. In all cases, the reported results were
obtained by averaging 10 repetitions of 1200 similarity tests on CASIA-MS-PalmprintV1 database, due to
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this database being more challenging than the other two. The execution times of each process of the
recognition pipeline are listed in Table 7, and Figure 10 studies the effect of our multi-core implementation
on the matching process.

Table 7. Comparison of execution time of each process of the recognition pipeline. All times are given in
milliseconds (ms).

Method Pre- Feature Matching Similarity Total Overall
Processing Extraction Process Score Time Speed-Up

Baseline [45] 155.12 18.73 3915.12 2.31 4091.28 -
Proposed method 155.12 102.17 0.39 4.98 262.66 15.58×
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Figure 10. Results of queries per seconds computed by both methods on different number of cores.
Number 1 means the sequential version.

As it can be seen in Table 7, the overall speed-up obtained by our method with respect to the baseline
is above 15×. Mainly, this result is a consequence of the reduction on the execution time of the sparse
matching process introduced in our proposal, which is 0.39 ms while the dense matching of the baseline
method is 10,038 times higher. However, it is worth mentioning that the execution time of the feature
extraction of our approach is five times higher than the baseline. This behavior contrasts with the results
reported by [57], who found that the DAISY descriptor can be computed more efficiently than SIFT. It can
be explained by the fact that we used the algorithm implementation of OpenCV library [64] for feature
extraction, which are not the same as those used in their experiments. Nevertheless, the DAISY algorithm
is suitable to be parallelized under multi-core and GPU platforms, which we will study in the future in
order to improve much more the time efficiency of our method.

Given the results depicted in Figure 10, we can say that the master-worker scheme implemented on
the matching process linearly increases the number of queries per second computed by our method with
varying number of cores. Contrarily, the baseline algorithm shows smaller growth with respect to the
increase in the number of processing cores. The main reason is that CPM enables a very efficient memory
access by using the DAISY descriptor instead of SIFT, which greatly improves efficiency. In addition, this is
possible by the fact that the random search with the coarse-to-fine scheme on a sparse image grid structure
is more computationally efficient than dense correspondences implemented in the baseline algorithm.
Moreover, these two factors suggest that our approach is also quite suitable for GPU parallel programming,
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which will be a future task for taking advantage of the multiples cores of a GPU on a real-world application
for individuals identification.

5.4. Comparison of Different Sparse Matching Methods

Two of the most critical processes affecting the overall performance of the recognition pipeline in the
verification/identification stage are the processes of feature extraction and matching. Thus, in order to
determine how good our proposal is of using CPM as a sparse matching method for palm vein recognition,
in this experiment, we compare the results of CPM against different sparse matching approaches. For this
purpose, we replace the processes of feature extraction and matching of the recognition pipeline by using
DeepMatching [51] and SparseFlow [49] algorithms. In Table 8 we report the results of the different sparse
matching methods on CASIA-MS-PalmprintV1 database, given by the EER and the Rank-one recognition
rate for verification and identification tasks, respectively. We also determine the computation time of the
matching process as in the previous experiment.

Table 8. Comparison of results of different sparse matching methods on a CASIA-MS-PalmprintV1 database.

Method EER Rank-One Recognition Rate Computation Time (ms)

CPM [52] 0.0072 0.9651 0.39
DeepMatching [51] 0.0268 0.9549 501.39

SparseFlow [49] 0.0391 0.9267 635.16

The experimental results reported in Table 8 clearly show that CPM obtains the best performance
on both recognition tasks. In addition, it is evident that sparse matching methods improve the time
efficiency of the matching process in the recognition pipeline, obtaining computation times much lower
than dense matching used in [45]. Moreover, DeepMatching [51] and SparseFlow [49] achieve results of
recognition accuracy comparable with some state-of-the-art approaches, see Table 9, which also shows
that displacement information is an effective way to estimate the similarity of palm vein images. However,
we consider that these are not an alternative as convenient as CPM for palm vein recognition because of its
time efficiency.

Table 9. Comparison of our method with other methods of the state-of-the-art.

Approach Year Methodology EER

Kang et al. [38] 2014 RootSIFT and Euclidean distance 0.00996
Kang and Wu [28] 2014 Improved LBP on Mutual foreground 0.0236

Yan et al. [41] 2015 Score level fusion with SIFT and ORB with bi-directional matching 0.0073
Xu [34] 2015 Feature Extraction using Partial Least Square and Euclidean distance 0.0133

Akbar et al. [29] 2016 LDTP and Chi-square dissimilarity test 0.03
Pratiwi et al. [68] 2016 Local Binary Pattern Rotation Invariant and Cosine distance 0.1170
Proposed method 2019 CPM with Daisy descriptor and Displacement uniformity texture 0.0072

5.5. Comparison with State-of-the-Art Approaches

To conclude, the recognition performance obtained by our approach is compared to state-of-the-art
approaches with experimentation on CASIA-MS-PalmprintV1 database. We select this database to compare
state-of-the-art approaches because it is widely used in the literature and it is the most relevant dataset
for palm vein recognition. Furthermore, it should be noticed that some works report their experimental
results on self-created datasets, with different measures or different experimental scenarios, which do
not allow for making an equivalent comparison. For this reason, recent approaches such as [43,44] based
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on CNN are not compared in this section. Table 9 summarizes the results of EER achieved by different
methods which have been published recently.

In order to provide a statistical analysis of the results respect to state-of-the-art, we followed
the recommendations pointed out by Demšar [69] and the extensions presented in [70] related to the
computations of adjusted p-values. First, we applied the non-parametric Friedman-test to prove the null
hypothesis that all the algorithms obtained the same results on average. Then, once the Friedman test
rejected the null hypothesis, we applied post hoc tests. Specifically, the Bonferroni–Dunn test is applied to
define if our method significantly outperforms the next ranked approach. In addition, we used the Holm’s
step-down procedure to complement the above multi-comparison statistical analysis. It should be noticed
that the proposal of [69] recommends a set of non-parametric statistical tests and procedures which can be
safely used for comparing the performance of more than two classifiers over multiple data sets. However,
we belief it also is suitable to compare different approaches on a single dataset. It should be noticed that
making a statistical analysis on palm vein recognition over multiple databases is very difficult because
most of state-of-the-art approaches use different and/or self-created databases.

Table 10 presents EER results reported by each approach and the respective ranking. In this case,
we statistically analyzed the results to detect significant differences among compared approaches and their
EER results. The Friedman’test rejected the null hypothesis with p = 0.4232. Then, we applied the post
hoc Bonferroni–Dunn test at α = 0.10 to detect which method performed equivalently to our approach,
which is the best ranked. According to [69], the performance of two algorithms is significantly different if
their corresponding ranks differ by at least the critical difference computed as:

CD = qα

√
k(k + 1)

6N
= 2.394×

√
7× 8

6
= 7.31, (8)

where qα is the critical value based on the Studentized range statistic, k is the number of algorithms to
compare, and N is the number of datasets. Based on this criteria, the Bonferroni–Dunn test does not find
any algorithm with significant differences from our approach. To contrast the above results, we provide the
results of the Holm’s step-down procedure in Table 11, which is more powerful than the Bonferroni–Dunn’s
and makes no additional assumptions about the hypotheses tested. The Holm’s test at α = 0.05 confirms
previous results, finding that the proposed approach is slightly better than state-of-the-art methods on
CASIA-MS-PalmprintV1 database, but it is not statistically superior.

Table 10. Rankings of different approaches based on EER results on CASIA-MS-PalmprintV1 database.

Approach EER Ranking

Kang et al. [38] 0.00996 3.0
Kang and Wu [28] 0.0236 5.0

Yan et al. [41] 0.0073 2.0
Xu [34] 0.0133 4.0

Akbar et al. [29] 0.03 6.0
Pratiwi et al. [68] 0.1170 7.0
Proposed method 0.0072 1.0

From the previous results, we can conclude that no significant differences are found respect to EER
results, so our proposed method achieves comparable results in regards to state-of-the-art approaches on
the evaluated dataset. Hence, further analysis on many more databases should be performed in order
to provide a wider comparison against state-of-the-art. However, the results provide evidence that the
deformation-based approach, which we introduce in our method, is suitable for palm vein recognition
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and also improve the time efficiency of the baseline with a significant speed-up above 15×. These results
demonstrate that our proposal by combining a sparse matching algorithm under a multi-core platform can
be an effective alternative for deformation-based palm vein recognition, whilst obtaining state-of-the-art
results with a low computational cost.

Table 11. Approaches sorted by p-value and adjusting of α resulting from Holm procedure at α = 0.05.

i Approach z = (R0 − Ri)/SE p Holm

6 Pratiwi et al. [68] 1.96 0.0495 0.0083
5 Akbar et al. [29] 1.64 0.1017 0.01
4 Kang and Wu [28] 1.31 0.1904 0.0125
3 Xu [34] 0.98 0.3261 0.0167
2 Kang et al. [38] 0.65 0.5127 0.025
1 Yan et al. [41] 0.33 0.7434 0.05

6. Conclusions

In this paper, we introduce the CPM algorithm as an effective and efficient alternative to calculate the
displacement between palm vein images for individuals recognition based on deformation information.
In addition, in order to increase the number of queries per second, considering a real-world application
on a large database, we implement a master–worker scheme under a multi-core platform for the
matching process.

Our proposed methodology includes pre-processing techniques as a robust ROI selection, intensity
normalization, and histogram equalization process, aiming to enhance and to preserve the local details
of the vein patterns. In addition, the DAISY descriptor and CPM algorithm are combined in a parallel
matching process with the aim of reducing the execution time and increasing the number of processed
queries per second of the recognition pipeline. Experimental validation on three well-known databases
demonstrates that our proposed approach reaches the state-of-the-art results while it is considerably
superior in time efficiency, overcoming the limitations of contactless palm vein systems. To the best of our
knowledge, the method we present is the first that aims to reduce the influence of deformations by using it
as discriminative information for palm vein recognition.

Moreover, as future work, we will study the parallelization of the DAISY descriptor and the CPM
algorithm under hybrid parallel platforms in order to improve much more the performance of our method
on a real-world application for individuals’ identification.
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