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Abstract: The real-time inverse estimation of the ocean wave spectrum and elevation from a
vessel-motion sensor is of significant practical importance, but it is still in the developing stage.
The Kalman-filter method has the advantages of real-time estimation, cost reduction, and easy
installation than other methods. Reasonable estimation of high-frequency waves is important in view
of covering various sea states. However, if the vessel is less responsive for high-frequency waves,
amplified noise may occur and cause overestimation problem there. In this paper, a configuration
of Kalman filter with applying the principle of Wiener filter is proposed to suppress those
over-estimations. Over-estimation is significantly reduced at high frequencies when the method is
applied, and reliable real-time wave spectra and elevations can be obtained. The simulated sensor
data was used, but the proposed algorithm has been proved to perform well for various sea states
and different vessels. In addition, the proposed Kalman-filter technique is robust when it is applied
to time-varying sea states.

Keywords: Kalman filter; inverse problem; motion sensor; wave spectra/elevation; real-time
estimation; adaptive measurement error covariance; e-navigation; Wiener filter; signal processing

1. Introduction

An autonomous ship or unmanned ship is one of the promising technologies in the field of
shipbuilding and shipping. It can reduce the ship operating cost, ship accidents, and attacks by
pirates [1]. In order for an unmanned ship to become a reality, efficient real-time estimation of
incoming wave can play a vital role. For instance, unmanned vessels need to navigate the designated
route automatically, while avoiding the path of collision-risk or storms. Another mission for route
optimization [2] is to minimize fuel consumption or navigation time when considering wave added
resistance. In this regard, the real-time inverse estimation of incoming waves from vessel-motion
sensors is very essential.

The e-Navigation strategy, which is defined as “the harmonized collection, integration, exchange,
presentation, and analysis of marine information on board and ashore by electronic means to enhance
berth to berth navigation and related services for safety and security at sea and the protection of marine
environment” was proposed at the 81st meeting of the Maritime Safety Committee (MSC) in 2005 by
the United Kingdom, United States, and other countries. The e-navigation Strategy Implementation
Plan (SIP) was approved by MSC 94 in 2014. The initial tasks that were included in the SIP are expected
to be completed by 2019 [3]. The on-board real-time estimate of the wave spectrum is a key element in
unlocking in-situ offshore sea state information.
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Although multiple methods exist for wave-spectrum estimation, such as radar [4], satellite [5], or
buoy [6], they require expensive equipment or time-consuming post-processing. As an alternative, one
can consider a method of estimating incoming ocean waves from motion sensors on board.

The responses occur when wave loads act on a vessel. Conversely, the method of estimating the
ocean wave by measuring the vessel motion is a kind of ‘inverse problem’ i.e., estimating the input
from the response output. The procedure for estimating wave spectra in this way can be classified into
‘parametric’ and ‘non-parametric’. The non-parametric method is general. The Kalman filter can be
regarded as a non-parametric method that can be applied to any sea states. The conventional methods
for solving the inverse problem involve substantially heavy computations, such as the Monte-Carlo
method, for resolving the uniqueness problem, which means that multiple different inputs can result
from a single output. When compared to those costly and time-consuming methods, the use of
Kalman filter can be an alternative inexpensive solution to achieve the real-time on-board estimation of
incoming waves. The Kalman filter is fast enough to measure in real time, easy to include the forward
speed of the ship, and capable of compensating sensor noises and model errors.

The research using the Kalman filter for the inverse estimation of ocean waves is very rare until
recently despite the powerful advantages of the Kalman filter. Two papers [7,8] are representative. The
Kalman filter in [8] was applied to ocean wave estimation while using synthesized motion data. In [7],
the motion data of the actual field from a real ship was used. Nevertheless, this research is still in the
development phase and it needs to be elaborated [9]. Figure 1 demonstrates the overall process of the
wave spectrum estimation process while using the Kalman filter.
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Figure 1. Wave spectrum estimation process using Kalman filter.

The Kalman filter is difficult to estimate high-frequency waves where the vessel’s response is
weak. Thus, in the case of large vessels, additional high-accuracy sensors may be utilized or other
responses sensitive to high frequencies may be used. More research is needed on this issue and the
Kalman filter setting alone may be the solution [7].

Figure 2 shows the actual sea conditions at North West Atlantic. They represent significant wave
height, Hs (a) and spectral peak period, Tp (b) at the same time, respectively. It can be seen that
high-frequency waves with a Tp less than 5 s (or ω > 1.257 rad/s) occupy a large portion in the figure.
Therefore, estimating those wide-spreading high-frequency waves is of importance. Accordingly, it is
important to design the Kalman filter, so that the high-frequency waves can also be estimated in a
robust manner.
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Figure 2. NOAA forecast snapshot for North West Atlantic [10].

In [8], the frequency range was limited up to 1.15 rad/s since higher frequencies can cause problems
when using Kalman filter. However, in this paper, the estimation range was extended to 2.0 rad/s, so
that those high-frequency waves can be recovered. The cause of overestimation at the high-frequency
zone and its remedy are investigated and new algorithms that suppress those overestimations are
proposed. The numerical test results are promising for various wave conditions, vessel types, and
sensor errors. Moreover, the present Kalman filter technique applied to the inverse problem successfully
reproduces, not only the real-time wave spectrum, but also the real-time wave elevation. In this paper,
‘wave elevation’ means the time series of irregular wave profile. The estimation of wave elevation is
very important for the active control in many ocean-engineering applications. As far as the authors
know, the real-time inverse estimation of wave elevation by the Kalman filter cannot be found in the
open literature.

The developed technology is relatively inexpensive and it has an advantage that the wave can be
continuously estimated along a ship’s passage. According to recent statistics, the number of merchant
ships sailing around the world in 2017 is about 50,000 [11] i.e., there are already 50,000 potential sensors
on those vessels over the world, which means that a continuous build-up of big real-time ocean wave
data through the inverse algorithm is possible with a robust network among ships.

2. Formulation for Modeling

2.1. Conventional Kalman Filter

The Kalman filter is an algorithm that estimates the state based on the statistical properties with
the measurement while using sensors. The sensor contains sensor errors and the modeled governing
equation does not perfectly match the system. Kalman filtering is applied to the system model of
Equations (1) and (2) in the state space. It assumes that there exists a model error w in the state x and a
sensor error v in the measurement z during the transition to the next time step.

xk+1 = φkxk + wk (1)

zk = Hkxk + vk (2)
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where
xk = process state vector
φk = state transition matrix
wk = model error vector
zk = measurement vector
Hk = output matrix
vk = sensor error vector

The covariance for each of the two errors is given by;

Q = E[wkwT
k ] (3)

R = E[vkvT
k ] (4)

The Kalman filter keeps reducing the prediction error of the state x through the recursive calculating
process. The process is made up of four steps, as described in Figure 3. The superscript ‘-’ means a
predicted value for the next time step. Otherwise, it means a calculated (or estimated) value from
measurement at the current step.
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where,
xk = predicted state vector
xk = estimated state vector
Pk = predicted error covariance matrix
Pk = estimated error covariance matrix
Kk = Kalman gain
Qk = model error covariance matrix
Rk = measurement (sensor) error covariance matrix

The initial state x1 is to be estimated and the initial error covariance, P1 should be determined by
the designer. If initial P (P1) is too small, then it will result in small Kalman gain, K by Equation (5)
in the beginning of calculation. A small K means giving more weight to sensor measurement than
prediction. Subsequently, at the beginning of the filtering, the measurement is relatively neglected and
the prediction is overly counted. In other words, the P1 determines the initial convergence rate of the
state x. Small P delays the initial convergence rate. Therefore, when the designer does not have prior
knowledge of x, reasonably large initial error covariance, P1 should be set [13].

R is measurement error covariance that is generally determined from the error performance of the
given sensor. An adaptive R may be applied when the sensor error is not statistically constant in the
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actual filtering process. H is the matrix that defines the relationship between state, x and measurement,
z. In the estimation step, optimum x is calculated by using the weight factor, K in the Equation (6).

Kk = PkHT
k (HkPkHT

k + Rk)
−1

(5)

x̂k = x̂k + Kk(zk −Hkx̂k) (6)

Pk = (I −KkHk)Pk (7)

In the prediction step, P is increased by model error covariance, Q. Q is a design parameter that
can be adjusted by the designer. This process is repeated:

x̂k+1 = φkx̂k (8)

Pk+1 = φkPkφ
T
k + Qk (9)

The conventional Kalman filter is not directly suitable for practical applications. Therefore, the
research that is related to using Kalman filter mainly focuses on the design of an adaptive type to fit
a specific model, including the optimization of the design factors, R and Q. The optimized Q and R
lead to the improvement of estimation performance of the filter. In the following, we explain how the
algorithm can be utilized for the real-time inverse estimation of ocean wave spectra and elevation from
vessel-motion sensors.

2.2. Main Formulas for Inverse Wave Estimation

References [7,8] presented the essential formulas, including the output matrix as Equation (11)
i.e., the use of vessel’s hydrodynamics for wave spectrum estimation by utilizing the Kalman filter.
Equations (1) and (2) are used as the system model equations. The state transitional matrix φk is
identity and X is the complex wave amplitude in this case.

As in Equation (10), this model has an important premise. It assumes that the measured vessel
motion is the result of incoming waves that were weighted by a transfer function [7]. The vessel’s
transfer functions are complex, which means that they have amplitude and phase. The amplitude of
transfer function is called response amplitude operator (RAO).

z(t) � Re(
n f∑
j=1

TF j × (x2 j−1 + ix2 j)(cos(ω jt) + i sin(ω jt))) (10)

where

z: vessel motion
x2 j−1: real part of complex wave amplitude
x2 j: imaginary part of complex wave amplitude
ω: intrinsic frequency of harmonic
n f : number of harmonics to estimate

TF j: complex-valued transfer function for frequency j

The matrix type of H becomes

H jkl =

[
Re(TF jl) cos(ω jk4 t) − Im(TF jl) sin(ω jk4 t)
−Im(TF jl) cos(ω jk4 t) −Re(TF jl) sin(ω jk4 t)

]′
(11)

where

j: jth frequency
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k: kth time instant
l: lth response
H jkl: output matrix

4t: time step interval

In [8], the conventional Equations (5), (6), and (9) were used for prediction and estimation.
However, in the prediction of x, Equation (13) was used instead of Equation (8) i.e., the average value
for three-time instants is applied as the state prediction value, x̂k+1. In addition, P was computed by
Equation (12) instead of Equation (7). Equation (12) was used for stability reasons and it is called the
‘Joseph Form’ [14]. In fact, Equation (7) is derived from Equation (12). Accordingly, either can be used
to calculate P.

Pk = (I −KkHk)Pk(I −KkHk)
′ + KRK′ (12)

x̂k+1 = 1/3 · (x̂k + x̂k−1 + x̂k−2) (13)

According to [8], the adaptive approach has been considered, because it cannot be assured that
the process is completely known and that the steady state is reached due to the change of sea condition
and ship’s heading. Equation (14) is the Adaptive R equation. The ‘diag’ means taking the diagonal
from a matrix into a vector form and vice-versa.

R = diag2(E[zk −Hkx̂k, (zk −Hkx̂k)
′]) + HkPkHk

′ (14)

The initial value of the state is as follows:

x̂1 = 0 (15)

In the present paper, the above Equations (1), (2), (5)–(11), and (15) are applied. The rest of the
equations and other conditions are set to suit the vessel that is considered and computer specifications.

Using the state, x, which is an estimated value from the filter, the wave spectrum and wave
elevation can be calculated from the following equations. The reconstruction of both wave spectra
and wave elevation is possible since the state variable x and motion transfer function TF are complex
variables:

Sς(ωi) = 0.5×
1

∆ωi
× (x̂2

2i−1 + x̂2
2i) (16)

ς(t) = [cos(ω1 · t), − sin(ω1 · t) . . . cos(ωn · t), − sin(ωn · t)][x̂1x̂2 . . . x̂2n−1x̂2n]
′ (17)

where

Sς(ω): wave spectrum
∆ω: frequency interval
ς: wave elevation

Regarding the determination of R and Q values, R can be determined based on the real sensor’s
performance before or while operating the filter. Thus, it is practical to specify R. On the other hand, Q is
generally more difficult to determine, because Q is sometimes dynamically varying during filtering and
it cannot be directly observed in the process of estimation. In a simple process, satisfactory estimation
can sometimes be obtained by setting the appropriate Q. The tuning of Q and R can provide excellent
filter performance, regardless of whether there is a reasonable basis for choosing the parameters [15].
Thus, [16] described R and Q as model-specific “tuning knobs” that determine filter performance and
expressed choosing them as “spirit of observer design”.

First, P1 was set large enough to make the initial convergence fast, as Equation (18). This is
because the initial state is uncertain. In the long run, this initial value does not make much difference
in the filter performance [13]. Subsequently, to design the proper fixed value of Q, it is assumed that
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there is no measurement error, which means that R is 0. From a number of tests, the appropriate Q
value was set as Equation (19), so that the estimation is good enough and P does not diverge.

P1 =

[
50i×i 0

0 50i×i

]
(18)

Q =

[
10−5

i×i 0
0 10−5

i×i

]
(19)

where

i: half the length of x

Only heave motion is considered to simplify the case. R was calculated by Equation (20) and it
remains as the fixed value while the filter is running. The standard deviation of heave motion sensor
error is set to be 2.3 cm, referring to the test result of a commercial product [17]. Thus, when only heave
is considered, R is 5.29× 10−4, which is the square of 0.023 m.

R = diag



σ1
2

σ2
2

...
σl−1

2

σl
2


(20)

where

σ: sensor noise (error) standard deviation
l: lth response or mode

A freely floating FPSO (Floating Production Storage and Offloading) in Figure 4 was selected as the
vessel. The total number of 1831 quadrilateral panels was used after the convergence test. The details
of the vessel are given in [18]. Figure 5 is the RAO of the FPSO. The vessel’s transfer function (or RAO)
was numerically computed while using a three-dimensional (3D) diffraction/radiation panel program,
WAMIT software.
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A uni-directional JONSWAP wave spectrum with Hs = 2 m, Tp = 7 s, and enhancement parameter
= 2.2 is considered. The significant wave height, Hs is defined as the average of the 1/3 largest waves.
It can be calculated from either wave spectrum or wave time series. Tp is the spectral peak period.
Hs and Tp are used as key index parameters since the purpose of the Kalman filtering is to inversely
estimate the overall shape of the spectrum. Subsequently, the corresponding heave motion spectrum
was calculated while using the calculated RAO. Afterwards, the corresponding irregular-motion time
series were generated by Equation (29). Subsequently, a white noise that was equivalent to the standard
deviation of sensor error 2.3 cm was artificially added (Figure 6). Afterwards, the motion-time-series
data, including the sensor error, was inputted to the present Kalman filter process. The frequency
range of the white noise is set to be the same as that of input wave spectrum.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 29 
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Figure 6. Time series of heave motion with sensor noise.

The previous equations and conditions were applied. First, the frequency range was limited to
0.1~1.15 rad/s, as in [8]. The Kalman filter was run for 1000 s. The real-time spectra were calculated
during that time. The spectral estimation was good after the initial transient stage, as indicated in
Figure 7. This shows that the Kalman filter is well designed up to this point. However, we found
some problem when the frequency range is extended to higher-frequency regions, as shown in the
next example.
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2.3. Design of Modified TF to Suppress Overestimation in High-Frequencies

The performance of the designed Kalman filter was examined when the frequency range is
extended to 2.0 rad/s. In Figure 8, we start to see some problem i.e., excessive estimation of spectral
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No overestimation occurred when the sensor error was removed. In case there is sensor error
and RAO is intentionally amplified, so that its magnitude is more than 1 in all frequency region,
overestimation did not occur. Therefore, it is expected that the cause of the overestimation at the
high frequency region is the combination of sensor errors and small values of RAO. In order to better
understand the phenomenon, the internal variables, P and K for every frequency component during
the operation of the filter were analyzed.

Figure 9 shows a comparison of the changes of the internal variables P and the absolute value of
K in the frequency domain during the Kalman filter operation for both cases i.e., (a) and (b) when the
maximum frequency is 1.15 rad/s and (c) and (d) when the maximum frequency is changed to 2.0 rad/s.
In the case of (a) and (b), the P and K values converge to proper values after initial transient stage.
However, in the case of (c) and (d), the P and K values do not converge well and the errors in the high
frequency region are particularly large. The convergence rates in the high frequency region are also
very slow. This is due to Equation (7) of the ‘Calculate P’ step in the Kalman filter loop. P is decreasing
each time step by the equation. The high-frequency region of (I −KkHk) is close to 1, the element of an
identity matrix, since the H is small in the high-frequency zone due to the motion characteristics (RAO)
of the vessel. Therefore, the high-frequency region of P, which is multiplied by (I −KkHk) every time
step, slowly decreases.

P is a variable that determines K in Equation (5) of the ‘Calculate K’ step. The slow decreasing
of P also slows down the convergence rate of K. Therefore, in Figure 9d, the convergence speed of
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K also becomes slow. K is gain between the measured value and the predicted value in Equation (6)
of ‘Estimate x with measurement’ step. The overestimated K in the high frequency range gives an
excessive value of x, which is the estimated result. Essentially, the small response in the high frequency
region of RAO with respect to the given sensor error causes an overestimation problem.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 29 
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First, as a potential solution to overcome the phenomenon of overestimation in the high frequency
region, while using multi-motion signals was attempted i.e., Surge, Sway, Roll, Pitch, and Yaw were
added so that a total of six motions can be used. It may be possible that the ill behavior of heave in
the high frequency region can be compensated by sensor fusion. The test results (Figure 10) show
that the unfavorable behavior is improved when compared to the heave only case, but overestimation
still occurs i.e., the generalization of Kalman filter technique to include all 6DOF motions helps the
problem, but is not highly effective.
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Meanwhile, the phenomenon of excessively amplified noise is mentioned as a problem of the
inverse filter that is used in the image restoration field [19]. This problem can occur when the transfer
function is zero or very small. If the measured signal has sensor error, it is more amplified at high
frequencies. In the image restoration, the Wiener filter is used to solve this problem. In this regard, we
applied the principle of the Wiener filter to the present the Kalman-filter technique, as described in
the following.

Reference [20] explains some filters for original-image-restoration from blurred images. First, the
Inverse filter is introduced. Assuming that the blurring function D, which is a sort of transfer function,
is known, the inverse filter can be directly used in the frequency domain to recover the original image.
The observation equation can be expressed in the frequency domain, as;

G(u, v) = F(u, v) D(u, v) (21)

where

G: observed image
F: original image
D: blurring function

The original image F(u,v) can be restored by filtering the observation G(u,v). The inverse filter
1

D(u,v) provides a perfect estimate of the original image in the case of no noise as follows:

F̂ = G(u, v)
1

D(u, v)
(22)

where

F̂: estimated image

However, if there is sensor noise N(u,v) as Equation (23), the result will be filtered noise i.e., the
sond term in Equation (24) and the desired image. The term is called “Inverse Filtered Noise” [20]. The
inverse filter typically has very high gain at certain frequencies, where D(u,v) is small. The amplified
noise at those frequencies will dominate the result. Figure 11 is the schematic diagram of noise
amplification. In the bottom right of the figure, F̂ the estimated image is amplified (red solid line) in
the high frequency region by the inverse filter.

G(u, v) = F(u, v) D(u, v) + N(u, v) (23)

F̂ = G(u, v)
1

D(u, v)
= {F(u, v) D(u, v) + N(u, v)}

1
D(u, v)

= F(u, v) +
N(u, v)
D(u, v)

(24)

To overcome the noise sensitivity of the inverse filter, the Weiner filter can be used. It is defined in
the frequency domain, as;

W(u, v) =
D(u,v)∗

(|D(u,v)|
2
+

Sn(u,v)
S f (u,v) )

(When Sn(u, v) or S f (u, v) is unknown, Sn(u,v)
S f (u,v) → C)

(25)

where

D (u, v)∗: complex conjugate of D(u, v)
Sn(u, v): power spectrum of the noise
S f (u, v): power spectrum of the ideal image

C: constant
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In fact, the Wiener filter is used to minimize the mean square error between the estimated signal
and the desired signal. It produces an estimate of the desired signal of a measured noisy signal, in
principle, while assuming that original signal and noise are known [21]. However, it is common to use
an approximation when the power spectra are not known. It means that the ratio Sn(u, v)/S f (u, v) can
be substituted by a constant C. The C can be chosen by logistic trial and error [19,22] as Equation (25).
In this paper, the original signal i.e., wave spectrum is assumed to be unknown. Accordingly, C can be
determined by trial and error.

In Figure 12, through comparison with inverse filter (1/D), we see the effect of Wiener filter W(u, v).
The Wiener filter suppresses the gain by a certain amount to suppress amplified noise in the frequency
region where the magnitude of Inverse filter is too large. To see the effect of Wiener filter with respect
to transfer function D, the inverses of both Inverse filter and Wiener filter are plotted in Figure 13;
1/W(u, v) increases the very small gain of D in the high-frequency region.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 29 
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When comparing the wave estimation with the image restoration, F corresponds to wave, G to
ship motion, and D to motion TF or H, respectively. Unlike the Inverse filter, the Kalman filter is the
recursive filtering algorithm finding more accurate state with more measurements. However, at a
particular time step, the Kalman filter also computes the original signal in the inverse direction from
the measurement with sensor noise, while using the pre-programmed output equation between the
state and measurement.

We applied the principle of Wiener filter to the present Kalman-filter technique for the inverse
wave estimation in the frequency region where the magnitude of Inverse filter is too large. The issue
is that the inverse form of transfer function like (1/D) cannot directly be applied to the Kalman filter.
Rather, it is not in inverse form, but TF is included in H as equation (11). Therefore, we had to devise a
way to modify the TF while keeping the Wiener’s effect the same. As mentioned earlier, the effect of
the Wiener filter is to increase the gain of D by a certain amount in the frequency region where the
magnitude is 0 or too small.

If Wiener filter W is used instead of Inverse filter (1/D) in Equation (24), noise term N/D is
eliminated, and G ×W = F is established. Subsequently, G/F = 1/W. Let us put this as Equation (a).
Meanwhile, in the Equation (6) in the Kalman filter, it is used as Z-HX. If we change these as variables
of image restoration, it is G-DF. Assuming that there is noise, it is not 0 but G-DF = N. Afterwards, D =

G/F-N/F and let us put this as Equation (b). When we input 1/W to D in the Equation (b), the Equation
(b) becomes G/F = G/F−N/F by the Equation (a) and N/F becomes 0. That is, if we use 1/W instead of D
in Kalman filter, we can obtain the effect of Wiener filter and eliminate the noise. In conclusion, the
modified TF as Equation (26) was applied to the Kalman filter in the inverse form of Wiener filter. For
easy comparison, Figure 14 is given.

(
∣∣∣TF

∣∣∣2 + C)

TF∗
(26)

where

TF∗: complex conjugate of TF
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Figure 14. Comparison of Image Restoration and Wave Estimation.

Through trials and errors, C was found to be 2.5 ×10−5, when the sensor noise (error) standard
deviation is 0.023 m. Figure 15 shows the Modified RAO (TF) when Equation (26) is applied. We aslo
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tested the formula for various wave conditions and two different floating platforms, such as FPSO
and semi-submersible case, and the results are equally satisfactory. This is covered in detail in
Section 3.2. The results show substantial improvement (overestimation does not occur) when the
proposed modified motion TF is applied to the FPSO, as shown in Figure 16.
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Tp = 7 s, Frequence: 0.1~2.0 rad/s).

(x2 j−1 + ix2 j) is an incoming wave of a complex number in Equation (10). For the two states
x2 j−1, x2 j estimated by the Kalman filter, if Equation (17) is used, the real-time estimation of the
corresponding wave elevation (actual wave profile) at each time is conducted (Figure 17) and Figure 18
shows the results. The real-time wave profile that was estimated by the Kalman filter is compared to
the theoretically reconstructed wave profile by using the random phase and the relation between the
wave and motion via the phase of transfer function.

Figure 17 describes the estimation process for wave elevation. In the case of the wave spectrum
estimation, only the motion time series of the ship needs to be generated through the process of 1O,
2O in the figure. In the case of the wave elevation estimation, we need to additionally generate the

original wave elevation through the 3O calculation. This becomes the target for comparison with the
estimated one. It should be noted that the motion and wave random pahses differ by the TF phase ϕ,
so that the random phases of incident wave can be assigned.

In Figure 18, the original and inversely estimated wave profile agree very well. This means
the the present Kalman filter technique applied to the inverse problem successfully reproduces not
only the real-time wave spectrum, but also the real-time wave elevation. The latter is very important
for the active control in many ocean-engineering applications. To the best knowledge of authors,
the real-time inverse estimation of wave elevation by the Kalman filter cannot be found in the open
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literature. In [7,8,23,24], no time series of wave elevation was obtained although wave spectra were
inversely estimated.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 29 
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For further checking of convergence, RMSE of P is represented from Equation (27). The ‘trace’
means sum of diagonal elements. Figure 19 confirms that P does not diverge.

RMSE o f P =
√

trace(P) (27)
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The variations of the internal variables P and K in the frequency domain were examined as well
in Figure 20. When compared with the ‘~2.0 rad/s’ case of Figure 9c,d, it can be seen that both P and K
converge near zero in the high frequency range at 500 s. The application of Modified TF suppresses
K in the high frequency. Consequently, the overestimation of x does not occur in the high-frequency
region when it is calculated by Equation (6).
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The measurements from a sensor include sensor error. When the sensor maker provides sensor
error information, we can set a reference value for R according to the information. However, a
potential problem is that the statistical properties of sensor errors are not the same during actual
measurements. Accordingly, [25] proposed an adaptive Kalman filter for harmonic signals. Therefore,
to take advantage of the adaptive R, Equation (14), e.g., [8] is applied with the modified TF in subsequent
tests. In the equation, only the diagonal component was taken from the covariance matrix for the
errors. By two ‘diag’ processes, we can construct a diagonal matrix, so that it matches the dimensions
of the HkPkHk

′ matrix.
To explain more about the dimensions of the HkPkHk

′ matrix, variable definition and dimensions
are in Table 1. The number of states x and measurements z are independent. However, the dimension
of matrix φ, H, P, R, etc. are determined by the x and z [26]. Subsequently, the dimension of HkPkHk

′
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in Equation (14) becomes nz × nz. The dimension of E[zk −Hkx̂
k
, (zk −Hkx̂

k
)′] is also nz × nz. Here, if

we only take a ‘diag’ once to the matrix, it becomes a vector and it cannot be computed with HkPkHk
′

matrix. Accordingly, ‘diag’ is taken one more time to convert the vector back into a matrix, so that it
can be computed.

Table 1. Dimension of Variables.

Variable Description Dimension

x State Vector nx × 1
z Measurement Vector nz × 1
φ State Transition Matrix nx × nx
H Output Matrix nz × nx
P Error Covariance Matrix nx × nx

R Measurement Error Covariance
Matrix nz × nz

Applying Modified TF with Adaptive R also suppressed the overestimation, and the test results
are given in the next section.

3. Testing

3.1. Numerical Modeling of Motion Sensor

Only heave-motion signal at the center of gravity (CG) of FPSO was used. Time domain simulation
software, such as CHARM3D, can be used to get the ship’s motion [27]. However, in this paper, the
motion data is generated by superposition for the testing i.e., they are generated from the motion
spectrum by Equations (28) and (29). The wave spectrum was assumed to be single-peaked and
narrow-banded. The data sampling frequency is 5 Hz.

Sz(ω) = RAO2
· Sς(ω) (28)

Z(t) =
N∑

n=1

√
2Sz(ωn) 4ω · cos(ωnt + εn + ϕn) (29)

where

Sz(ω): motion spectrum
Sς(ω): wave spectrum
z: vessel motion
ω: intrinsic frequency of harmonic
4ω: frequency interval
εn: random phase
ϕn: phase of TF

In this paper, the frequency range of 0.1~2.0 with 0.02 rad/s interval is used. Subsequently, the
number of entry frequencies is 96 and the number of states to be obtained from the filter is 192. It was
compared to the cases with different ∆ω to investigate the relationship between frequency intervals
and estimation performance. Figure 21 shows that the real-time estimated wave spectra reasonably
match, regardless of the two employed frequency intervals.
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When superposing sinusoidal components, the randomly-perturbed frequency interval ∆ω was
used by multiplying the random value α, as shown below in order to prevent the signal repetition. The
Kalman filter then ran for 1000 s.

∆ω = 0.1× α [rad/s] (−0.5
〈
α〈0.5) (30)

Estimation tests were performed for various sea states to confirm whether the proposed modified
TF can be applied to a wide range of applications. In the later part of this section, another vessel (OC4
semisubmersible e.g., [28,29]) with different RAO will be tested. The applied Kalman-filter technique
equally worked well for the new vessel, which shows that the developed algorithm is not sensitive to
vessel type either. To observe the sensitivity against various wave conditions, a series of sea states
applied are shown in Table 2, as below. In this table, No. 1 to 5 cases were selected as reasonable sea
states [30]. On the other hand, No. 6 and 7 cases are particular sea states that correspnd to the two
areas marked in Figure 2.

Table 2. Simulated sea states and their parameters.

Sea State No. Hs (m) Tp (s)

1 1.5 6
2 5 9
3 9 11
4 13 13
5 17 15

6 (NP area in Figure 2) 1.5 18
7 (NA area in Figure 2) 13 11

3.2. Results and Discussion

Figures 22–28 present the results of the inversely estimated real-time spectra, Hs and Tp with
time for the seven sea states when applying the proposed modified TF and adaptive R (Equation
(14)) of [8]. It is seen that the developed Kalman filter technique works well for various sea states,
which opens the door to a continuous inverse estimation of ocean waves from heave-motion sensor,
regardless of sea states during service or voyage without adjusting the wave-frequency range and
Kalman-filter parameters.
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Next, we tested the developed modified Kalman-filter algorithm for another vessel (OC4
semisubmersible) to see whether the developed algorithms are sensitive to vessel types. In this
regard, Figure 29 provide the motion TF of OC4 semisubmersible ([28,29]). Sea state No. 1, 3, and
5 were tested (Figures 30–32) for the OC4. The estimation of real-time wave spectra, Hs, and Tp
was good.
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Up to this point, the developed Kalman-filter algorithm has been applied to the stationary sea
state. However, sea states continue to change in actual sea, so, it is of interest to inversely estimate
waves for non-stationary seas. The sea state sequence is set as shown in Table 3, which is taken from a
series of sea states along the dotted line from Jacksonville, Florida to the ‘NA’ point in Figure 2. It is
assumed that the sea state is changing accordingly. The sensor error’s standard deviation was set as
2.3 cm and the modified TF was applied to the FPSO. Simulation was performed assuming that the
vessel’s motion continuously varies due to the changes in sea state. The superposed motion time series
for each sea state were then connected in order (Figure 33).

Table 3. Simulated sea state sequence along the route.

Sequence No. 1 No. 2 No. 3 No. 4 No. 5

Hs (m) 3 2 4 8 13
Tp (s) 9 8 10 11 11Appl. Sci. 2019, 9, x FOR PEER REVIEW 26 of 29 
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Figure 33. Time series of heave motion during sea state change.

The algorithm was tested while using both modified TF and adaptive R. As a result (Figure 34),
the real-time wave spectra are well estimated, even with drastic changes in sea states. Figure 34b
shows the change in R and Q (fixed) during the estimation and Figure 35 is the RMSE of P, which is
converging with more measurements.
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4. Conclusions

Despite the inherent advantages of the Kalman filter, it has rarely been used for the inverse
estimation of incident waves from motion sensors in the open literature. In the present paper, both
real-time wave spectrum and elevation were obtained through the adaptive Kalman-filter algorithms.

A problem of amplified noise occurs in the zone associated with the Kalman filter when vessel’s
motion RAO is small in the high frequency region and there is sensor error. A new solution to the
problem is presented, so that the small gain in the RAO increases by a certain amount by using the
Winer filter. If the proposed modified TF is applied, the overestimation of real-time wave spectra
in the high-frequency region can be suppressed. The real-time incident wave profile can also be
inversely estimated.
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The vessel’s motion transfer functions and numerically generated motion-sensor signals were
used to the present Kalman-filter processes. The Kalman filter has been tested for various sea states and
different vessel types while using the modified TF through Wiener filter. The test results were promising.

In the forthcoming papers, the development is to be extended to multi-directional waves and the
case with forward speed. The full-scale test with a real vessel in the real sea is also planned to further
assess the developed Kalman-filter algorithms.
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