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Featured Application: This technology can be used to evaluate photographs and achieve optical
density (OD) calibration, including non-destructive testing (NDT), DNA microarrays in Biosensors
and Bioelectronics, human bone image, fMRI cortical mapping, etc.

Abstract: In visual diffuse transmission density measurement, it is hard to measure optical density
(OD) up to 6.0 because the signal to noise is more than 10E-06. Thus, there are only two methods
to find the measurement. One is using a highly sensitive detector with low background noise, and
the other is improving the incident light flux with a wide spectrum, including visual scope. A new
diffuse optics emitter was designed to realize OD measurements up to 6.0. It uses 235 optical fibers
on a hemisphere to collect and feed in the incident flux, then emits this flux by a diffuse opal. Thus,
an incident light with a high diffuse coefficient and high incident flux was realized for high OD
measurement. This emitter has been used in the new national reference of National Institute of
Metrology, China (NIM) for diffuse transmission optical density. According to the measurement
result in this reference, the OD can be measured up to 6.6.

Keywords: visual diffuse transmission density; diffuse optics emitter; high diffuse coefficient; national
reference densitometer

1. Introduction

Diffuse transmission optical density is an important optical property of many materials, such
as exposed films, special filters, etc. [1–4]. It is widely used for quality control in many advanced
applications in diffuse optical spectroscopy [5–10]. For example, it is used to evaluate photographs and
achieve optical density (OD) calibration, including non-destructive testing (NDT), DNA microarrays in
Biosensors and Bioelectronics, human bone image, fMRI cortical mapping, etc. [11–16]. With the rapid
development of Biosensors and Bioelectronics and fMRI, the precise request for OD measurement
is changing. The measurement range has expanded and the precision has improved at the same
time [17–22]. In many requirements, it should be measurable up to 6.0. Many old diffuse optical
instruments, including most national standard density instruments in many countries, cannot satisfy
these new measurement demands. Therefore, how to expand the measurement range and decrease
uncertainty at the same time is the new challenge in diffuse optical spectroscopy [23–25].

According to the definition of visual diffuse transmission density DT as shown in Equation (1),
where φi is the incident diffuse light flux and φτ is the transmission light flux [26], the key step of the
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method to solve the question is how to improve the diffuse transmission property. Typically, there
are only two methods to find the measurement. One is using a highly sensitive detector with low
background noise, whereby a high transmission light flux φτ can be achieved. But this method depends
on the development of detector technology, and only reducing the background noise of measurement
equipment does not have a significant effect. The other method is improving the incident light flux
φi. Perhaps, it is relatively easy to use for a high power light source. But the challenges are that the
incident flux should have a high diffuse coefficient β up to 9.1, according to the ISO 5 standard, and
that the wide spectrum includes the visual scope at the same time.

DT = log10(φτ/φi) (1)

How to comply with these three conditions is difficult in diffuse optical spectroscopy design.
A new diffuse optics emitter (DOE) is designed to satisfy these three conditions in our research and is
used in the new national reference densitometer of NIM (National Institute of Metrology, China) for
visual diffuse transmission density. This new diffuse optics emitter enables the reference to improve
the measurement range highly. And it can be used in other diffuse optical spectroscopy as a new light
source with a high diffuse coefficient, high flux, and wide spectrum range.

2. Materials and Methods

The diffuse optics emitter is designed as a hemisphere structure with 235 optical fibers, as shown
in Figure 1. The main component of DOE is a hemisphere (diameter is 25 mm), and there are 235 optical
fibers connecting to the back surface of the hemisphere. One end of these 235 optical fibers is inserted
in the hemisphere. The distance, in terms of solid angles, between adjacent optical connection fibers is
constant. The other end of these optical fibers is combined in one point to generate a plane called the
“incident plane of DOE”. An idea diffuse transmit glass named “opal” is attached at the hemisphere
center. That means the hemisphere center is in the upper surface of opal. When the light is emitted at
the bottom surface, the light is diffused twice. The whole device is shown in Figure 1b. This diffuse
optics emitter corresponds with the geometric conditions of ISO 5, and it can improve the light flux
and diffuse property all in the visual spectrum range.
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DOE (cross-section), where 1 is the hemi-sphere, 2 are the fiber heads (235 in total), 3 are the light 
rays, 4 is the opal, and 5 is the light emitting surface. 

In detail, the output ends of the optical fibers are arranged on the hemisphere in an equal solid 
angle, and the end planes of each optical fiber are on the same surface with the hemisphere’s inner 
surface. The geometric extension lines of all optical fibers exit and intersect at the hemisphere center, 
and the upper surface center of the opal coincides with the hemisphere center. According to these 
conditions, the number of these optical fibers n is decided by Equation (2), where k is the attenuation 

Figure 1. The diffuse optics emitter (DOE). (a) The prototype of DOE; (b) the structure diagram of DOE
(cross-section), where 1 is the hemi-sphere, 2 are the fiber heads (235 in total), 3 are the light rays, 4 is
the opal, and 5 is the light emitting surface.

In detail, the output ends of the optical fibers are arranged on the hemisphere in an equal solid
angle, and the end planes of each optical fiber are on the same surface with the hemisphere’s inner
surface. The geometric extension lines of all optical fibers exit and intersect at the hemisphere center,
and the upper surface center of the opal coincides with the hemisphere center. According to these
conditions, the number of these optical fibers n is decided by Equation (2), where k is the attenuation
coefficient, M is the radius of the hemisphere, m is the diameter of the optical fiber, and u is the spectrum
attenuation coefficient of the optical fiber. Trunk means taking the integer of the result.
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n = trunk(k
M
m
√

u) (2)

In this work, M is 25 mm, k is 14.5 dB, m is 8.1 mm, and u is 0.1 dB in 380 nm–780 nm. Thus, the
result is 235.

Under these conditions, the parameters of these optical fiber are numerical aperture (NA): 0.15, core
diameter: 0.1 mm, outer diameter: 2.5 mm, disperse angle: less than 100 mrad, and materials: quartz.

Furthermore, this diffuse optics emitter is used in the new national reference densitometer of
NIM. The diffuse light source of this reference based on DOE is shown in Figure 2. A compressed air
channel is attached in this device. So that the sample can be placed on the surface of the opal closely
and moved harmlessly.
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Figure 2. The structure diagram of the diffuse light source based on DOE.

In this structure, 1 is DOE, 2 is opal, 3 is the mechanical components, 4 is the compressed air
channel, and 5 is the sample for measurement. The compressed air is used to fix the sample on the
opal; thus, the measurement is precise.

The whole structure of the new densitometer is shown in Figure 3. All components in the figure
are not to strict size relation. Label 1 is the diffuse light source based on DOE, 2 is the sample, 3 is
the light lamp, 4 is an off-axis elliptical reflector, 5 is a bandpass filter, 6 is a flat reflect mirror, 7 is the
optical fiber bundle, 8 is an imaging optics system, and 9 is the detector.
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The off-axis elliptical reflector 4 has two focuses at the light axis, and the lamp 3 is placed on the
first focus. The bandpass filter 5 selects the visual spectrum of the light. The flat reflecting mirror
rotates the light to the vertical axis. The incident plane of DOE is on the second focus of the off-axis
elliptical reflector 4. It must be pointed out that this focus is on the vertical axis, relatively.

The detector system collects the flux from the sample or the opal (when there is no sample). The
system is an imaging optics system. When the measurement starts, the sample is moved by a movement
component to the measurement point. The movement component has another compressed air channel.
This channel works with the corresponding compressed air channel on the diffuse light source. Thus,
the sample can be absorbed or separated harmlessly. That means the sample can be placed closely on
the opal when it is measured and can be moved harmlessly when the measurement is finish.

3. Results

The two main properties of DOE are measured, including diffuse coefficient and light flux [27–30].
Then a sample that has a diffuse transmit property is measured on this new densitometer.

3.1. The Diffuse Coefficient β

The diffuse coefficient β of the diffuse light source based on DOE is calculated by the radiance
distribution Li(θ,ϕ,λ) of the bottom surface of the opal, which is shown in Figure 1. β can be given by

β = φi/φ0 =

∫
λ

∫
2π

AiLi(θ,ϕ,λ) cosθdΩdλ/
∫
λ

∫
2π

A0L0(θ,ϕ,λ) cosθdΩdλ (3)

where L0(θ,ϕ,λ) is the radiance distribution of Lambert radiance, Ai is the area of the bottom surface
of opal, A0 is the area of Lambert radiance, Ω is the solid angle of detector, θ is the Zenith angle of
detector, and ϕ is the azimuth angle of detector. The integration range of dΩ is the radiance hemisphere,
and Ai = A0. In this integration range, the Lambert radiance L0(Ω) is a constant. Therefore, the value
of L0(Ω) can be achieved by L0(θ = 0).Thus, β can be given by

β =
∫

2πLi(θ) sinθ cosθdθ/
∫

2πL0(θ) sinθ cosθdθ
=
∫

Li(θ) sin 2θdθ/L0(θ = 0)
(4)

After measuring Li(θ), and the radiance distribution Li(θ,ϕ,λ) of the bottom surface of the opal
(which can be measured by the bi-directional transmit distribution function (BTDF) reference of NIM),
β can be calculated using Formula (4) to estimate the diffuse property of the light source based on DOE.
The Li(θ,ϕ,λ) measurement result is shown in Figure 4. The two-measurement angle range of the XY
axis is ±85◦, and the interval step is 5◦. Thus, β can be calculated by Equation (5) as below:

β = 0.951 (5)
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3.2. The Light Flux Relative Range (Including Linearity)

The light flux of the new densitometer (using DOE) is measured in a linearity measurement facility
in NIM. The facility has a moving component that can divide the whole light flux into half. Using this
facility, the light flux can be measured from the maximum to the minimum, step by step. At every
step, the light flux is half of that at the prior step. Thus, the linearity of the system can be achieved by
measuring the light flux at the same time. The result of these properties is shown in Figure 5. In this
result, we can find the light flux range cover 106 when the linearity is less than 0.002, which means that
this densitometer has a measurement ability of high diffuse optical density up to 6.
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3.3. The Full Light Flux and the Noise

The stability of the full light flux and the noise are the key influence factors of the diffuse optical
density measurement, especially for the high diffuse OD up to 6 [31]. We measured these two parameters
in 1 h for all, because the sample measurements likely continue in 1 h, maximally. The result of these
two parameters is analyzed as shown in Figures 6 and 7. These two parameter approaches to the Gauss
distribution show that the densitometer can be used to measure the diffuse OD.
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3.4. A High OD Sample

A diffuse film with high OD up to 6.0 is measured using this densitometer to examine the property
of this DOE. The diffuse film has six step areas, which are noted as No. 1 to No. 6. The diffuse OD
measurement result of these six areas are shown in Table 1. The measurement uncertainty (u) of each
OD is analyzed at the same time. The expanded uncertainty equals the standard uncertainty multiplied
by the expanded coefficient.

Table 1. Diffuse optical density (OD) measurement result.

No OD Standard u Expand Coefficient Expand u

1 6.664 0.012 2.09 0.024
2 6.514 0.010 2.03 0.020
3 6.295 0.005 2.01 0.011
4 6.042 0.005 2.18 0.010
5 5.794 0.004 2.20 0.008
6 5.555 0.004 2.16 0.008

4. Discussion

From the measurement result and corresponding analysis of the property of the new densitometer
and the sample, the DOE is examined has a high diffuse coefficient with high light flux. The OD
measurement range of densitometer based on the DOE approach is up to 6.7 with a high uncertainty level.

5. Conclusions

A new diffuse optics emitter is described in this paper, and it is proven to be a high diffuse and
flux light source in the visual spectrum. It can be used in many diffuse optics systems, for highly
precision measurement, image project, image analysis, or other usages [32–35].
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