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Abstract: Due to its accuracy, simplicity, and other advantages, the Kalman filter method is one of the
common algorithms to estimate the state-of-charge (SOC) of batteries. However, this method still has
its shortcomings. The Kalman filter method is an algorithm designed for linear systems and requires
precise mathematical models. Lithium-ion batteries are not linear systems, so the establishment of the
battery equivalent circuit model (ECM) is necessary for SOC estimation. In this paper, an adaptive
Kalman filter method and the battery Thevenin equivalent circuit are combined to estimate the SOC of
an electric vehicle power battery dynamically. Firstly, the equivalent circuit model is studied, and the
battery model suitable for SOC estimation is established. Then, the parameters of the corresponding
battery charge and the discharge experimental detection model are designed. Finally, the adaptive
Kalman filter method is applied to the model in the unknown interference noise environment and is
also adopted to estimate the SOC of the battery online. The simulation results show that the proposed
method can correct the SOC estimation error caused by the model error in real time. The estimation
accuracy of the proposed method is higher than that of the Kalman filter method. The adaptive
Kalman filter method also has a correction effect on the initial value error, which is suitable for
online SOC estimation of power batteries. The experiment under the BBDST (Beijing Bus Dynamic
Stress Test) working condition fully proves that the proposed SOC estimation algorithm can hold the
satisfactory accuracy even in complex situations.
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1. Introduction

Due to the global energy shortage and environmental pollution, countries around the world have
attached great importance to the development of electric vehicles. The lithium-ion battery is considered
to be an ideal electric vehicle power battery with high safety, large discharge power, environmental
protection, less pollution, and long cycle life [1,2]. However, the increase in energy density and
electrochemical performance of the battery often means a decrease in safety performance, which is
prone to safety accidents. In the process of use, because of the side reaction of the electrolyte and the
interface between the positive and negative electrodes, the thermal and electrical properties of the aged
lithium-ion battery will be significantly changed and, therefore, the thermal stability of the lithium-ion
battery will inevitably change as it ages [3]. In [4], the differences in the safety behavior between
un-aged and aged high-power 18650 lithium-ion cells were investigated at the cell and material level
by accelerating rate calorimetry (ARC) and simultaneous thermal analysis (STA). The results show that
the aging of the battery will lead to the mechanical deformation of the jelly roll and lithium plating
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on the anode, which has a great impact on battery safety. The cyclic stability and thermal runaway
characteristics of four commercially available cylindrical batteries under three different states-of-charge
(0, 50%, and 100%) were investigated in [5]. Abuse testing (crush and nail penetration tests) was also
performed at 100% SOC. It is not difficult to see from the analysis of the article that the SOC of the
battery is related to the thermal stability of the battery. The higher the SOC, the worse the thermal
stability of the battery, and the lower the temperature of the thermal runaway.

In actual practice, lithium-ion batteries need to be well monitored, judged, and controlled by
the battery management system (BMS). An accurate battery state estimation is one of the most basic
functions of the BMS. The state of the battery includes state-of-charge (SOC), state-of-health (SOH),
and state-of-function (SOF). SOC refers to the battery’s remaining capacity and is one of the main
parameters describing the state of the battery. An accurate estimation of the SOC can effectively
prevent battery overcharge and over discharge, extend battery life, and provide drivers with accurate
cruising range information. SOC of the battery cannot be directly measured by the instrument and can
only be estimated from other measurable parameters. However, external factors and internal factors,
such as ambient temperature, self-discharge, and cycle life, can affect the estimation of the battery’s
SOC. How to accurately estimate the battery capacity is a worldwide problem.

With the development of technology, a series of battery SOC estimation algorithms have
been proposed; each has its advantages and disadvantages. The common battery SOC estimation
methods include: (1) the residual capacity method [6]; (2) the open circuit voltage (OCV) method [7];
(3) the ampere-hour integration method [8]; (4) the Kalman filter method [9]; (5) the deep learning
algorithm [10]; (6) the neural network method [11]; and (7) hybrid techniques [9].

The residual capacity method calculates the SOC by discharging the battery to a lower cut-off

voltage in the controlled test equipment [6] and the OCV method is based on the relationship between
the open circuit voltage of the battery and the SOC [7]. The results obtained by the two methods in
the laboratory are very reliable, but both require a large amount of measurement time and are not
suitable for online monitoring of the BMS. The ampere-hour integration method estimates the SOC by
integrating the inflow and outflow currents of the battery. The method is easily calculated online and
the cost is low. However, this method cannot correct the cumulative error caused by the drift of the
current measurement sensor. In addition, the accuracy of the estimation depends on the initial SOC [8].
This method has low robustness against the acquired signal quality and the initial SOC.

The neural network method and the deep learning method can be referred to as machine learning
methods. These methods do not require detailed information on the battery system, also known as the
"black box" model. Chaoran Li et al. designed a SOC estimation method based on the recurrent neural
network (RNN) [12]. Observable variables, such as voltage, current, and temperature, are directly
mapped to SOC estimates. Experimental results show that the method is accurate and robust. Phattara
Khumprom et al. described a method for predicting state-of-health (SOH) and remaining useful life
(RUL) of the battery based on deep learning [10]. Although there have been many studies on machine
learning methods and many of them have shown very good performance, these methods still have
shortcomings. The computational burden is heavy and poses a serious challenge to the performance of
the BMS. Moreover, the cost of implementing these methods is very high and the practicality is still
relatively poor. Although the practicality is not strong at present, more and more people have begun
to explore ways to estimate SOC by better machine learning methods.

The hybrid technique means an SOC estimation method that combines various SOC estimation
methods appropriately. For example, Liu et al. designed an SOC estimation method combining the
adaptive extended Kalman filter method (AEKF) and the ampere-hour integration method together [9].
The experimental results show that the accuracy of this method is relatively high and the calculation
time is short, and the practicability is better. The greatest problem with this method at present is that the
cost of computing is still very high. Still with the article of Liu as an example [9], the method proposed
in this paper needs to construct the adaptive extended Kalman filter method and the ampere-time
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integral method at the same time, which undoubtedly brings a great burden to the BMS. However,
finding the right hybrid method is still one of the development directions for the future SOC estimation.

Compared with the above methods, the Kalman filter method is more accurate and easier to
implement. The Kalman filter method does not require an accurate SOC initial value because the
result will gradually approach the optimal value and the current measurement error will update the
algorithm during operation. At the same time, it is a closed-loop observer that achieves the accurate and
continuous estimation of performance over the entire battery operating range. The above advantages
make the Kalman filter a promising solution to BMS application implementation. The traditional
Kalman filter is only applicable to linear systems, while BMS applications require nonlinear algorithms
for more complex systems [13]. Several modifications have been proposed, such as the Extended
Kalman Filter (EKF) [14], the Unscented Kalman Filter (UKF) [15], and the Adaptive Kalman Filter
(AKF) [16]. Among them, AKF has ability to update the process and measure the noise covariance,
which can estimate the SOC more accurately [17].

The most challenging issue in the SOC estimation is the trade-off between balance accuracy and
computational cost [9]. In general, the more complex the algorithm, the higher the accuracy, but the
higher the cost. According to the authors’ knowledge, BMS engineers of electric vehicle manufacturers
generally believe that the SOC estimation module can be considered qualified if the error is less than
5%. The cost of the BMS is relatively high, accounting for more than 10% of the cost of the whole
vehicle. A more complicated method may increase the accuracy of the SOC to less than 2%, but the cost
usually doubles. In summary, modern intelligent algorithms for the BMS for the online SOC estimation
require the following features: an accurate description of the battery system under dynamic excitation;
an adaptive adjustment of system noise; system stability and robustness; and lower calculation cost.
In order to meet these conditions, this paper proposes a method for the online SOC estimation based
on the Thevenin equivalent circuit model and the adaptive Kalman filter method. This paper aims to
make the following contributions:

(1) By comparing and analyzing ECMs, the most suitable ECM and parameter identification
algorithms are decided;

(2) A low-cost and accurate SOC estimator based on the adaptive Kalman filter (AKF) for the
proposed model is developed, and its accuracy and robustness are verified by experiments under
constant current working conditions and BBDST working conditions; and

(3) The proposed method has strong robustness to model uncertainty and strong mutation to state
tracking ability.

The rest of this article is organized as follows: Section 2 describes a practical method for plotting
the OCV vs. SOC curve for a battery, identifying the corresponding parameters of the Thevenin
equivalent circuit. Section 3 describes the calculation method of the adaptive Kalman filter in detail.
The experimental process is described in Section 4 and the experimental results are analyzed. Finally,
Section 5 states the conclusions.

2. The Determination of the Battery Model

2.1. The SOC-OCV Relationship Curve

SOC means the residual capacity of the battery, which is a very important parameter for electric
vehicles, especially in the operation of electric vehicles, which is particularly important for the correct
arrangement of the remaining quantity and time in the course of the travel. Its mathematical expression
is SOC = Qr

QN
× 100%. Qr is the remaining capacity of the battery, and QN is the rated quantity of the

battery under the same condition. However, since the value of Qr is difficult to be determined directly,
this formula is rarely used in actual calculations. The most commonly used formula to calculate the
battery SOC is the ampere-hour integral (AH) formula:

SOC = SOC0 +
1

QN

∫ t

0
ηIdt (1)
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Among them QN is the rated capacity of the battery, and η is an influence factor related to the
temperature and the discharge rate of the battery (approximately equal to 1). I is the charge discharge
current of the battery. The AH method is simple and easy to make calculations. It only needs to collect
the real time current and obtains SOC by integrating the time with the current [18–20].

OCV means the current battery capacity of the battery estimated by measured interruption voltage
of the battery in the open circuit state. Since the battery has been static after a long time, its port voltage
has a relatively stable function relationship with the SOC, so by OCV, a relatively true SOC estimate
can be obtained [21]. Due to the accuracy of the OCV method, the SOC value estimated by this method
will be used as the reference value of the proposed method. Therefore, it is necessary to find a method
that can accurately find out the relationship between the battery OCV and SOC.

Commercial lithium iron phosphate batteries (LIPB) of 3.2 V/2200 mAH were used as a research object,
and the SOC-OCV relationship curve was measured using the following method (T = 25 ◦C) [22–24]:

• The battery was discharged to the lower limit voltage;
• The battery was charged to the upper limit voltage with a constant charging current, and the

charging voltage and the charging capacity were recorded;
• The battery was discharged at a constant discharge current, and the discharge was stopped when

the discharge capacity was the same as the charge capacity in step B, and the discharging voltage
and the discharging capacity were recorded; and

• Data of the charging voltage and the discharging voltage of the battery relative to the state of
charge of the battery were respectively obtained;

At the same state of charge, the open circuit voltage value took the intermediate value of the
charging voltage and the discharging voltage, thereby obtaining a SOC-OCV relationship curve as was
shown in Figure 1. A high-order polynomial function representing the OCV-SOC relationship was
shown as follows:

OCV = 4802.561SOC9
− 22851.658SOC8 + 46094.256SOC7

−51274.985SOC6 + 34272.375SOC5
− 14077.056SOC4

+3484.326SOC3
− 491.298SOC2 + 35.357SOC + 2.236

(2)
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2.2. Battery Model Selection and Parameter Identification

The estimation of the adaptive Kalman filter algorithm’s estimation of SOC relies on an accurate
and intuitive battery model. In this method, the Thevenin equivalent circuit shown in Figure 2 was
used as the estimation model. The Thevenin equivalent circuit, also known as the first-order RC
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equivalent model, consists of a voltage source and an RC parallel network. Among them, the parallel
circuit composed of Rp and Cp is used to simulate the dynamic response of the battery, which can
accurately simulate the charging and discharging process of the battery; Uoc is the open circuit voltage
of the battery and is positively correlated with the SOC of the battery; R0 is the resistance characterizing
battery characteristics; and UL is the load voltage of the battery [25–27].

A discretized battery space model is constructed based on the Thevenin equivalent circuit model
shown in Figure 2. Among them, the RC network and SOC constructed by Rp and Cp are used as state
variables; the charge and discharge current I is used as an input variable, and the output voltage UL

of the battery is used as an output variable. The specific state space model is shown in Equations (3)
and (4); ∆t is the sampling time interval; Up(k) is the terminal voltage of capacitance Cp on the kth
sampling point; and SOC(k) is the current SOC. And k−1 is the sampled value at the previous moment;
τ is the time constant of the RC network; η is the coulombic efficiency of charge and discharge; and CN

is the total ampere capacity of the battery [28–30].
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[
Up(k)

SOC(k)

]
=

 Rp(1− e−
Λt
τ )

−
ηΛt
CN

I(k) +
 e−

Λt
τ 0

0 1

[ Up(k− 1)
SOC(k− 1)

]
(3)

UL(k) =
[
−1 dUoc(SOC)

dSOC

][ Up(k)
SOC(k)

]
−R0I(k) (4)

Since OCV and SOC are exponentially corresponding according to Figure 2, the exponential fitting
method is adopted to fit the response curve, and then the required model parameters are obtained.
The relationship between the discharge current and the output load voltage is obtained by the Thevenin
equivalent circuit model:

UL = (Uoc − IR0 − IRp) + IRpe−
t
τ (5)

An expression is obtained by exponential fitting to Figure 2.

UL = c1 + c2e−c3t (6)

Among them, c1, c2, and c3 are constants, and the circuit model parameters can be obtained by
comparing Equations (5) and (6): 

Rp = c2
I

Cp = 1
c3Rp

R0 = (Uoc − c1 − c2)/I
(7)
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It can be known from Equations (6) and (7), that the parameters of the model components cannot
be directly measured, and need to be obtained through identification. There are some standard
identification methods and specific processes for the equivalent circuit parameter identification method.
According to the HPPC (hybrid pulse power characterization) test method in the FreedomCAR Battery
Test Manual for Power-Assist Hybrid Electric Vehicles, the experimental data of the lithium-ion battery
voltage under constant temperature and different SOC conditions are obtained. The curve is fitted to the
obtained data by MATLAB 2014b (The MathWorks, Natick, Massachusetts, USA), and the parameter
values under a specific SOC condition at a constant temperature can be identified. The specific steps of
the test are described in detail in [31–34]. Table 1 shows the values of the parameters obtained at a
temperature of 25 ◦C.

As can be seen from Figure 1, the SOC value is relatively stable in the range of 0.1–0.9, and changes
sharply at both ends. In order to obtain accurate model parameters over the entire interval, multiple
data need to be tested in the 0.9–1.0 intervals to ensure that the dramatic changes in the parameters of
the interval model can be accurately expressed.

Table 1. Thevenin model identification parameters.

SOC R0 (mΩ) Rp (mΩ) Cp (F)

1 33.0 17.2 1987.0
0.975 29.2 16.2 1902.7
0.95 21.6 11.0 1790.7
0.925 19.3 6.5 1881.7

0.9 17.1 7.3 1626.0
0.8 17.1 9.3 1706.9
0.7 17.0 6.1 1702.2
0.6 17.3 5.9 1692.4
0.5 17.6 7.2 1650.3
0.4 17.7 6.2 1274.6
0.3 18.0 6.6 1354.8
0.2 18.4 6.7 1224.6
0.1 18.6 11.4 1135.3

3. The Adaptive SOC Estimation of the Kalman Filter

With the traditional Kalman filter method, it is generally assumed that the interference source is
Gaussian white noise when estimating the SOC of the battery is estimated, but in the actual operation
of the vehicle, the noise often does not have such good statistical characteristics. Based on this situation,
the adaptive Kalman filter algorithm is employed to dynamically estimate the state variables in real
time based on the measured data, and to continuously correct the statistical characteristics of the noise,
so that the battery SOC can be better approached.

According to Equations (3) and (4), an estimated model of the battery SOC can be obtained:
xk+1 = f (xk, uk) + Γwk

yk = g(xk, uk) + vk
wk ∼ (qk, Qk)

vk ∼ (rk, Rk)

(8)

In Equation (8), x and y represent state variables and output variables, respectively; Γ is the
interference matrix; wk and vk are the process noise and measurement noise, which are used to indicate
the unknown interference of the battery during operation; qk, Qk and rk, Rk are the corresponding mean
and covariance [30].

The steps of estimating the SOC using the adaptive Kalman filter are shown below [35–38]:
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1. Initializing the system state gives an estimate of the initial state of the system x0 and its error
covariance P0:

x̂0 = E[x0] (9)

P0 = E[(x0 − x̂0) (x0 − x̂0)
T
]

(10)

2. By iterating the state and the error covariance matrix of the previous moment, the state and error
covariance matrix of the next moment can be obtained:

x̂k = Akx̂k−1 + Bkuk−1 + Γqk−1 (11)

Pk = AkPk−1AT
k + ΓQk−1ΓT (12)

3. The Kalman gain matrix Lk is:

Lk = PkCT
k (CkPkCT

k + Rk−1)
−1

(13)

4. The state error covariance will gradually increase as the uncertainty of the current state increases,
resulting in a corresponding increase in the Kalman gain matrix, in order to greatly update the
current system state.

5. The state and the state covariance matrix at time k will be updated with output error at time k:

x̂k = x̂k−1 + Lk(yk −Ckx̂k−1 −Dkuk − rk−1) (14)

Pk = (I − LkCk)Pk−1 (15)

6. In Equation (15), I is a unit matrix. As the measured value increases, the stability of the state
becomes better and better, so the reference value Pk of uncertainty will be continuously reduced.

7. The mean and the covariance of process noise and measurement noise will be updated:
qk = (1− dk−1)qk−1 + dk−1G(x̂k −Akx̂k−1 − Bkuk−1)

Qk = (1− dk−1)Qk−1 + dk−1G(Lk ỹk ỹk
TLT

k + Pk −AkPk−1AT
k )G

T

rk = (1− dk−1)rk−1 + dk−1(yk −Ckx̂k−1 −Dkuk)

Rk = (1− dk−1)Rk−1 + dk−1(ỹk ỹk
T
−CkPk−1CT

k )

(16)

In Equation (16), ỹk is the output error, ỹk = yk −Ckxk−1 −Dkuk − rk−1; G = (ΓTΓ)ΓT; b (0 < b < 1)
is the forgetting factor; here take b = 0.98. By continuously estimating the mean and the covariance of
the noise in real time, the state variable SOC will be continuously updated and the estimation of the
SOC will be accurate.

4. Simulation and Results Analysis

4.1. Experiments

Commercial lithium iron phosphate batteries (LIPB) were tested in this study with a nominal
voltage of 3.7 V and a nominal capacity of 2200 mAh. The experiment was conducted on a test bench
manufactured by Wuhan LANBTS (BT2016C), and the software (Control software client, LANBTS,
Wuhan, China) installed on the PC was used to control the charging and discharging of the battery
according to the given operating conditions. The terminal voltage and the current of the battery were
recorded at a certain frequency. The acquired data is used for model parameter identification and
SOC estimation.

Firstly, the SOC and OCV data were obtained using the test bench in conjunction with the
experimental method mentioned in Section 2. These data were fitted using MATLAB 2014b (The
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MathWorks, Natick, Massachusetts, USA) to obtain OCV-SOC plots and relationships. Secondly,
a hybrid pulse power characterization (HPPC) test was performed to identify the parameters of the
Thevenin equivalent circuit. The test procedure can be found in the [31–34] and will not be described in
detail. Thirdly, a capacity test for finding the standard capacity of the test battery was designed, and its
procedures are shown below. Several batteries were placed in a temperature chamber at 25 ◦C for two
hours. Then, the batteries were discharged to 2.2 V at a constant discharge current (1 C). After waiting
for two hours, the batteries were fully charged with a constant current. This process would be repeated
three times and the average of the test capacity was taken as the standard capacity of the test batteries.
Finally, the batteries were respectively tested under the constant current working condition and the
Beijing Bus Dynamic Stress Test (BBDST) working condition. Online battery SOC estimation was
conducted using the collected data.

4.2. The Comparative Test under Constant Current Discharge Conditions

The battery was discharged at 0.5 C with a simulation duration of 2000 s and a sampling interval
of 20 s. The simulation results were shown in Figures 3 and 4. “AKF” stands for the adaptive Kalman
filter method; “KF” stands for the Kalman filter SOC estimate. It could be seen from Figures 3 and 4
that the adaptive Kalman filter method was featured with an SOC estimation error of less than 2%,
which was higher than the SOC estimation accuracy of the Kalman filter method. Additionally, as can
be seen from the figures, the AKF method tends to be stable at about 300 s while the KF method needs
about 1100 s. This proves that the AKF method converges quickly, which is very important in practical
applications. Therefore, the adaptive Kalman filter method could effectively reduce the influence of
unknown noise on SOC estimation.
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4.3. The Comparative Test for Initial Value Correction

As can be seen from Figure 1, the OCV value is relatively stable in SOC range of 10–90%. There
was a certain error in the initial value of SOC obtained according to the open circuit voltage. Therefore,
it was necessary to correct the initial value to reduce the impact of the initial value error on the SOC
estimation. In order to verify the correction effect of the adaptive Kalman filter, according to the above
method, when the SOC = 0.8, the initial values of the SOC were chosen as 0.76 and 0.81, respectively,
and the simulation results are shown in Figures 5 and 6.
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It can be seen from Figures 5 and 6 that, although there is an error in the initial SOC estimation
value, the SOC estimation value of the adaptive Kalman filter algorithm converged to be consistent
with the actual value (when −4.00% ≤ error ≤ 4.00%) after a short time (no more than 500 s), which fully
indicated that the adaptive Kalman filter method had a correction for the initial value error. Moreover,
the more accurate the initial value is, the faster the convergence.

4.4. The Simulation Experiment Based on the BBDST Working Condition

The BBDST (Beijing Bus Dynamic Stress Test) working condition is a standard working condition
for lithium-ion batteries in China when a 14-day follow-up test of an electric bus on Route 121 in
Beijing is conducted, and a condition for simulating the power battery for the vehicle is also obtained.
This working condition reflects the SOC change of the electric vehicle battery more than the constant
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current working condition. Table 2 shows a detailed step for the entire complete BBDST condition.
The total time from the start of the bus to the last stop was 300 seconds [39].

Table 2. The BBDST working condition.

Working Condition Step Time (s) Cumulative Time (s) Battery Output Power (kW)

Start 21 21 37.5
Accelerating 12 33 72.5
Coastdown 16 49 4.5

Brake 6 55 −15
Accelerating 21 76 37.5
Coastdown 16 92 4.5

Brake 6 98 −15
Accelerating 9 107 72.5

Rapid acceleration 6 113 92.5
Uniform speed 21 134 37.5

Coastdown 16 150 4.5
Brake 6 156 −15

Accelerating 9 165 72.5
Rapid acceleration 6 171 92.5

Uniform speed 21 192 37.5
Coastdown 16 208 4.5

Brake 9 217 −35
Brake 12 229 −15

Parking 71 300 4.5

This article used the LANBTS battery test system platform for the BBDST experiments. The SOC
interval selected the platform area of 0.1–0.9. Since the experimental equipment was a single battery,
the power output from the lithium-ion battery should be adjusted in proportion according to the
output power in the standard BBDST operating condition. After conversion, we finally set the ratio of
the output power of the lithium-ion battery to the output power of the standard BBDST condition to
1:5000. The specific experimental methods were as follows [39]:

1. Charged the battery to the cut-off voltage at a temperature of 25 ◦C.
2. After that, it was discharged with a constant current rate of 1 C to SOC = 0.9, and then allowed to

stand for 1 h.
3. Performed a complete BBDST test on the lithium-ion battery, then stopped the loading power,

and continued to test the lithium-ion battery for a complete BBDST condition after 10 min of
static. The above test steps were repeated for achieving 15 complete BBDST condition test cycles.

4. Re-discharged the battery at the 1 C rate until the battery was discharged to the cut-off voltage,
finally terminated the discharge, and recorded the experimental data.

Superimposed random noise processing was performed on the current and voltage data obtained by
the test. The SOC accurate value was obtained by the OCV method and the ampere-hour method before
the superimposed noise was taken as a comparison value of the SOC estimation. The superimposed
noise data was substituted into the SOC estimation program designed above for simulation calculation.
Finally, the following two figures could be drawn. It can be seen from Figures 7 and 8 that although the
SOC estimation error in the BBDST operating condition followed the pulse change sharply, the maximum
error still did not exceed 4%. It could be considered that this design meets the requirements (error ≤ 5%).
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In actual use, computation time and calculation accuracy are equally important. The calculation
time for various SOC estimation algorithms [7,9,17] was performed in MATLAB 2014b (The MathWorks,
Natick, Massachusetts, USA) on a PC equipped with an Intel Core i5-8300H CPU @ 2.3 GHz and 8 GB
RAM. Table 3 listed the calculation results under BBDST in the entire SOC area (0–100%). It can be seen
that the calculation time of the proposed algorithm was relatively small and the accuracy was relatively
high. Therefore, the proposed algorithm improved the estimation accuracy without increasing the
complexity, which was very suitable for the actual use of EVs.

Table 3. Computing time (s) and error of various SOC estimation algorithms.

Estimation Algorithms Maximum Absolute Error Time (s)

Ampere-hour 9.49% 5.951
Two RC KF 3.46% 67.326

Fuzzy control 3.43% 69.542
Proposed algorithm 3.47% 55.756

4.5. Discussion

It can be seen from the experimental results in Sections 4.2–4.4 that the battery SOC estimation
algorithm proposed in this paper is accurate and has a short calculation time with good robustness.
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However, there are still problems that need to be solved. The error at the beginning of each measurement
will be larger. As the experiment progresses, the error value will gradually decrease and tend to be
stable. This is suspected to be caused by the polarization of the battery. When the current passes
through the battery, battery potential is deviated from the equilibrium potential, which affects the SOC
estimation accuracy of the battery. This proves that there is still room for improvement in the algorithm.

Two points will be focused in our future work. Temperature plays a key role in battery characteristics.
In order to eliminate the effect of temperature on the results, the battery was placed in the thermostat to
maintain a constant temperature (25 ◦C). However, in electric vehicles, the batteries are not placed in
the thermostat and the influence of temperature on the batteries needs to be considered. In the future,
it is necessary to further consider the robustness of the SOC estimation algorithm against temperature.
Moreover, this paper focused on the performance of the algorithm when the battery was discharged and
did not discuss the condition when the battery was charged. In the future, we will study the performance
of the estimation algorithm under charge, which may increase the precision with time.

5. Conclusions

In this paper, an adaptive Kalman filter method based on the equivalent circuit model is proposed
for the SOC estimation algorithm of a lithium-ion battery. In the adaptive Kalman filter method,
the measured data is employed to estimate the mean and the variance of the noise on-line, and
continuously corrects the obtained SOC value according to the estimation result. Based on the
experimental results, it is not difficult to see that the accuracy of this algorithm is much higher than that
of the Kalman filter method, and it has a quick correction effect on the error of the initial value of the
SOC, which is extremely suitable for the SOC estimation of the battery online. Moreover, experiments
under the BBDST condition prove that this algorithm is suitable for practical applications.

The method proposed in this paper has been proved to be a reasonable, accurate, and realistic SOC
estimation method, but there is still room for improvement. Further works include: (1) verification
of the application concerning the SOC estimation algorithm based on the equivalent circuit-based
adaptive Kalman filter method in the actual BMS; (2) the accuracy of the AKF method for estimating
the battery SOC requires the establishment of accurate battery models, but the current battery models
are too complicated and the computational cost is high. Therefore, finding a more accurate and
uncomplicated battery model will be our next target; and (3) verification of the influence of battery
aging on the accuracy of the adaptive Kalman filter.
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