
applied  
sciences

Article

Estimating Road Segments Using Kernelized
Averaging of GPS Trajectories

Pierre-François Marteau

IRISA, Université Bretagne Sud, 35000 Rennes, France; pierre-francois.marteau@univ-ubs.fr;
Tel.: +33-2-9701-7299

Received: 28 May 2019; Accepted: 3 July 2019; Published: 6 July 2019
����������
�������

Abstract: A method called iTEKA, which stands for iterative time elastic kernel averaging,
was successfully used for averaging time series. In this paper, we adapt it to GPS trajectories. The key
contribution is a denoising procedure that includes an over-sampling scheme, the detection and
removal of outlier trajectories, a kernelized time elastic averaging method, and a down-sampling
as post-processing. The experiment carried out on benchmark datasets showed that the proposed
procedure is effective and outperforms straightforward methods based on medoid or Euclidean
averaging approaches.

Keywords: GPS trajectory; time series averaging; noise reduction; kernel methods; dynamic
time warping

1. Introduction

During the last decade, the development of navigational and geolocation systems and applications
has experienced strong growth. For the associated services, such as human behavior analysis,
traffic modelization and prediction, smart city information services, geo-localized and contextualized
recommendation, etc., to be exploitable in urban areas, it is necessary to rely on an up-to-date
cartography. However, maintenance of road and pedestrian network maps requires costly manual
editing in time and money. This need has spawned a specific research theme around the development
of automated extraction algorithms of road network maps from GPS trajectories [1–3]. Global Position
Systems (GPS) trajectories are easily and cheaply collected using consumer embedded equipment,
such as smart-phones. Unfortunately, they are in general noisy, mainly due to the sensitivity of the GPS
tracking system that is used, but also due to the fluctuation, or loss, of the signal from the satellites.
Consequently, in many places, such as in cities or mountain environments, due to reflections, magnetic
interferences or even tropospheric conditions or sun activities, GPS trajectories can be erroneous (more
than 10 m deviations) or characterized with missing data, making them unsuited for applications
without dedicated preprocessing.

When a single trajectory is at hand, Kalman filtering [4] is usually the classical approach used to
clean up this kind of sequential data. When, instead of a single trajectory, a set of trajectories can be
considered, such as the random realization of a similar path followed by a population of pedestrians
or road vehicles, one can consider ensemble filtering approaches such as ensemble Kalman filtering [5]
or variant of particle filtering allowing to cope with historical data [6].

Both Kalman and ensemble Kalman methods require jointly the estimation of a measurement
model and a dynamical model. However, the inference of these models are difficult to estimate with
accuracy, specifically when the noise is non-Gaussian, and, furthermore, the parameters of the models
may change with time and space, from one segment to the other.

In this article, we address the problem of cleaning sets of pedestrian or vehicle GPS trajectories
corresponding to a road segment without making any assumption on the noise or the nonlinear
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dynamics underlying the movement of the tracked object. The cleaning procedure that we present
relies on an ensemble filtering algorithm for sets of trajectories mostly based on the notion of centroid
defined for a subset of time series. It involves five steps, as depicted in Figure 1:

1. an over-sampling of the trajectories such that they all share a higher sampling rate, namely they
are described with the same higher number of samples (Section 3.1);

2. a first extraction/estimation of a medoid/centroid for a subset of GPS trajectories (Sections 2.4
and 3.2);

3. anomaly (outlier) detection and removal (Section 3.2);
4. a second extraction/estimation of a medoid/centroid for a subset of GPS trajectories (Sections 2.4

and 3.2); and
5. a final down-sampling to reduce the sampling precision of the trajectories down to the average

sampling precision of the initial set of trajectories (Section 3.3).

Figure 1. Processing pipeline overview: The meta parameters ν (iTEKA averaging method) and γ

(soft-DTW averaging method) are defined, respectively, in Equations (5) and (8). The T meta parameter
is the length of the trajectories when they have been over-resampled during the pre-processing step
and is defined in Section 3.1. The τ parameter is a threshold involved to decide whether a trajectory is
an outlier and is defined in Section 3.2.

This overall cleaning procedure was used during our experimentation to test comparatively
various methods from the state of the art. We evaluated: (i) four medoid methods based on the
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Euclidean distance, the well-known dynamic time warp (DTW) measure [7,8], the soft version of DTW
(soft-DTW, [9]) or a kernelization version of DTW (Krdtw, [10]); and (ii) four centroid based methods,
namely the Euclidean centroid [11], the DTW Barycenter Averaging (DBA) centroid according to the
method proposed in [12], the soft-DTW centroid developed by Cuturi and Blondel [9] and the iterative
Time Elastic Kernelized Averaging proposed (iTEKA) in [13].

Section 2 introduces the main concepts that are behind the DTW time elastic measure and its
kernalization. It also introduces the general purpose (iterative Time Elastic Kernel Averaging (iTEKA)
procedure that has been specifically developed to average sets of time series. Section 3 addresses the
averaging of sets of GPS trajectories. It details mostly the preprocesing and postprocessing steps as well
as the trajectory outlier detection and removal stage. Section 4 presents an experimentation carried out
in the context of the “Averaging GPS segments Competition” (https://cs.uef.fi/sipu/segments/) [14]
proposed by University of Eastern Finland. A conclusion ends this study.

2. From Dynamic Time Warping to Time Elastic Kernels Averaging

2.1. Dynamic Time Warping

Dynamic Time Warping (DTW) was introduced in [7,8] as a measure of similarity between
time series. DTW similarity is the results of an optimal alignment path π∗ between a pair of time
series (originally speech waves) while locally considering expansion or squeezing of the time line.
An alignment path π of length |π| = m between two time series x and x’ is defined as the sequence of
m (max(|x|, |x′|) ≤ m ≤ |x|+ |x′|) pairs of aligned time stamps:

π = [(π1(0), π2(0)), (π1(1), π2(1)), ..., (π1(m− 1), π2(m− 1))]

where (π1(k), π2(k)) means that xπ1(k) and x′
π2(k)

are aligned. π1 and π2 obey the boundary and
monotonicity conditions as:

0 = π1(0) ≤ π1(1) ≤ ... ≤ π1(m− 1) = |x| − 1
0 = π2(0) ≤ π2(1) ≤ ... ≤ π2(m− 1) = |x′| − 1

and, ∀ l ∈ {0, ..., m− 1},

π1(l + 1) ≤ π1(l) + 1 and π2(l + 1) ≤ π2(l) + 1,

(π1(l + 1)− π1(l)) + (π2(l + 1)− π2(l)) ≥ 1

The eligible alignments paths are classically represented in a |x| × |x′| grid, as displayed in
Figure 2.

Figure 2. Three possible alignments path (green, red, black) between time series x and x’.

Let A be the set of all possible alignments between two time series. The DTW similarity measure
between time series x and x’ is thus defined as:

DTW(x, x’) = min
π∈A ∑

(t,t′)∈π

ϕ(xt, x′t′) (1)

https://cs.uef.fi/sipu/segments/
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where ϕ : R×R→ R+ is a local distance measure (usually the Euclidean norm is used) on the set of
real numbers R.

2.2. Time Elastic Kernels

From the DTW formulation, several attempts have been made to build kernel measures more
suitable for machine learning purpose, in particular in the context of support vector machine. Distance
substituting kernels were first introduced [15,16], and, although such kernels are not definite positive,
they have shown mixed success.

Later, the global alignment kernel was introduced [17], which is, in most practically encountered
conditions, positive definite (Kga), and takes the following form:

Kga(x, x’) = ∑
π∈A

∏
(t,t′)∈π

κ(xt, x′t′) (2)

where κ(., .) = exp(−γ · ||., .||2) is a local kernel and A is the set of all admissible alignment paths.
Marteau and Gibet [10] proposeda general procedure to construct positive definite time elastic

kernels from general time elastic distances. In particular, Krdtw, based on the design of a global
alignment positive definite kernel for each single alignment path as given in Equation (3), has been
defined such as close to the DTW matching scheme.

Krdtw(x, x’) = ∑
π∈C⊂A

Kπ(x, x’) (3)

where this time C is any symmetric (in the sense that, if C contains an alignment path π, C also contains
the symmetric path of π) subset of the set of all admissible alignment paths A between two time series,
and Kπ(x, x’) is a positive definite kernel associated to the path π and defined as:

Kπ(xi, xj) = ∏
(t,t′)∈π

κ(xt, x′t′) + ∏
(t,t′)∈π

κ(xt′ , x′t)

+ ∏
(t,t′)∈π

κ(xt, x′t) + ∏
(t,t′)∈π

κ(xt′ , x′t′)
(4)

with κ a local kernel on Rd. Typically, we use:

κ(a, b) = e−ν·||a−b||2 with (a, b) ∈ R2, (5)

where ν is a meta parameter for this method.
Finally, soft-DTW [9], written as dtwγ, was proposed to introduced a fully differentiable

formulation from DTW. The essential idea is to replace the “hard” minimum operator by a “soft”
expression that takes the following form with γ ≥ 0 (which is a meta parameter for this method):

minγ{a1, ..., an} :=

{
mini≤nai, γ = 0,

−γ · log(∑n
i=1 e−ai/γ), γ > 0.

(6)

It is easy to show that there exists a direct relation between the global alignment kernel Kga(., .)
and the soft-DTW: dtwγ(., .) = −γ · log(Kga(., .)).

Soft-DTW is considered as a state-of-the-art method for averaging a set of time series. Hence, in
our experimentation, we evaluated it as a baseline method that we plugged into Steps 2 and 4 of our
processing pipeline.
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2.3. Time Elastic Averaging of a Set of Time Series

The multiple alignments problem has been widely studied in bioinformatics [18]. It is known
to be a NP-complete problem [19,20]. Due to the “hardness” of this problem, heuristics have been
proposed to provide centroid estimates in a reasonable time.

Among others, an iterative heuristic approach was initially introduced by Hautamaki et al. [21]
and popularized by Petitjean et al. [22] who introduced the DTW Barycenter Averaging (DBA)
algorithm. The iterative procedure, which integrates three steps, is first initiated by selecting a reference
time series r, usually the medoid of the set S of time series that is to be averaged. The best alignments
for all the time series in S with r are evaluated during the second step. In the third step, the reference
is updated by averaging all the samples that are aligned with the same sample of r. The two last steps
are iterated until reaching a local minimum of the summation of the DTW distances between the time
series in S and r.

The soft-DTW [9], which is fully differentiable in all of its arguments, has also been used to
evaluate a centroid estimate for a set S of time series. Basically, in this case, the direct optimization
problem can be solved using a gradient descent approach:

C = argminx

N

∑
i=1

=
λi
mi

dtwγ(x, yi) (7)

where mi is the length of time series yi, λi is a normalized weight associated to yi (∑i λi = 1), and C
is the centroid we are seeking for. dtwγ(., .) is constructed by replacing in dtw the min operator with
a softmin operator that introduces the γ meta parameter:

minγ{a1, . . . , an} :=

{
mini≤n ai, γ = 0,

−γ log ∑n
i=1 e−ai/γ, γ > 0.

(8)

These two time elastic averaging approaches (DBA and soft-DTW) constitute the state of the art
in the context of averaging a set of time series.

2.4. Kernelized Time Elastic Averaging of a Set of Time Series

The averaging algorithm that we used to average a set of GPS trajectories is based on a probabilistic
interpretation of the kernel alignment matrix (Equation (3)), as derived in [13]. This method is based
on the recursive editing distance kernel, named REDK, which instantiates as Krdtw when DTW is
considered as the editing distance.

The principle behind this interpretation is as follows. If we consider a stochastic alignment
automata that, given two time series x and x’, provides alignment paths, π, according to a probability
distribution Pπ ≈ Kπ , then the cell (i, j) of the kernel alignment matrix (Figure 3, left) corresponds to
the sum of the probabilities of the paths that allow aligning the sub time series x0:i and x’0:j. The kernel
alignment matrix can thus be understood as a forward probability matrix.

Krdtw(x0:i, x’0:j) ≈ ∑
π∈A

Pπ(x0:i, x’0:j) (9)

Similarly, if we consider the backward alignment process (Figure 3, right), the cell (i, j)
corresponds to the sum of the probabilities of the paths that allow aligning backwardly the sub
time series x|x|−1:i and x’|x′ |−1:j.

Krdtw(x|x|−1:i, x’|x′ |−1:j) ≈ ∑
π∈A

Pπ(x|x|−1:i, x’|x′ |−1:j)
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Figure 3. The forward (left) and backward (right) alignment kernel matrices.

Finally, if we consider the forward–backward FB alignment matrix, as depicted in Figure 4, the cell
FB(i, j) = Krdtw(x0:i, x’0:j) · Krdtw(x|x|−1:i, x’|x′ |−1:j) ≈ ∑

π∈A
Pπ(x0:i, x’0:j) · ∑

π∈A
Pπ(x|x|−1:i, x’|x′ |−1:j)

represents the sum of the probabilities of all the global alignment paths π that cross cell (i, j).

Figure 4. The forward–backward alignment kernel matrix.

The forward–backward alignment matrix allows for the estimation of the expectation of the
samples of x’ that are aligned with sample xt (given that xt is aligned) as well as the expectation of
time of occurrence, t′ of the samples of x’ that are aligned with xt as follows:

E(x′|xi) ∝
|x′ |−1

∑
j=0

x′ j ·
FB(i,j)

∑j′ FB(i,j′)

E(t′|xi) ∝
|x′ |−1

∑
j=0

j · FB(i,j)
∑j′ FB(i,j′)

(10)

The expectation equations (Equation (10)) are at the basis of the procedure for averaging a set
X = {kx0:Tk}k=1···N of time series.

Let r0:|r|−1 be a reference time series (r0:|r|−1) that can be initially setup as the medoid of set X.
The centroid estimate of X is defined as the pair (C, T ) where C is a time series of length |r| and T is
the sequence of time stamps associated to the samples of C

Ct =
1
N

N
∑

k=1
E(kx|rt)

Tt =
1
N

N
∑

k=1
E(kt|rt)

(11)
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Equations (10) and (11) are at the basis of the iterative agglomerative algorithm, called iTEKA
(iterative Time Elastic Kernel Averaging), that provides a refinement of the centroid estimation at each
iteration until reaching a (local) optimum, as presented in Algorithm 1. This algorithm was used,
among other state-of-the-art averaging algorithms such as Soft-DTW, in Steps 2 and 4 of the processing
pipeline depicted in Figure 1.

Algorithm 1 Iterative Time Elastic Kernel Averaging (iTEKA) of a set of time series.

1: Let K be a time elastic kernel for time series satisfying a probabilistic interpretation Equation (9)

2: Let X be a set of time series of d dimensional samples

3: Let C0 be an initial centroid estimate (e.g., the medoid of X) of length n

4: Let T and T0 be two sequences of time stamps of length n initialized with zero values

5: Let MeanK0 = 0 and MeanK be two double values;

6: repeat

7: C = C0, T = T0, MeanK = MeanK0;

8: Evaluate C0 and T0 according to Equation (11) //Average similarity between C0 and elements

of X

9: MeanK0= 1
|X| ∑x∈X K(C0, x)

10: until MeanK ≤ MeanK0

11: (C, T ) is the centroid estimation

12: Finally, uniformly re-sample C using the time stamps T

An early version of iTEKA was first published on Arxiv site in 2015 [23].

3. Averaging a Set of GPS Time Series

3.1. Preprocessing the GPS Trajectories

Given a set X of GPS trajectory corresponding all to the same street or road segment, the averaging
procedure presented previously cannot be used directly for several reasons:

• The street segment is not necessarily traveled in a single direction.
• The trajectories are traveled with variable speed, hence the trajectories are possibly not sampled

with the same level of detail or uniformly.

The first preprocessing step (Step 1 in Figure 1) consists in realigning the trajectories such that
they could be considered as being traveled in the same direction. If x0:n ∈ X, we denote x̃ the reversed
trajectory, basically x̃ = xn:0. The kernel defined in Equation (3) is used to reorganize X.

This is achieved by selecting (randomly) one reference trajectory, x ∈ X and for all x’ ∈ X, x’ 6= x,
if Krdtw(x, x′) ≥ Krdtw(x, x̃’), x will remain unchanged, otherwise, x̃’ will replace x within set X.

The second preprocessing step is to re-sample uniformly the trajectories in the set X so that all
trajectories contain the same number of samples, T. This is done using a linear interpolation of the
segments that compose the trajectory.

By the end of the preprocessing procedure, all trajectories within set X are supposed to be traveled
in the same direction and contain the same number of samples, T.

3.2. Averaging and Outliers Removal

The averaging is obtained using either medoid or centroid approaches, which corresponds to
Steps 2 and 4 in Figure 1. When iTEKA centroid (Algorithm 1) is selected, the medoid according to the
Krdtw measure is used to initiate the reference time series C0.
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Once the centroid C of set X is obtained, the mean µC,X, and the variance, σC,X,
of Log(Krdtw(C, x)) measure are evaluated, as x samples the elements of X.

For iTEKA approach, when σC,X > τ, the time series x such that

Zscore(x) =
Log(Krdtw(C, x))− µC,X

σC,X
≥ 0 (12)

are removed from the set X, as far as |X| ≥ 3. Here, τ is a threshold that we empirically set to
5. Basically, all trajectories that are “log-distant” of at least one standard deviation are removed if
σC,X > 5, and are kept otherwise.

For all other methods, the Log(Krdtw) is replaced by the similarity measure that is used instead.
This corresponds to Step 3 of the procedure depicted in Figure 1.

Once the outliers have been removed from set X, if any, a second averaging procedure is then
carried out on the new set X’ initialized with the previous centroid estimation, C0 = C (Step 4
in Figure 1). The final centroid estimation C associated to the initial set X of GPS trajectories is finally
provided by the averaging procedure depicted in Figure 1.

Figure 5 gives an example of this outlier removal procedure used during Step 3. Note that
this procedure does not guarantee that the centroid estimate would be closer to the ground
truth. Sometimes, once the outlier removal has been applied, the centroid estimate worsens the
assessment measure. However, at least on the training data, it brought on average some assessment
measure improvement.
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ITEKA Centroid
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Figure 5. iTEKA centroid estimate (in red) before pruning (left) and after pruning (right). The blue
lines represent trained data, i.e. measured GPS trajectories corresponding to a street segment. The x,y
coordinates are latitude and longitude converted in UTM coordinates then normalized in [0; 1].

3.3. Post-Processing of the Centroid Estimate

The final step (Step 5 of the processing pipeline presented in Figure 1) consists in downsampling
the centroid estimate C such that it contains the average number of samples that characterize the initial
set of trajectories. This is achieved using a polygonal curve approximation procedure, as described
in [24].

4. Experimentation

The experimentation was carried out using the training dataset provided by the Averaging GPS
segments competition setup [14] at University of Eastern Finland (https://cs.uef.fi/sipu/segments/).
It consisted in estimating a cleaned GPS trajectory segment given a set of GPS trajectories corresponding
to the same segment. Only training data corresponding to a set of road segments were delivered along
with ground truth trajectory for each considered road segments.

https://cs.uef.fi/sipu/segments/
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It is important to note that the assessment measure used to evaluate the competing approaches
was not explicitly provided. However, on the training data, the challenge site makes it possible to
obtain the average value of the assessment measure obtained by a given method by submitting the
set of solution trajectories produced by this method. We show below that this unknown assessment
measure used to rank the competing methods is not strongly correlated to a RMSE measure between
an estimated trajectory and the corresponding ground truth trajectory. The assessment measure (as we
learned once the challenge was closed) is referred to as HC-SIM, a hierarchical version of the C-SIM
measures described in [2]. The C-SIM measure is based on the notion of grid which partition the 2D
space in contiguous cells of 25 m2. To compare two trajectories, the Jaccard index was evaluated by
performing the ratio of the common cells shared by the two trajectories with the union of the cells
traversed by the two trajectories. To avoid the effect of the discretization of the grid, the trajectories
were slightly dilated, which had the effect of enlarging a bit of the trajectories by adding some of the
adjacent cells. The HC-SIM (H for hierarchical) measurement was derived from the C-SIM measure by
varying the size of the cells and providing a weighted average as output. The details of this measure
have not yet been published by the authors. However, as mentioned above, an evaluation program
allowed producing the results presented below. The HC-SIM measure gives a percentage of similarity
between two trajectories (hence, it varies in [0, 100%]).

We evaluated eight approaches: (i) four medoid based models, namely Euclidean, DTW, Krdtw
and soft-DTW with medoid; and (ii) four centroid based models, namely Euclidean, DBA, soft-DTW
and iTEKA centroid methods.

All approaches shares the T meta parameter, which defines the size of the resample trajectories.
In addition,Krdtw, iTEKA as well as the soft-DTW medoid and centroid methods require the set-up of
two meta parameters, ν and γ, respectively, the bandwidth of the local kernel parameter (Equation (4))
and T, the length of the trajectories, once they have been resampled after the second preprocessing step.

For all methods, these meta parameters were varied for all training sets of trajectories
simultaneously, such as maximizing the HC-SIM measure obtained by the centroid estimates.

We first selected ν and γ in the discrete set {.1,. 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20} while T value was selected within {100, 200, 300}.

According to Figure 6, the meta parameters ν and T are correlated for the iTEKA algorithm.
On the training data, a simple grid search led to selecting ν = 6 and T = 200, which allowed reaching
a HC-SIM of 68.5%.

Similarly, according to Figure 7, the meta parameters γ and T are correlated for the soft-DTW
centroid. On the training data, a simple grid search led to selecting γ = 2 and T = 100, which allowed
reaching a HC-SIM score of 67.39%.
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Figure 6. HC-SIM (in %) of the iTEKA centroid estimate relative to the ground truth trajectory when ν

varies for T = 50, T = 100, 200 and 300.
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Figure 7. HC-SIM (in %) of the soft-DTW centroid estimate relative to the ground truth trajectory when
γ varies for T = 50, 100, 200 and 300.

Figures 6 and 7 show that over-sampling has an important impact on the HC-SIM measure of the
estimated centroids.

As stated above, the HC-SIM measure is not strongly correlated to the RMSE measure.
The correlation between RMSE and HC-SIM measures when varying γ parameter for soft-DTW
or ν for iTEKA is, respectively, −61% and +67%. This shows the difficulty of this challenge, since the
ground truth provided on the training data does not directly help to train the models. Hence, selecting
the minimum RMSE value would not lead to the best HC-SIM measure.

Table 1 synthesizes the results obtained by the eight tested methods. It turns out that centroid
based methods are much more accurate than the medoid ones. The averaging scheme is thus quite
important. One can notice that, on this benchmark characterized by small and simple trajectories,
the Euclidean averaging performed quite well, reaching a 67.15% HC-SIM when outlier removal was
considered. This is better than soft-DTW that obtained 66.93%. The best method on this benchmark is
iTEKA that reached 67.63% HC-SIM with outlier removal.

Table 1. Best HC-SIM (in %) obtained with or without outlier removal for the eight tested methods.
The best obtained HC-SIM value are indicated in bold cases.

Method Without Outlier Removal With Proposed Outlier Removal

Euclidean Medoid [25] 60.90 60.49
DTW Medoid [26] 63.16 63.16
Krdtw Medoid [23] 61.20 61.20
soft-DTW Medoid [9] 61.29 61.29

Euclidean Centroid [27] 67.28 67.54
DBA Centroid [28] 66.40 66.40
soft-DTW Centroid [9] 67.47 67.39
iTEKA Centroid [13] 68.21 68.28

However, with the absence of an analytical knowledge of the HC-SIM measure that is used,
we cannot provide confidence intervals or state whether these results are significant or not.

The final results of the challenge (http://cs.uef.fi/sipu/segments/results.html), as provided
by the organizers, are given in Table 2. When no post-processing was used, iTEKA method ranks
first (Method A), but, as shown in the last two columns of the table, the method is slow and induces
a spurious number of points in the averaged trajectory that is provided. When reducing the number
of points of the centroid trajectory, using the down-sampling post-processing, the HC-SIM quality
measure dropped, as shown for Method E that corresponds to the processing pipeline presented in
Figure 1 when iTEKA was used. The slight differences in the results apparent in Tables 1 and 2 are

http://cs.uef.fi/sipu/segments/results.html
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probably due to a slight change in the HC-SIM measure that produces differences in the selection of
the meta parameters for the submitted results.

Table 2. Challenge results as produced by the organizers: ranking of the competing methods according
to the HC-SIM measure (in %). The iTEKA method corresponds to methods A and E.

Rank Train Test Length Points Time

A 68.5% 62.2% 99% 9882% 30 min
B 67.1% 62.0% 99% 89% seconds
C 70.4% 61.8% 101% 83% seconds
D 68.0% 61.8% 99% 83% seconds
E 68.3% 61.7% 99% 145% 30 min
F 66.6% 61.5% 100% 70% seconds
G 67.4% 61.2% 100% 107% 10 min
H 66.6% 61.2% 102% 205% seconds
I 68.1% 60.9% 99% 67% seconds
DTW Medoid 57.3% 55.3% 98% 169% 1 h
CellNet 64.7% 61.2% 96.3% 144% seconds

Finally, Figure 8 presents the elapsed time in a logarithmic scale when T increases (the length of the
re-sampled trajectories) for the centroids approaches. The Euclidean centroid method is clearly the most
efficient one, as expected, followed by the iTEKA method that is significantly faster than the soft-DTW
centroid one. The least efficient method is clearly DBA. Indeed, although all the tested algorithms were
run on the same architecture and operating system, the observed differences of processing efficiency
may be due, at least partly, to difference in the implementation choices. The medoid-based methods
are more costly since their dependence with the size of the set is quadratic, while it is linear for
centroid-based methods.
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Figure 8. Elapsed processing time as the size of the re-sampled trajectories, T, varies (T ∈
{50, 100, 200, 300}).

5. Conclusions

We have described a procedure for cleaning noisy sets of GPS trajectories corresponding to road
segments. This procedure includes, in the first stage, an oversampling of the trajectories, prior to the
calculation of a centroid or the search for a medoid, which composes the second stage of the procedure.
It also includes, as a third stage, the detection and suppression of potential outliers, which improves
on average the HC-SIM measure for almost all centroid based methods. A down-sampling finalizes
the procedure to produce centroid/medoid estimates whose lengths match the average length of the
input trajectories.
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The experiment allowed comparomg time elastic and Euclidean averaging approaches with more
straightforward medoid approaches.

Our experimentation showed that: (i) centroid based methods outperform medoid based methods;
(ii) the outlier detection and removal step improves on average the HC-SIM of final centroid estimation,
but not the HC-SIM of the medoid selection; and (iii) over-sampling seems to also be a valuable step.

With the limited training data, it cannot be guaranteed that the comparative results presented here
are effectively significant. However, it clearly emerged from our experimentation that centroid-based
approaches outperform medoid-based approaches. Furthermore, the algorithmic complexity is clearly
in favor to centroid-based approaches, since it is linear with the size of the sets of trajectories that are
processed, whereas it is quadratic for medoid-based approaches.

As a perspective, to improve the HC-SIM quality of the cleaned trajectory estimation, one should
consider the optimization of the meta parameters (T and τ essentially, as ν or γ may be considered
as a function of T) on each segment of road (instead on the whole set of segments), according to its
topology. In that line of improvement, one should try first to clusterize the GPS datasets according to
the segment shapes, and then optimize for each cluster the meta parameters.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interests.

References

1. Shi, W.; Shen, S.; Liu, Y. Automatic generation of road network map from massive GPS, vehicle trajectories.
In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems,
St. Louis, MO, USA, 4–7 October 2009; pp. 1–6. [CrossRef]

2. Mariescu-Istodor, R.; Fränti, P. Grid-Based Method for GPS Route Analysis for Retrieval. ACM Trans. Spat.
Algorithms Syst. 2017, 3, 8:1–8:28. [CrossRef]

3. Mariescu-Istodor, R.; Fränti, P. CellNet: Inferring Road Networks from GPS Trajectories. ACM Trans. Spat.
Algorithms Syst. 2018, 4, 8:1–8:22. [CrossRef]

4. Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina at Chapel Hill:
Chapel Hill, NC, USA, 1995.

5. Evensen, G.; van Leeuwen, P.J. An Ensemble Kalman Smoother for Nonlinear Dynamics. Mon. Weather Rev.
2000, 128, 1852–1867. [CrossRef]

6. Panangadan, A.V.; Talukder, A. A variant of particle filtering using historic datasets for tracking complex
geospatial phenomena. In Proceedings of the 18th ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems, ACM-GIS, San Jose, CA, USA, 3–5 November 2010; pp. 232–239.
[CrossRef]

7. Velichko, V.M.; Zagoruyko, N.G. Automatic Recognition of 200 Words. Int. J. Man-Mach. Stud. 1970,
2, 223–234. [CrossRef]

8. Sakoe, H.; Chiba, S. A dynamic programming approach to continuous speech recognition. In Proceedings of
the 7th International Congress of Acoustic, Budapest, Hungary, 18–26 August 1971; pp. 65–68.

9. Cuturi, M.; Blondel, M. Soft-DTW: A Differentiable Loss Function for Time-Series. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D.,
Teh, Y.W., Eds.; International Convention Centre: Sydney, Australia, 2017; Volume 70, pp. 894–903.

10. Marteau, P.F.; Gibet, S. On Recursive Edit Distance Kernels with Application to Time Series Classification.
IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1121–1133. [CrossRef] [PubMed]

11. Hausner, M. A Vector Space Approach to Geometry; Dover Publications Inc.: Mineola, NY, USA, first edition
1965, second edition 1998.

12. Petitjean, F.; Forestier, G.; Webb, G.; Nicholson, A.; Chen, Y.; Keogh, E. Dynamic Time Warping Averaging of
Time Series Allows Faster and More Accurate Classification. In Proceedings of the 14th IEEE International
Conference on Data Mining, Shenzhen, China, 14–17 December 2014; pp. 470–479.

13. Marteau, P.F. Times series averaging and denoising from a probabilistic perspective on time-elastic kernels.
Int. J. Appl. Math. Comput. Sci. 2019, 29, 375–392.

http://dx.doi.org/10.1109/ITSC.2009.5309871
http://dx.doi.org/10.1145/3125634
http://dx.doi.org/10.1145/3234692
http://dx.doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
http://dx.doi.org/10.1145/1869790.1869824
http://dx.doi.org/10.1016/S0020-7373(70)80008-6
http://dx.doi.org/10.1109/TNNLS.2014.2333876
http://www.ncbi.nlm.nih.gov/pubmed/25073176


Appl. Sci. 2019, 9, 2736 13 of 13

14. Fränti, P.; Mariescu-Istodor, R. Averaging GPS segments challenge 2019. unpublished work, 2019.
15. Bahlmann, C.; Haasdonk, B.; Burkhardt, H. On-Line Handwriting Recognition with Support Vector Machines

A Kernel Approach. In Proceedings of the Eighth International Workshop on Frontiers in Handwriting
Recognition (IWFHR’02), Niagara on the Lake, ON, Canada, 6–8 August 2002; IEEE Computer Society:
Washington, DC, USA, 2002; p. 49.

16. Shimodaira, H.; Noma, K.i.; Nakai, M.; Sagayama, S. Dynamic Time-alignment Kernel in Support Vector
Machine. In Proceedings of the 14th International Conference on Neural Information Processing Systems:
Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001; MIT Press: Cambridge, MA, USA, 2001;
pp. 921–928.

17. Cuturi, M.; Vert, J.P.; Birkenes, O.; Matsui, T. A Kernel for Time Series Based on Global
Alignments. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing–ICASSP ’07, Honolulu, HI, USA, 15–20 April 2007; pp. 413–416. [CrossRef]

18. Fasman, K.H.; L., S.S. An introduction to biological sequence analysis. In Computational Methods in Molecular
Biology; Salzberg, S.L., Searls, D.B., Kasif, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 21–42.

19. Wang, L.; Jiang, T. On the Complexity of Multiple Sequence Alignment. J. Comput. Biol. 1994, 1, 337–348.
[CrossRef] [PubMed]

20. Just, W.; Just, W. Computational Complexity Of Multiple Sequence Alignment With Sp-Score. J. Comput.
Biol. 1999, 8, 615–623. [CrossRef] [PubMed]

21. Hautamaki, V.; Nykanen, P.; Franti, P. Time-series clustering by approximate prototypes. In Proceedings
of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008;
pp. 1–4. [CrossRef]

22. Petitjean, F.; Ketterlin, A.; Gançarski, P. A Global Averaging Method for Dynamic Time Warping, with
Applications to Clustering. Pattern Recogn. 2011, 44, 678–693. [CrossRef]

23. Marteau, P. Times series averaging from a probabilistic interpretation of time-elastic kernel. arXiv 2015,
arXiv:1505.06897.

24. Marteau, P.; Ménier, G. Speeding up simplification of polygonal curves using nested approximations.
Pattern Anal. Appl. 2009, 12, 367–375. [CrossRef]

25. Newling, J.; Fleuret, F. A Sub-Quadratic Exact Medoid Algorithm. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 20–22 April 2017;
pp. 185–193.

26. Annam, J.R.; Mittapalli, S.S.; Bapi, R.S. Time series Clustering and Analysis of ECG heart-beats using
Dynamic Time Warping. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India,
16–18 December 2011; pp. 1–3. [CrossRef]

27. Liberti, L.; Lavor, C.; Maculan, N.; Mucherino, A. Euclidean Distance Geometry and Applications. SIAM Rev.
2014, 56, 3–69. [CrossRef]

28. Petitjean, F.; Gançarski, P. Summarizing a set of time series by averaging: From Steiner sequence to compact
multiple alignment. J. Theor. Comput. Sci. 2012, 414, 76–91. [CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICASSP.2007.366260
http://dx.doi.org/10.1089/cmb.1994.1.337
http://www.ncbi.nlm.nih.gov/pubmed/8790475
http://dx.doi.org/10.1089/106652701753307511
http://www.ncbi.nlm.nih.gov/pubmed/11747615
http://dx.doi.org/10.1109/ICPR.2008.4761105
http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1007/s10044-008-0133-y
http://dx.doi.org/10.1109/INDCON.2011.6139394
http://dx.doi.org/10.1137/120875909
http://dx.doi.org/10.1016/j.tcs.2011.09.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	From Dynamic Time Warping to Time Elastic Kernels Averaging 
	Dynamic Time Warping
	Time Elastic Kernels
	Time Elastic Averaging of a Set of Time Series
	Kernelized Time Elastic Averaging of a Set of Time Series

	Averaging a Set of GPS Time Series 
	Preprocessing the GPS Trajectories
	Averaging and Outliers Removal
	Post-Processing of the Centroid Estimate

	Experimentation
	Conclusions
	References

