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Abstract: In brittle fracture applications, failure paths, regions where the failure occurs and damage
statistics, are some of the key quantities of interest (QoI). High-fidelity models for brittle failure that
accurately predict these QoI exist but are highly computationally intensive, making them infeasible
to incorporate in upscaling and uncertainty quantification frameworks. The goal of this paper is
to provide a fast heuristic to reasonably estimate quantities such as failure path and damage in the
process of brittle failure. Towards this goal, we first present a method to predict failure paths under
tensile loading conditions and low-strain rates. The method uses a k-nearest neighbors algorithm
built on fracture process zone theory, and identifies the set of all possible pre-existing cracks that
are likely to join early to form a large crack. The method then identifies zone of failure and failure
paths using weighted graphs algorithms. We compare these failure paths to those computed with a
high-fidelity fracture mechanics model called the Hybrid Optimization Software Simulation Suite
(HOSS). A probabilistic evolution model for average damage in a system is also developed that is
trained using 150 HOSS simulations and tested on 40 simulations. A non-parametric approach based
on confidence intervals is used to determine the damage evolution over time along the dominant
failure path. For upscaling, damage is the key QoI needed as an input by the continuum models.
This needs to be informed accurately by the surrogate models for calculating effective moduli at
continuum-scale. We show that for the proposed average damage evolution model, the prediction
accuracy on the test data is more than 90%. In terms of the computational time, the proposed models
are ≈ O(106) times faster compared to high-fidelity fracture simulations by HOSS. These aspects
make the proposed surrogate model attractive for upscaling damage from micro-scale models to
continuum models. We would like to emphasize that the surrogate models are not a replacement
of physical understanding of fracture propagation. The proposed method in this paper is limited
to tensile loading conditions at low-strain rates. This loading condition corresponds to a dominant
fracture perpendicular to tensile direction. The proposed method is not applicable for in-plane shear,
out-of-plane shear, and higher strain rate loading conditions.

Keywords: fracture; graph theory; k-nearest neighbors; machine learning; failure paths; damage
statistics; brittle failure; fracture process zone

1. Introduction

Brittle fracture is a complex phenomena determined by interaction among several microstructural
features of the material under study. These features include grain size, presence of pre-existing
cracks or defects and/or pores, frictional characteristics, etc. [1,2]. When a brittle material containing
pre-existing cracks is loaded, stresses concentrate around the crack tips [3,4]. When these cracks
propagate they interact with other defects and cracks in their neighborhood. This results in a complex
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state of stress near the crack tips. Especially at lower strain rates, pre-existing cracks act as nucleation
points for the generation of new cracks [5,6]. Nucleation, growth, and coalescence of pre-existing cracks
results in the degradation of elastic properties in brittle materials, eventually causing catastrophic
failure. This is because the critical amount of damage before rapid and unassisted crack growth can
be limited in brittle materials. Moreover, damage accumulation also results in non-linear material
behavior, a further challenge for the development of predictive models. Due to the prevalence of brittle
materials in several applications in geosciences (e.g., hydraulic fracturing, geothermal, etc.) [7–9],
infrastructure [5] and aerospace industry [10], fast and accurate models of brittle fracturing are needed.

Many constitutive models and numerical methods (e.g., seminal works of James Rice,
John Hutchinson, Alan Needleman, Ravi-Chandar, Wolfgang Knauss, Zhigang Suo, Huajian Gao,
Ares Rosakis, Emmanuel Detournay, etc.) have been proposed in the literature [11–20] that simulate
processes such as crack initiation, crack propagation, and crack shielding in brittle materials.
Foundational work by Griffith [21] and Irwin [22] explained how crack growth can be understood
as a free energy balance between the surface energy generated by crack formation and the elastic
energy released by the crack as it grows, and the crack tip stress intensity factors. However, Griffith’s
theory over-predicts the fracture toughness as it does not consider the presence of other defects.
Shortly thereafter, Barenblatt [23] and Dugdale [24] proposed the idea of a cohesive zone or fracture
process zone (FPZ) preceding a crack tip. These ideas have been extensively expanded on in the past
decades (e.g., works by Needleman, Beltz, Rice, Freed, Banks-Sills, Paulino, Roesler, Ortiz, Pandolfi,
etc.) [25–30].

The current computing power available has allowed for complex fracture models to be applied
to a wide range of length scales [31,32]. Of these, many continuum (or macro-scale) and phase-field
modeling approaches [33–39] have been developed to address crack evolution and the overall material
response in large samples (cm-scale and larger) including finite element methods [40–42] and boundary
element methods [43,44]. Continuum-based approaches [45] assume that the computational domain
can be treated as one continuous body. However, the nature of brittle fracture, which often results
from growth and coalescence of major flaws, can be extremely localized and therefore not amenable to
standard homogenization approaches. This often results in the emergence of a non-physical length
scale within the numerical methods used to implement continuum models that can significantly
impact the calculated material response [46]. Hence, these numerical methods cannot account for
localized strains without further enhancement of the mathematical formulation [46,47]. Discrete
element methods [32,48] are another class of modeling techniques available at the same length scale as
continuum approaches. With these approaches, material is modeled as a collection of discrete blocks
or particles that can displace and rotate with respect to each other, and even completely separate or
break apart. Similarly, there are combined finite-discrete element methods (FDEM) that also have
discrete material blocks, which can deform themselves due to further resolution of each block with
finite elements [42,49–53]. In the FDEM methods, the discontinuities of interest (e.g., micro-cracks)
must be on similar scale to the computational domain. Of all these approaches available in the fracture
mechanics literature, we adopt the FDEM approach in this work. FDEM merges many features of
other methods listed above. The high-fidelity FDEM model used in this work that accounts for fracture
propagation was developed in a multi-physics software tool called Hybrid Optimization Software
Suite (HOSS) [54,55].

Although, FDEM models have been shown to accurately model brittle fracture, the use of these
models (e.g., HOSS) in realistic simulations is computationally intractable as they resolve all the
individual cracks with highly resolved meshes and small time-steps at large-scales. Despite the
increased realism in the physics and parallel implementation, we are still unable to capture the full
range of spatial or temporal scales due to the large computational requirements of our applications,
such as hydraulic fracturing [7] or underground nuclear explosion monitoring [56]. Coarsening of
the domain and simplification of the physics [57,58] are commonly used workarounds, but these
methods eliminate critical topological features (critical effects of crack-to-crack interactions) and as
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a result, predictions routinely fail to match observations [59,60]. One then has to resort to upscaling
methods where the domain is split into several grid cells and the material properties in each grid cell
are obtained from QoI such as failure paths and damage statistics, which are still computationally
challenging. For example, to obtain the results for each HOSS simulation presented in this work,
4 hours of computation time on 400 processors were necessary. In addition, the amount of data being
generated is also quite significant. That is, each simulation took up to 11.5 GB of disk space to store all
the information needed to characterize different fracture propagation stages. Even for a very coarse
upscaled domain of say 1000 cells, this leads to 1.6 M CPU-hours and 11.5 TB of disk space. For this
reason, we need an approach that can provide key quantities of interest (QoIs) in a matter of seconds
and with reasonable accuracy. This is the aim of the present work. We develop surrogate models for
estimating the damage statistics along failure paths to inform continuum models. These surrogate
models are built using data from HOSS high-fidelity numerical simulations. The proposed methods
presented in this work are applicable only under low-strain rates and Mode I failure or tensile loading
conditions. In these conditions, a single dominant fracture perpendicular to tensile loading is observed.
A limitation of the proposed methodology is that it is not applicable for other modes of fracture and
high strain rates loading conditions but the overall approach to build the surrogate models can be used.

In our previous works [61,62], we have utilized machine learning approaches to efficiently
emulate the high-fidelity model. The key QoIs Moore et. al. [61] focused on were time to failure and
fracture coalescence predictions. The previous work [61] did not estimate damage, which is a key
input needed for upscaling micro-scale information to macro-scale models. Numerical codes such as
FLAG [63–65] need information on how effective moduli degrade over time to simulate brittle damage
at continuum-scales. Current upscaling approaches in literature use empirical/phenomenological
models based on experimental data or homogenization or statistical averaging techniques to inform
damage to continuum models [58]. However, detailed micro-scale information about the damage
evolution of the system is lost during this homogenization process [66,67]. The current work takes
into account the detailed information available in HOSS simulations to account for damage evolution,
which was not considered in previous works. The proposed probabilistic damage evolution model
constructed from HOSS simulations includes interaction between multiple cracks, which makes it
robust for upscaling micro-scale models. Our approach utilizes graphs to represent the topology of
the system to capture failure paths that is then used to develop a reduced-order model for damage
along the failure path. We propose to overcome the computational cost hurdle associated with running
high-fidelity dynamic fracture models by representing a fracture network as a graph, with far fewer
DOFs (≈ O(104) times less), whose nodes and edges contain critical information about the topology
and geometry of the cracks obtained from our high-fidelity HOSS model. Our new graph-based
approach can be used to incorporate information such as damage statistics describing the evolution
of the crack network, including the effects of crack-to-crack interactions, into the continuum codes
seamlessly. The main challenge in our work is computing the failure path using a weighted graph to
represent crack growth. Typically, in real materials, lengths, locations, and orientations of pre-existing
cracks can be random. The structure of the crack network may impact where the dominant flaw in the
material forms. Hence, one needs to account for this uncertainty in crack topology when modeling the
brittle crack growth.

The main contribution of this study is to develop algorithms to predict failure paths and compute
damage along the failure paths under tensile loading using weighted graphs at low-strain rates.
An advantage of the proposed method is that it is ≈ O

(
106) times faster than HOSS high-fidelity

simulations. Due to the increase in computational savings with reasonable predictions (accuracy
of our damage model on unseen data is greater than 90%), our methodology is ideal for usage
in comprehensive uncertainty quantification studies which require 1000s of forward model runs.
The paper is organized as follows: Section 2 details the set up for the 190 high-fidelity FDEM fracture
propagation simulations using the HOSS simulator. This data set is then used for validating our
proposed methods. Section 3 describes the proposed algorithm to estimate failure paths based on
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initial crack configuration. The algorithm is based on a combination of FPZ theory, kNN, and Dijkstra’s
algorithms for weighted shorted paths. Section 4 details a method to construct and estimate damage
evolution along the failure path. Section 5 discusses the results of the proposed methods. Failure path
predictions are compared against HOSS simulations. Details of training and validation of a damage
evolution model are also provided in this section. Prediction accuracy of the failure path algorithm
and the damage evolution model are discussed as well. Finally, conclusions are drawn in Section 6.

2. HOSS Simulations and FDEM Model for Dynamic Fracture

HOSS is a FDEM code that was specifically designed to simulate problems involving fracture
and fragmentation processes in a diverse range of materials [54]. Within the FDEM framework [50],
finite element method solutions are combined with the discrete element method to simulate dynamic
fracture. In this setting, solid domains are discretized using finite elements in order to describe their
deformation and stresses. Finite rotations and finite displacements are assumed a priori. That is,
we do not make prior assumptions of small deformations or small rotations in our FDEM numerical
formulation. To resolve fracture and contact processes between different parts, we allow material
interaction along the boundaries of finite elements. The finite element deformation kinematics is
handled via a multiplicative decomposition-based finite strain formulation [42]. The fracture model
used in this present work is the combined single and smeared crack model introduced by Munjiza [49].
The contact interaction is resolved using the triangle-versus-point algorithm, which is the 2D extension
of the tetrahedron-versus-point algorithm [51].

In the FDEM formulation, the interface between any two finite elements consists of non-linear
springs that model tensile and shear behavior. These springs can hold a maximum tensile stress equal
to the tensile strength of the material σmax

n and a maximum shear stress that is based on a combination
of the cohesion (Mohr-Coulomb model) and the frictional strength [68]. Figure 1 presents a schematic
representation of stress-displacement curve, which shows the response of the springs between the
elements accounting for opening (i.e., the normal response). We note that the HOSS simulations have
both normal springs and shear springs present between all elements, but in Figure 1 we have only
shown normal springs for convenience. Hence the finite elements can move apart or open (via normal
springs), and slide against each other (via shear springs). The non-linear response of the shear springs
is similar in shape to that of the normal springs, although parameterized slightly differently to properly
account for degradation in shear directions. In the region 0 ≤ δn ≤ δe

n and 0 ≤ σ ≤ σmax
n , the springs

undergo non-linear elastic behavior without any damage. Beyond the elastic limit, δe
n < δn < δmax

n ,
strain softening is assumed that mimics degradation in strength. When δn > δmax

n , these springs are
broken and cannot bear any load.

In this work, HOSS has been used to simulate brittle fracturing under uniaxial tensile loading
conditions in concrete samples containing 20 randomly placed pre-existing cracks. The loading is
provided by displacement control. The sample size was set to 2 m wide and 3 m high. A schematic
of the numerical simulation setup is shown in Figure 2. The bottom edge of the sample is fixed
and the top edge of the sample moves upwards with a constant velocity of 0.3 m/s. This boundary
condition corresponds to a strain rate of 0.1 s−1. The lengths of pre-existing cracks was set to 0.3 m.
Random sampling for crack placement and crack orientation selection is based on a discrete uniform
distribution. The model domain is divided in to a grid of size 0.5 m × 0.5 m resulting in 24 grid cells.
A grid cell is chosen without replacement to randomly place a crack. This is done to ensure that the
pre-existing defects do not overlap. This step is repeated until we place all the 20 cracks of size 0.3 m in
the model domain. The center of the crack coincides with the center of the grid. The crack orientation
was randomly selected between 0, 60, and 120 degrees with respect to horizontal. Other parameters
used include: sample density of 2500 kg/m3, Young’s modulus of 22.6 GPa, shear modulus of 9.1 GPa,
and a Poisson’s ratio of 0.242. The mesh used in this work contains constant strain triangles with an
average size of 0.01 m. This corresponds to a total of approximately 160,000 cells and 480,000 edges.
The tensile strength of the material was set to 8 MPa. Mohr-Coulomb fracture model is implemented
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at the interface of the triangular finite elements, which describes the strength of the material in shear.
The shear cohesion and the internal angle of friction were set at 24 MPa and 31 degrees respectively.
190 high-fidelity HOSS simulations were performed for different initial crack locations and orientations.
Loading conditions, material parameters, and domain dimensions are unchanged for all 190 HOSS
simulations. HOSS output was stored at every 2000 time steps with each time-step being 10−8 s. Each
simulation took about 4 h of computation time on 400 processors. At the point of failure, the material
is unable to bear further load resulting in Mode I failure. The sample is considered as failed when a set
of fractures connect the two opposite boundaries of the domain.

Figure 1. Fracture model: A schematic representation of the fracture model in Hybrid Optimization
Software Simulation Suite (HOSS) for Mode I loading. Note that the HOSS simulations have both
normal springs and shear springs. But in Figure 1 we have only shown normal springs for convenience.

0.3m

0-degree crack

120-degree crack

60-degree crack

2m

3
m

v = 0:3m=s

Figure 2. Initial boundary value problem: A pictorial description of the HOSS simulation setup for a
problem with 20 pre-existing cracks. 190 high-fidelity HOSS simulations were performed. For each
simulation, the location and orientation of the initial cracks were randomly chosen. Orientations were
chosen from 0-degree, 60-degree, or 120 degrees. Loading conditions, material parameters, and domain
dimensions are unchanged for all 190 HOSS simulations.
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HOSS has been previously validated for several applications and it is shown to be
reliable [49,69–71]. Validation of HOSS that may be of particular interest is cases addressing the
brittle failure of geomaterials. In this regard, HOSS has modeled split Hopkinson bar experiments
on granite [69], producing excellent comparison to experimental data in addition to capturing the
complex crack networks that evolve during high-rate loading conditions. Furthermore, HOSS has
directly compared simulated and experimental fracture patterns in granite samples under low-rate
compressive loads [71]. HOSS simulated experimental fracture patterns in shale have also been
compared with promising results in Carey et. al. [70]. Based on this previous validation work, we aim
to develop surrogate models that can emulate HOSS. For large components, HOSS simulations can be
computationally costly. This can become important when many simulations are required, for example
in uncertainty quantification or sensitivity studies. Surrogate models that can emulate HOSS could
quickly provide large sets of data for such investigations.

3. An Algorithm to Estimate Failure Paths

In this section, we provide a detailed description of our proposed method to estimate failure
paths. The goal is to find the possible pathways to failure using weighted shortest path algorithms
[Chapter-3] [72] based on initial crack configuration. Figure 3 provides a graph based pictorial
description of failure paths and Algorithm 1 summarizes the proposed method to estimate failure
paths. In our method, we assume graph nodes to be crack tips and graph edges are line segments
connecting these tips. At initial times, when the system is not loaded, our premise is that pre-existing
cracks are not connected to each other. In the graph theory representation, this implies that there is
no connectivity between edges. As the system is being loaded, pre-existing cracks grow and intersect
with other cracks leading to the formation of new edges. The schematic of all the possible paths
connecting one side of the domain to another side at the time of failure for an initial pre-existing
crack configuration is shown in Figure 3. In fracture mechanics, there are three different modes of
fracture: Mode I, Mode II, and Mode III [1,73,74]. Mode I corresponds to crack opening mode, which is
the most common mode in fracture toughness testing of brittle materials [5,6,75]. Mode II is in-plane
shear and Mode III is out-of-plane shear or tearing mode. The proposed method focuses on Mode I
failure and while it is possible to extend the algorithm to consider other failure modes, it is outside the
scope of this study.

Failure of brittle and quasi-brittle materials under Mode I typically starts with the development
of a FPZ around the crack tip [2,3,76]. The FPZ is a region of high stress around the crack tip where
damage accumulates as the crack propagates over time. At a given instant of time, length of the FPZ
is directly proportional to the length of the crack [77]. Very small micro-cracks are formed in the
vicinity of the crack tip as stresses are the highest in this region. As the crack advances over time,
the micro-cracks within the FPZ coalesce to become a single entity. This results in the formation of
larger cracks. Larger cracks are bound to have a stable crack growth compared to smaller cracks [73].
Once these long cracks are formed, they grow rapidly with minimal additional loading. Therefore,
the possible failure paths correlates directly with FPZs, which is the basis for our proposed method.

Various crack interaction and coalescence rules (e.g., alignment rules, combination rules) have
been proposed in literature [77–81] based on fracture mechanics analysis. Wang and co-authors [77]
provide FPZ-based rules for multiple crack interaction and coalescence. In these rules, crack interaction
and coalescence are based on the Euclidean distance between cracks tips (for e.g., see [Table-1] [81]).
We note that these rules have been widely adopted in brittle and quasi-brittle failure analysis (for
e.g., see [Equation-1 and Sec-1] [77]) and fitness-for-service codes [Table-1 and Introduction] [81].
In this paper, we take advantage of these crack interaction and coalescence rules that are built on
sound fracture mechanics underpinnings to develop FPZ-based graph surrogate model to estimate
failure paths.

The first step of the proposed method is to identify the cracks which are likely to coalesce. In order
to achieve this, we find pre-existing cracks that are orthogonal to the tensile loading. These correspond
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to all 0-degree angle cracks in the domain (as the orientation of these cracks is best suited for Mode I
opening). It is expected that they will have the fastest growth and we assume that the failure path will
include one or more 0-degree angle cracks. For each tip of these 0-degree angle cracks, we calculate
ten nearest crack tip neighbors using a kNN algorithm [82] with k = 10 and their respective Euclidean
distances. These nearest neighbor crack tips can belong to either 0-degree, 60-degree or a 120-degree
crack. Among these ten nearest crack tip neighbors, we identify the ones that could interact or coalesce
with the horizontal cracks. Crack interaction or crack coalescence occurs if the FPZ of two neighboring
cracks overlap. That is, if the Euclidean distance of a nearest neighbor is less than the length of FPZ,
then we assume that the neighboring cracks are going to coalesce to form a larger crack. In the graph
based representation of failure, we form new edges by joining the crack tips that have overlapping
FPZs. The size of the FPZ, l12, is given as [77]:

l12 ∝
(

σ

σy

)2
(l1 + l2) (1)

where σ and σy are the applied and yield stresses of the material. l1 and l2 are the length of the
interacting cracks. Herein, we assume that the size of FPZ to be 75% of (l1 + l2). Forsyth [83] was
among the first to introduce Equation (1) to calculate the size of FPZ. We note that this equation has
been used in various experimental and modeling works in literature [83–86].

Initial time At failure time Possible failure paths

Zoom-in view of the crack

Edge Node

Graph representation of preexisting cracks and their growth

Boundary nodes (Fictitious)

Path-1

Path-2

Path-3

Path-4

Newly formed edges

Figure 3. Failure paths graph representation: A pictorial description of graph representation of fracture
propagation. Crack tips are graph nodes and edges are cracks (which are assumed to be line segments
connecting crack tips).

Once we have identified the potential coalescing cracks, we next identify the regions or zones of
interest in which failure is likely to occur. It should be noted that there may be one or more potential
failure zones in a specimen. However, in a realistic system only one of these failure paths will actually
correspond to the sample’s complete failure. To identify this failure zone, we divide the entire domain
into a set of non-overlapping rectangular zones. Let the total number of non-overlapping rectangular
zones be equal to NumZones. The width of the rectangular zone is equal to the width of the domain
and its height is equal to H

NumZones , where H is the height of the specimen. Then, we form a weighted
undirected graph for the entire domain. This weighted graph contains graph nodes (which are crack
tips), pre-existing edges, and newly formed edges. Preexisting edges representing initial cracks are
given small edge weights, equal to 10−4. The rationale behind giving small edge weights to initial
cracks is that, physically, there is a strong possibility for the failure path to traverse through these
cracks. The weights of the newly formed edges are equal to their length. Once this weighted graph is
formed, we find all the connected components in each non-overlapping rectangular zone. A connected
component of a weighted undirected graph is a set of nodes such that each pair of nodes is connected
by a path. The Depth First Search algorithm available in NetworkX [87] is used to identify connected
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components. After identifying them, we search for the non-overlapping rectangular zone which has
maximal connected component. Here, the maximal connected component is defined as a connected
component whose number of nodes is at least greater than or equal to the number of nodes in every
other connected component in the graph. The maximal connected component is identified in order of
size, number of 0-degree cracks, largest length, and location with respect to loading side of the domain
(see step-18 in Algorithm 1).

Algorithm 1 Failure paths prediction algorithm for many-crack geometries using weighted graphs.

1: INPUT: Domain length; Initial coordinates of the crack tips; NumZones: Total number of regions the
domain is divided into (in-order to estimate zone of failure); Length of FPZ.

2: Identify the 0-degree angle cracks that are perpendicular to tensile loading.
3: for Each crack tip in the set of all 0-degree angle cracks: do
4: Calculate ten nearest crack tip neighbors using kNN algorithm with k = 10 and their respective

Euclidean distances.
5: Among these ten nearest crack tip neighbors, identify the ones that fall within the FPZ. These

are determined as follows:
6: for i = 1, 2, . . . , 10: do
7: if The Euclidean distance of an ith-nearest neighbor ≤ Length of FPZ: then
8: Mark and store the ith-crack tip and the corresponding Euclidean distance.
9: end if

10: end for
11: end for
12: Form new edges by joining the crack tips that fall within the fracture process zone.
13: for i = 1, 2, . . . , NumZones: do
14: Get and store the connected components in ith-zone.
15: Get the total number of connected components, size of each connected component, and its length.
16: Identify and store the 0-degree cracks present in these connected components.
17: end for
18: Identify the failure zone. This is accomplished as follows:

• First, we get the largest/maximal connected component in each zone using the Depth First
Search algorithm.
• Second, if two or more zones contain connected components that are of same size, then we

choose a connected component which has maximum number of 0-degree cracks.
• Third, if the above set of connected components contain same number of 0-degree cracks, then

we choose the one which has the largest length. Length of a connected component is defined as
the sum of edge weights.
• Finally, if they have the same length, then we choose the connected component which is closest

to the loading side of the domain.
19: The goal is to detect failure paths along the length of sample, we introduce boundary nodes in the

failure zone. Their location is given as follows:

• If the index of the failure zone is ‘i’, width of the domain is L, and H is the height of the domain;
then the boundary nodes are located at (0, (i−0.5)×H

NumZones ) and (L, (i−0.5)×H
NumZones )

20: Create a weighted graph within the failure zone. To achieve this we do the following:

• We search for two nearest neighbors for each crack tip. Then, we connect these two nearest
neighbors with the corresponding crack tip to form new edges.
• The weights for these newly formed edges are equal to Euclidean distance. Initial cracks within

the failure zone are given small edge weights = 10−4. This is because, physically, there is a strong
possibility for the failure path to traverse through the pre-existing cracks.
• Once we construct the edges and their weights, we form a weighted graph.

21: Next, we compute shortest paths within this weighted graph using Dijkstra’s method. The weighted
shortest paths are calculated in two ways, both with and without the constraint that the path has
to traverse through the identified connected component in the failure zone.
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In the final step of the proposed method, we look for weighted shortest paths connecting the sides
of the domain which are parallel to the tensile loading direction. First, we introduce boundary nodes in
the failure zone and create a weighted undirected graph within this zone. New edges are constructed
by connecting a given node to two of its nearest neighbors. As mentioned previously, the weights for
these newly formed edges are equal to the Euclidean distance and initial cracks are given relatively
small edge weights. Once a weighted graph is formed, we compute shortest paths from one boundary
node to another boundary node. Analysis is performed with and without the constraint that the path
has to traverse through the identified maximal connected component. Relaxing the above constraint
gives more flexibility in identifying other possible paths (Section 5 discusses more on this aspect).
Dijkstra’s algorithm [72] (Chapter-3) is used to compute the weighted shortest paths.

We note that Algorithm 1 is generic as there are no hard-coded values on the length of the cracks,
specimen size, etc. In addition, the algorithm is not limited to only three crack orientations, and could
consider continuously generated orientations. The only condition that the algorithm (see step-2)
assumes is that the cracks are at a 0-degree angle. This condition can be relaxed by considering other
pre-existing cracks that may be advantageously orientated for growth with respect to the loading
conditions, and include such cracks in estimating the failure paths.

4. An Algorithm to Estimate Damage

For upscaling to continuum-scale constitutive models, statistical information that describes
damage accumulated over time is needed. In this section, we provide an algorithm to estimate
damage accumulation along failure paths from the HOSS simulation data. As mentioned in Section 2,
within our FDEM framework, cracks are formed along the edges of the mesh elements. Opening
and/or shearing between two elements is determined with multiple cohesive points, which are
modeled as non-linear springs. For each pair of finite elements, we have a user specified number of
non-linear springs. For our HOSS simulations, we have assumed four normal and four shear springs.
The number four has been chosen because it has been used previously [69] and produced good results
in comparison to experimental results with reasonable computational expense. Figure 1 shows a
schematic of the stress-displacement curve, which is representative of each cohesive point’s normal
response. This response represents reversible elastic damage and softening due to damage growth
and coalescence. As the crack grows, the interfacial springs go through a non-linear elastic regime,
where the maximum elastic opening (or shearing) of the spring is δe

n. The total maximum opening (or
shearing) of the spring is δmax

n . Between the maximum elastic opening and total max displacement
is the strain softening regime. The area under this portion of the curve corresponds to the strain
energy density (i.e, energy per length) dissipated during damage evolution. The maximum stress
that the spring can withstand in either tension (opening) or shearing is represented by σmax

n . Damage
accumulated per unit length between two finite elements is evaluated based on the strain of the springs
that exceed δe

n. This value ranges from zero to one. Zero damage value corresponds to undamaged
springs (δn ≤ δe

n) and damage value of one corresponds to completely broken springs (δn > δmax
n ).

We use a non-parametric approach for determining the evolution of damage. This is achieved
by constructing a confidence interval over time. 150 HOSS simulations are used for training and
40 simulations are used for testing the damage evolution model. Let t be the time index, our 95%
confidence interval for damage at t is given by

(
D(t)

L , D(t)
U

)
. The damage D(t) is the accumulated

damage along the failure path as a function of time in our damage evolution surrogate model.
Accumulated damage along the failure path is calculated by summing the growth of all propagating
cracks at every time-step within the HOSS simulation time. D(t)

L and D(t)
U correspond to lower and

upper estimate on damage at a given instance of time. We use bootstrapping [88,89] to estimate

D(t)
L , D(t)

U , and mean damage D(t)
M from our training data. If a parametric distribution on the

damage is desired, then one can prescribe a Gaussian distribution using the quantities, D(t)
M , D(t)

L and
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D(t)
U as follows, D(t)

M ∼ N
(

D(t)
M , σ(t)

)
. Mean and variance of the distribution being D(t)

M and σ(t),

where σ(t) = max
(

0.5 ∗
(

D(t)
M − D(t)

L

)
, 0.5 ∗

(
D(t)

U − D(t)
M

))
. Although we have not made it explicit,

most damage occurs within our predicted path to failure. Of course other cracks will have some
propagation, but in most cases failure is driven by a dominant fracture pathway. For testing, to show
that our confidence interval captures the damage from the test set, we calculate empirical coverage over
time. Empirical coverage represents the fraction of test cases that fall within our estimated confidence
interval at anytime. Mathematically, it is defined as,

1

N(t)
T

N(t)
T

∑
j=1

I
Dj∈

(
D(t)

L ,D(t)
U

)

where N(t)
T is the test set data at time t and Dj is one such data point of damage in our test set.

I
Dj∈

(
D(t)

L ,D(t)
U

) indicates if Dj is in the confidence interval. The empirical coverage is one measure of

how well our predicted confidence interval captures unseen data. In the next section, we provide
results and compare them with HOSS simulation data.

5. Results

In this section, we present results of the proposed methods to estimate failure. Following are the
inputs given to Algorithm 1 to calculate failure paths: width of the domain is equal to 2 m, height of
the domain is equal to 3 m, NumZones = 3, initial crack tip coordinates, and length of FPZ = 0.45 m,
which is quasi-brittle. We use 190 simulations to test the proposed method to estimate failure path for
the 20 crack problem. In addition, we present a result for a configuration with 50 pre-existing cracks
(whose crack tip coordinates are chosen randomly) to demonstrate its predictive capability.

5.1. Estimating Failure Paths

Figure 4 provides a step-by-step description of the proposed method for estimating failure paths.
First, we identify cracks that are perpendicular to the tensile loading. These are 0-degree cracks and
are highlighted in green in Figure 4a. Second, we identify zone of failure, which is shown in light
blue in Figure 4b. This corresponds to the region where failure occurs. As described in Section 3,
we identify larger cracks that are formed after connecting pre-existing cracks that fall within the FPZ to
determine failure zone. Third, we introduce boundary nodes in the failure zone (see Figure 4c). Fourth,
we search for two nearest neighbors for each crack tip in the failure zone. Then, we form new edges
with edge weights being the Euclidean distance. Fifth, we connect all the edges to form a weighted
graph and look for failure paths connecting the boundary nodes (see Figure 4d). Finally, we compute
all possible weighted shortest paths (see Figure 4e–h). The proposed method identified four possible
shortest paths. Among the four paths two paths are of exact match (see Figure 5d) and other two are
the next best match. Failure paths are computed with and without enforcing the constraint that the
shortest path has to traverse through the maximal connected component. Herein, this constraint is
enforced with some flexibility. Meaning that, we find shortest paths that contain at least one node to
be present in the maximal connected component. This ‘soft’ enforcement of the constraint is done with
the intention to capture multiple failure paths (if they exist).

Figures 5–8 show examples for failure path prediction and comparison with HOSS simulations.
When a possibility that multiple failure paths may exist, pinpointing an exact one is very hard.
Moreover, constructing a metric or criterion for an exact match can be challenging. Given an initial crack
configuration, a plausible measure to assess the accuracy of the proposed method is as follows: If the
predicted failure path has at least 50% of the initial cracks or their crack tips to be within the HOSS
failure path, then we say that the proposed method is a reasonable prediction of the simulated results.
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Figure 5 presents example results in which the graph theory approach predicted two equally likely
failure paths for one initial crack configuration. Two different initial crack configurations are shown
in Figure 5a. The cracks perpendicular to tensile loading are highlighted in green. Figure 5b,c show
the multiple failure paths predicted by the graphs for each case. The HOSS predicted failure paths for
both cases are provided in Figure 5d. From these figures, it can be inferred that the proposed method
is able to predict multiple failure paths for a given initial crack configuration.

Figure 6 shows example results from the graph theory approach for cases where there was only
one predicted failure path with comparison to results from HOSS. Figure 6a shows the initial crack
configuration. Figure 6b shows the failure path prediction using the proposed method. Figure 6c
shows the results obtained from the HOSS simulations. It should be noted that it is not always possible
to predict all paths of failure. For example, the HOSS results shown in Figure 6c contain complex
failure paths that could be considered two distinct pathways. However, our method provided only
a single failure path. There are 43 out of 190 simulations where the graph approach has predicted a
single failure path and matched perfectly with atleast one failure path of HOSS simulation. By perfect
match, we mean that all of the initial cracks or crack tips in the graph predicted failure path are also in
the HOSS predicted path.
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Figure 4. Proposed method description: The above figures show a step-by-step description of proposed
method for estimating failure paths based on the method outline in Section 3. (a) Cracks perpendicular
to tensile loading (0-degree cracks); (b) Failure zone identification; (c) Node-to-Node connectivity; (d)
Weighted graph based on 2-NN; (e) Failure path-1 prediction; (f) Failure path-2 prediction; (g) Failure
path-3 prediction; (h) Failure path-4 prediction.
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(a) Initial crack configuration (b) Failure path prediction-1 (d) HOSS simulation(c) Failure path prediction-2

Figure 5. Failure path prediction (best scenarios, multiple predicted failure paths): The above figures
show the prediction of multiple failure paths using the proposed method.

(a) Initial crack configuration (b) A failure path prediction (c) HOSS simulation

Figure 6. Failure path prediction (best scenarios, one failure path exact match): The above set of figures
show the prediction of failure paths with exact match to the HOSS results. The left set of figures provide
the initial crack configuration. The middle set of figures provide the prediction by the proposed method.
The right set of figures show the HOSS results at failure.

Figure 7 shows example results from the graph theory approach for cases where there was only
a partial match. Quantitatively, by partial match we mean atleast 50% of the initial cracks are in the
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failure paths in comparison to the HOSS simulations. Predictions that have more than 50% of the initial
cracks in the failure paths and also have a zone of failure similar to that of HOSS are a total of 75 out of
190. Note that these 75 are separate from the previously mentioned 43 simulations. Figure 8 shows
example scenarios where the proposed method failed to match the HOSS results. Predictions that fall
in this category are the remaining 72 out of 190. Table 1 summarizes the accuracy of the proposed
method, which is the number of reasonably accurate predictions made by the Algorithm 1. Out of 190
simulation, the proposed method predicted the failure paths of 118 simulations with reasonable (50%
of the failure path) or accurate prediction (100% of the failure path). The prediction accuracy of failure
zones by the proposed method is 143 simulations out of 190 simulations. It should be noted that the
time taken by the proposed method to predict a failure path is a couple of seconds, which is ≈ O(106)

times less than a single HOSS simulation.
For Mode I loading, we can roughly determine the cases where there is a chance that the surrogate

fails a priori. For example, if there are small number of 0-degree angle cracks or if the 0-degree angle
cracks are far away from each other, then the Euclidean distance between a pair of 0-degree angle
cracks is greater than the length of FPZ. Hence, there is no interaction between the pair of 0-degree
angle cracks, and it will be more difficult for the graph-based surrogate model to reliably predict the
failure pathway. This highlights a need for improved feature engineering, perhaps including some
information about long-range interactions between pre-existing cracks.

(a) Initial crack configuration (b) A failure path prediction (c) HOSS simulation
Figure 7. Failure path prediction (one failure path, greater than 50% match): The above set of figures
show results where the initial cracks in the predicted failure path have a greater than 50% match with
those in the HOSS predicted failure path.
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(a) Initial crack configuration (b) A failure path prediction (c) HOSS simulation
Figure 8. Failure path prediction (less than a 50% match): The above set of figures show the scenarios
where the proposed method failed to predict the HOSS results.

Figure 9 shows the failure path prediction for an initial configuration with 50 pre-existing cracks.
This figure describes the application of the proposed method for estimating failure paths for larger
number of cracks in the domain. The process to predict failure paths is the same as the 20 crack
scenario. Figure 9b shows a failure path prediction, which agrees with HOSS results (see Figure 9c).

Table 1. Summary of the proposed method to estimate failure paths. Among various failure paths
provided by the proposed method, if a failure path exactly matches the HOSS results, then we consider
that as an accurate prediction. Meaning that, all the initial cracks or their crack tips identified by the
proposed method fall within the dominant HOSS fracture path. If the proposed method predicts 50%
of the initial cracks or their crack tips to be within the HOSS failure path, then we consider it as a
reasonable prediction. A non-matching failure path is a scenario where the prediction of the proposed
method is less than 50% match.

Scenario Description Number of Simulations % of Failure Path Match

Accurate prediction of failure path 43 100% match
Reasonable prediction of failure path 75 > 50% match

Non-matching failure paths 72 < 50% match

Total 190
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Figure 9. 50 crack problem: The above figures describe the application of the proposed method for
estimating failure paths for 50 crack problem.

5.2. Estimating Damage Along the Failure Paths

Figure 10a shows the estimated damage evolution vs time, confidence interval, and prediction on

unseen data. In this figure, the mean estimated damage D(t)
M is shown with a blue line. The magenta

region shows the damage confidence interval
(

D(t)
L , D(t)

U

)
, which is constructed based on the method

discussed in Section 4. The test data from HOSS simulations are shown in gray lines. Figure 10a shows
that our confidence interval captures the damage from the test set.
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(a) Damage evolution model: Prediction on unseen data
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(b) Empirical coverage of proposed damage model

Figure 10. Damage statistics: The above figure provide the estimated damage and empirical coverage
on data from 40 unseen HOSS simulations. From these two figures, it is clear that for most of the times
we have more than 90% prediction accuracy.
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Figure 10b provides the corresponding empirical coverage of the proposed surrogate model for
damage. The blue line corresponds to the empirical coverage on the test dataset from HOSS. The red
line corresponds to 95% confidence interval. As discussed in Section 4, empirical coverage is a measure
of how well our predicted confidence interval captures unseen data. From this figure, we see that we
are able to capture more than 90% of the test data over time except for a small region around time
1.75 ms where we under cover (this is because the cracks along the failure path start to grow around
this time).

Macro-scale models can take advantage of the proposed methodology as follows: The proposed
surrogate models provide statistics on the micro-scale damage evolution for each representative
volume element (RVE). This statistical information obtained from the surrogate models is used in
calculating macro-scale effective moduli. Specifically, the elastic moduli are degraded using probability
distribution functions that describe the evolving lengths and orientations of all the micro-cracks
within a RVE. The prediction accuracy (>90%) of the damage evolution surrogate model implies
that the proposed method can be used to develop probability density functions. As the surrogate
models are trained based on HOSS simulations, they contain crack interaction effects. Such interaction
will ultimately impact the evolution of crack lengths and their orientations during tensile loading.
Hence, this micro-crack interaction information can be incorporated into the effective moduli through
the surrogates during the upscaling process. This implies that the material response we obtain at
macro-scale scale includes crack interactions at micro-scale, which are typically lost if one employs
traditional mechanistic or homogenization approaches [57,66,67,90]. An example of an upscaling
method, which could make use of the proposed surrogate models to calculate effective elastic moduli,
is described in reference [91].

6. Conclusions

Predicting damage evolution and when failure occurs is important to accurately predict the
overall material response. This includes accounting for degraded material properties as damage
accumulates and when and where failure of the specimen or part occurs, for example, which elements
or cells will fail first. Providing such information is of great interest to the fracture and infrastructure
maintenance communities. In addition, estimating likely failure paths and accumulated damage along
the failure path is an important aspect for upscaling micro-scale models to macro-scale models. FDEM
models and multi-physics numerical tools like HOSS are highly-accurate to simulate various stages
of brittle fracture propagation. However, HOSS is data-intensive and computationally expensive.
Moreover, scaling to larger and more complex problems is often computationally prohibitive with
computational tools such as HOSS. This is due to the difference in length scales associated with small
fractures and bulk material sizes. In this paper, we provided algorithms to address these aspects that
are ≈ O(106) faster than high-fidelity simulations to estimate key QoIs for brittle fracture such as
failure paths, failure zones, and damage along failure. Hence, the proposed methodology is ideal for
usage in comprehensive uncertainty quantification studies.

The proposed failure path method was compared against high-fidelity HOSS simulations.
From this comparison, we found that out of 190 simulations, the proposed method predicted failure
paths of 118 simulations with reasonable accuracy (greater than 50% of initial cracks in the failure
path) and zone of failure of 143 simulations with 100% accuracy. Damage along the failure path
was estimated using a non-parametric approach. The damage evolution model was obtained by
constructing a 95% confidence interval over time. 150 HOSS simulations were used to develop the
damage evolution model and the remaining 40 simulations are used for testing. Bootstrapping was
used to estimate lower and upper bounds for damage. Empirical coverage was used as a metric to
understand the accuracy of the proposed damage evolution model. Empirical coverage tells us the
fraction of test cases that falls within our estimated confidence interval at anytime. From empirical
coverage results, it can be concluded that our confidence interval captures the damage from the test
dataset with an accuracy greater than 90%. Damage is the key QoI for upscaling HOSS information
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to continuum codes such as FLAG. This is because continuum-scale models need effective moduli,
which is a function of damage accumulated over time at micro-scale. Since the discrete crack network
cannot be accounted for in continuum models, exact locations of the failure pathways becomes
less important. The proposed damage model which takes into account the crack interaction effects
provides such micro-scale information with high accuracy for simulating damage at larger-scales.
The limitation of the proposed methods is that it is applicable only for Mode I failure at low-strain rates.
Extensions to higher-strain rates and other modes of failure will be considered in our future works.
Lastly, our method can be coupled with other machine learning and graph-based methods [92–95] for
increased accuracy of failure paths prediction, which is our future work.
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