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Abstract: We propose a sign language translation system based on human keypoint estimation. It is
well-known that many problems in the field of computer vision require a massive dataset to train deep
neural network models. The situation is even worse when it comes to the sign language translation
problem as it is far more difficult to collect high-quality training data. In this paper, we introduce
the KETI (Korea Electronics Technology Institute) sign language dataset, which consists of 14,672
videos of high resolution and quality. Considering the fact that each country has a different and
unique sign language, the KETI sign language dataset can be the starting point for further research
on the Korean sign language translation. Using the KETI sign language dataset, we develop a neural
network model for translating sign videos into natural language sentences by utilizing the human
keypoints extracted from the face, hands, and body parts. The obtained human keypoint vector is
normalized by the mean and standard deviation of the keypoints and used as input to our translation
model based on the sequence-to-sequence architecture. As a result, we show that our approach is
robust even when the size of the training data is not sufficient. Our translation model achieved
93.28% (55.28%, respectively) translation accuracy on the validation set (test set, respectively) for
105 sentences that can be used in emergency situations. We compared several types of our neural
sign translation models based on different attention mechanisms in terms of classical metrics for
measuring the translation performance.

Keywords: sign language translation; human keypoint detection; deep learning; sequence-to-
sequence model

1. Introduction

The absence of the ability to hear sounds is a huge obstacle to smooth and natural communication
for the hearing-impaired people in a predominantly hearing world. In many social situations,
the hearing-impaired people necessarily need help from professional sign language interpreters
to communicate with the hearing people even when they have to reveal their very private and sensitive
information. Moreover, the hearing-impaired people are more vulnerable in various emergency
situations due to the communication barriers due to the absence of the hearing ability. As a consequence,
the hearing-impaired people easily become isolated and withdrawn from society. This leads us to
investigate the possibility of developing an artificial intelligence technology that understands and
communicates with the hearing-impaired people.

However, sign language recognition or translation is a very challenging problem since the task
involves an interpretation between visual and linguistic information. The visual information consists of
several parts such as body movement and facial expression of a signer [1,2]. Interpreting the collection
of the visual information as natural language sentences is also one of the tough challenges to realize
the sign language translation problem.
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To process a sequence, there have been several interesting variants of recurrent neural networks
(RNNs) proposed including long short-term memory (LSTM) [3] and gated recurrent units (GRUs) [4].
These architectures have been successfully employed to resolve many problems involving the
process of sequential data such as machine translation and image captioning [5–8]. Moreover, many
researchers working on the field of image and video understanding have raised the level that
seemed infeasible even a few years ago by learning their neural networks with a massive amount of
training data. Recently, many neural network models based on convolutional neural network (CNNs)
exhibited excellent performances in various visual tasks such as image classification [9,10], object
detection [11,12], semantic segmentation [13,14], and action recognition [15,16].

Understanding sign languages requires a high level of spatial and temporal understanding and,
therefore, is regarded as very difficult with the current level of computer vision and machine learning
technology [1,17–22]. It should be noted that sign languages are different from hand (finger) languages
as the hand languages only represent each letter in an alphabet with the shape of a single hand [23]
while the linguistic meaning of each sign is determined by subtle difference of shape and movement of
body, hands, and sometimes by facial expression of the signer [2]. More importantly, the main difficulty
comes from the lack of dataset for training neural networks. Many sign languages represent different
words and sentences of spoken languages with temporal sequences of gestures comprising continuous
pose of hands and facial expressions. This implies that there are uncountably many combinations of
the cases even to describe a single human intention with the sign language.

Hence, we restrict ourselves to the task of translating sign language in various emergency
situations. We construct the first Korean sign language dataset collected from fourteen professional
signers who are actually hearing-impaired people and named it the KETI sign language dataset.
The KETI sign language dataset consists of 14,672 high-resolution videos that recorded the Korean
signs corresponding to 419 words and 105 sentences related to various emergency situations. Using the
KETI sign language dataset, we present our sign language translation model based on the well-known
off-the-shelf human keypoint detector and the sequence-to-sequence translation model. To the best of
our knowledge, this paper is the first to exploit the human keypoints for the sign language translation
problem. Due to the inherent complexity of the dataset and the problem, we present an effective
normalization technique for the extracted human keypoints to be used in the sign language translation.
We implement the proposed ideas and conduct various experiments to verify the performance of the
ideas with the test dataset.

The main contributions of this paper are highlighted as follows:

1. We introduce the first large-scale Korean sign language dataset for sign language translation.
2. We propose a sign language translation system based on the 2D coordinates of human keypoints

estimated from sign videos.
3. We present an effective normalization technique for preprocessing the 2D coordinates of

human keypoints.
4. We verify the proposed idea by conducting various experiments with the sign language dataset.

2. Related Work

There have been many approaches to recognize hand languages that are used to describe letters
of the alphabet with a single hand. It is relatively easier than recognizing sign languages as each letter
of the alphabet simply corresponds to a unique hand shape. In [17], the authors utilized depth cameras
(Microsoft’s Kinect) and the random forest algorithm to recognize the English alphabet with 92%
recognition accuracy. A pose estimation method of the upper body represented by seven key points
was proposed for recognizing the American Sign Language (ASL) [18]. We also note t an approach by
Kim et al. [24] to recognize the Korean hand language by analyzing latent features of hand images.

In general, researchers rely on the movements and shapes of both hands to recognize sign
languages. Starner et al. [22] developed a real-time system based on Hidden Markov model (HMM)
to recognize sentence-level ASL. They demonstrated two experimental results: they used solidly
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colored gloves to make tracking of hands easier in the first experiment and the second experiment was
conducted without gloves. They claimed that the word accuracy of glove-based system is 99.2% but
the accuracy drops to 84.7% if they do not use gloves. It should be noted that those accuracy can be
reached because they exploited the grammar for reviewing the errors of the recognition. The word
accuracy without grammar and gloves is 74.5%.

On the other hand, there have been approaches to automatically learning signs from weakly
annotated data such as TV broadcasts by using subtitles provided simultaneously with the signs [25–27].
Following this direction, Forster et al. released the RWTH-PHOENIX-Weather 2012 [1] and its
extended version RWTH-PHOENIX-Weather 2014 [28] that consist of weather forecasts recorded
from German public TV and manually annotated using glosses and natural language sentences
where time boundaries have been marked on the gloss and the sentence level. Based on the
RWTH-PHOENIX-Weather corpus, Koller et al. [20] presented a statistical approach performing
large vocabulary continuous sign language recognition across different signers. They developed a
continuous sign language recognition system that utilizes multiple information streams including the
hand shape, orientation and position, the upper body pose, and face expressions such as mouthing,
eyebrows and eye gaze.

There have been many attempts to recognize and translate sign language using deep learning
(DL). Oberweger et al. [29] introduced and evaluated several architectures for CNNs to predict the 3D
joint locations of a hand given a depth map. Kishore et al. [19] developed a sign language recognition
system that is robust in different video backgrounds by extracting signers using boundary and prior
shape information. Then, the feature vector is constructed from the segmented signer and used as
input to artificial neural network. An end-to-end sequence modeling using CNN-BiLSTM architecture
usually used for gesture recognition was proposed for large vocabulary sign language recognition
with RWTH-PHOENIX-Weather 2014 [21].

At the same time, one of the most interesting breakthroughs in neural machine translation or even
in the entire DL was introduced under the name of “sequence-to-sequence (seq2seq)” [7]. The seq2seq
model relies on a common framework called an encoder–decoder model with RNN cells such as
LSTMs or GRUs. The seq2seq model proved its effectiveness in many sequence generation tasks by
achieving almost human-level performance [7]. Despite its effectiveness, the seq2seq model still has
some drawbacks such as the input sequences of varying lengths being represented in fixed-size vectors
and the vanishing gradient due to the long-term dependency between distant parts.

Camgoz et al. [23] formalized the sign language translation problem based on the pre-existing
framework of neural machine translation with word and spatial embeddings for target sequences
and sign videos, respectively. They proposed to utilize the seq2seq models to learn how to translate
the spatiotemproal representation of signs into the spoken or written language. Recently, researchers
developed a simple sign language recognition system based on bidirectional GRUs which just classifies
a given sign language video into one of the classes that are predetermined [30].

3. KETI Sign Language Dataset

The KETI dataset was constructed to understand the Korean sign language of hearing-impaired
people in various emergency situations. Indeed, in many social situations, the hearing-impaired
people necessarily need help from professional sign language interpreters to communicate with
the hearing people even when they have to reveal their very private and sensitive information.
Moreover, the hearing-impaired people are more vulnerable in various emergency situations due to
the communication barriers due to the absence of the hearing ability. Therefore, we carefully examined
the cases of relatively general conversations about emergency situations and chose 105 sentences and
419 words that could be used in various emergency situations.

The KETI sign language dataset consists of 14,672 full high definition (HD) videos that were
recorded at 30 frames per second and from two camera angles: front and side. We recorded 524 different
signs derived from the aforementioned process and performed by fourteen different hearing-impaired
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signers to reflect the individual differences for the same sign. For each sign, we first record a “guide
video” of an “expert” signer to remove the possible ambiguity of signs. After watching the guide
video, the fourteen hearing-impaired signers recorded each of the 524 signs. As a result, each signer
recorded a total of 1048 videos for the dataset. For the training and validation sets, we chose ten signers
from fourteen signers and chose nine sign videos for each sign for the training set. The remaining sign
videos were assigned to the validation set. The test set consists of sign videos of four signers who do
not appear in any video in the training set or the validation set. Several statistics of the dataset are
given in Table 1 and an example frame from the dataset is presented in Figure 1. We also present ten
example frames that were extracted from sign videos of ten different signers in Figure 2.

Table 1. Statistics of KETI sign language dataset.

Metric Training Dev Test

Number of sign videos 9432 1048 4192
Duration [hours] 20.05 2.24 5.70
Number of frames 2,165,682 241,432 615,486
Number of signers 10 10 4
Number of camera angles 2

In particular, we annotated each of the 105 signs that correspond to the useful sentences in
emergencies mentioned above with five different natural language sentences in Korean. Moreover,
we annotated all sign videos with the corresponding sequences of glosses [31], where a gloss is a unique
word that corresponds to a unit sign and used to transcribe sign language. For instance, a sign implying
“I am burned.” can be annotated with the following sequence of glosses: (“FIRE”, “SCAR”). Similarly,
a sentence “A house is on fire.” is annotated by (“HOUSE”, “FIRE”). Apparently, glosses are more
appropriate to annotate a sign because it is possible to be expressed in various natural sentences or
words with the same meaning. For this reason, we annotated all signs with the glosses with the help of
Korean sign language experts. Table 2 exhibits ten examples from 105 data examples in total.

Table 2. Ten examples of our sign language annotations. We annotated each sign with five natural
language sentences in Korean and a unique sign gloss. We only provide two sentences in the table due
to space limitations.

ID Korean Sentence English Sentence Sign Gloss

1 화상을입었어요. I got burned. FIRE SCAR
2 폭탄이터졌어요. The bomb went off. BOMB
3 친구가숨을쉬지않아요. My friend is not breathing. FRIEND BREATHE CANT
4 집이흔들려요. The house is shaking. HOUSE SHAKE
5 집에불이났어요. The house is on fire. HOUSE FIRE
6 가스가새고있어요. Gas is leaking. GAS BROKEN FLOW
7 112에신고해주세요. Please call 112. 112 REPORT PLEASE
8 도와주세요. Help me. HELP PLEASE
9 너무아파요. It hurts so much. SICK

10 무릎인대를다친것같아요. I hurt my knee ligament. KNEE LIGAMENT SCAR

For the communication with hearing-impaired people in the situations, the KETI dataset was
used to develop an artificial intelligence-based sign language recognizer or translator. All videos were
recorded in a blue screen studio to minimize any undesired influence and learn how to recognize or
translate the signs with an insufficient amount of data.
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Figure 1. Example frames from our sign language dataset. The frames are extracted in a temporal order
from the video for the sentence “I am burned”.

Figure 2. Ten example frames from from our sign language dataset. Each frame was extracted from a
sign video of a distinct signer.
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4. Our Approach

We propose a sign recognition system based on the human keypoints that are estimated by
pre-existing libraries such as OpenPose [32–34]. In Figure 3, we provide example results of human
keypoint detection by the OpenPose for ten example frames presented in Figure 2. Here, we develop
our system based on OpenPose, an open source toolkit for real-time multi-person keypoint detection.
OpenPose can estimate in total 137 keypoints where 25 keypoints are from body pose, 21 keypoints are
from each hand, and 70 keypoints from a face. The primary reason for choosing OpenPose as a feature
extractor for sign language recognition is that it is robust to many types of variations.

Figure 3. Keypoints extracted from example frames in Figure 2.
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We use the estimated coordinates of 124 keypoints of a signer to understand the sign language
of the signer, where 12 keypoints are from human body, 21 keypoints are from each hand, and 70
keypoints are from the face. Note that the number of keypoints from human body is 25 but we select
12 keypoints that correspond to upper body parts. The chosen indices and the names of the parts are
as follows: 0 (nose), 1 (neck), 2 (right shoulder), 3 (right elbow), 4 (right wrist), 5 (left shoulder), 6 (left
elbow), 7 (left wrist), 15 (right eye), 16 (left eye), 17 (right ear), and 18 (left ear).

4.1. Human Keypoint Detection by OpenPose

First, our recognition system is expected to be robust in different cluttered backgrounds as it
only detects the human body. Second, the system based on the human keypoint detection works well
regardless of signer since the variance of extracted keypoints are negligible. Moreover, we apply the
feature normalization technique to further reduce the variance, which is dependent on signer. Third,
our system can enjoy the benefits of the improvement on the keypoint detection system which has
a great potential in the future because of its versatility. For instance, the human keypoint detection
system can be used for recognizing different human behaviors and actions given that the relevant
dataset is secured. Lastly, the use of high level features is necessary when the scale of the dataset is not
large enough. In the case of sign language dataset, it is more difficult to collect than the other dataset
as many professional signers should be utilized for recording sign language videos of high quality.
The overall architecture of the proposed system is depicted in Figure 4.

I am burned <eos>

Enc. GRU

Enc. GRU

Enc. GRU

Enc. GRU

Enc. GRU

Enc. GRU

<sos> I am burned

Softmax

Dec. GRU

Dec. GRU

Embedding

Softmax

Dec. GRU

Dec. GRU

Embedding

Softmax

Dec. GRU

Dec. GRU

Embedding

Softmax

Dec. GRU

Dec. GRU

Embedding

Feature Normalization

Human Keypoint Estimation

Figure 4. An overall architecture of our approach that translates a sign language video into a natural
language sentence using sequence to sequence model based on GRU cells.

4.2. Feature Vector Normalization

There have been many successful attempts to employ various types of normalization methods in
order to achieve the stability and speed-up of the training process [35–37]. One of the main difficulties
in sign language translation with the small dataset is the large visual variance as the same sign can
look very different depending on the signer. Even if we utilize the feature vector which is obtained
by estimating the keypoints of human body, the absolute positions of the keypoints or the scale of
the body parts in the frame can be very different. For this reason, we apply a special normalization
method called the object 2D normalization that suits our purpose well.

After extracting high-level human keypoints, we normalize the feature vector using the mean and
standard deviation of the vector to reduce the variance of the data. Let us denote a 2D feature vector
by V = (v1, v2, . . . , vn) ∈ Nn×2 that consists of n elements where each element vi ∈ N2, 1 ≤ i ≤ n
stands for a single keypoint of human part. Each element vi = (vx

i , vy
i ) consists of two integers vx

i and
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vy
i that imply the x- and y-coordinates of the keypoint vi in the video frame, respectively. From the

given feature vector V, we can extract the two feature vectors as follows:

Vx = (vx
1 , vx

2 , . . . , vx
n) and Vy = (vy

1, vy
2, . . . , vy

n).

Simply speaking, we collect the x- and y-coordinates of keypoints separately while keeping the
order. Then, we normalize the x-coordinate vector Vx as follows:

V∗x =
Vx − V̄x

σ(Vx)
,

where V̄x is the mean of Vx and σ(Vx) is the standard deviation of Vx. Note that V∗y is calculated
analogously. Finally, it remains to concatenate the two normalized vectors to form the final feature
vector V∗ = [V∗x ; V∗y ] ∈ N2n, which is used as the input vector of our neural network.

It should be noted that we assume that the keypoints of lower body parts are not necessary for
sign language recognition. Therefore, we only use 124 keypoints from the 137 keypoints detected by
OpenPose since six keypoints of human pose correspond to lower body parts such as both feet, knees
and pelvises, as shown in Figure 2. We randomly sample 10–50 keyframes from each sign video. Hence,
the dimension of input feature vector is 248× |V|, where |V| ∈ {10, 20, 30, 40, 50}.

4.3. Frame Skip Sampling for Data Augmentation

The main difficulty of training neural networks with small datasets is that the trained models do
not generalize well with data from the validation and the test sets. As the size of dataset is even smaller
than the usual cases in our problem, we utilize the random frame skip sampling that is commonly used to
process video data such as video classification [38] for augmenting training data. The effectiveness
if data augmentation has been proved in many tasks including image classification [39]. Here,
we randomly extract multiple representative features of a video.

Given a sign video S = ( f1, f2, . . . , fl) that contains l frames from f1 to fl , we randomly select
a fixed number of frames, say n. Then, we first compute the average length of gaps between frames
as follows:

z =

⌊
l

n− 1

⌋
.

We first extract a sequence of frames with indices from the following sequence Y = (y, y + z, y +

2z . . . , y + (n− 1)z) ∈ Nn, where y = b l−z(n−1)
2 c and call it a baseline sequence. Then, we generate a

random integer sequence R = (r1, r2, . . . , rn) ∈ [1, z]n and compute the sum of the random sequence
and the baseline sequence. Note that the value of the last index is clipped to the value in the range of
[1, l]. We start from the baseline sequence instead of choosing any random sequence of length l to avoid
generating random sequences of frames that are possibly not containing “key” moments of signs.

4.4. Attention-Based Encoder–Decoder Network

The encoder–decoder framework based on RNN architectures such as LSTMs or GRUs is gaining
its popularity for neural machine translation [7,40–42] as it successfully replaces the statistical machine
translation methods.

Given an input sentence x = (x1, x2, . . . , xTx ), an encoder RNN plays its role as follows:

ht = RNN(xt, ht−1)

where ht ∈ Rn is a hidden state at time t. After processing the whole input sentence, the encoder
generates a fixed-size context vector that represents the sequence as follows:

c = q(h1, h2, . . . , hTx ),
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For instance, the RNN is an LSTM cell and q simply returns the last hidden state hTx in one of the
original sequence to sequence papers by Sutskever et al. [7].

Now, suppose that y = (y1, y2, . . . , yTy) is an output sentence that corresponds to the input
sentence x in training set. Then, the decoder RNN is trained to predict the next word conditioned
on all the previously predicted words and the context vector from the encoder RNN. In other words,
the decoder computes a probability of the translation y by decomposing the joint probability into the
ordered conditional probabilities as follows:

p(y) =
Ty

∏
i=1

p(yi|{y1, y2, . . . , yi−1}, c).

Now, our RNN decoder computes each conditional probability as follows:

p(yi|y1, y2, . . . , yi−1, c) = softmax(g(si)),

where si is the hidden state of decoder RNN at time i and g is a linear transformation that outputs a
vocabulary-sized vector. Note that the hidden state si is computed by

si = RNN(yi−1, si−1, c),

where yi−1 is the previously predicted word, si−1 is the last hidden state of decoder RNN, and c is the
context vector computed from encoder RNN.

Bahdanau attention. Bahdanau et al. [40] conjectured that the fixed-length context vector c is a
bottleneck in improving the performance of the translation model and proposed to compute the
context vector by automatically searching for relevant parts from the hidden states of encoder. Indeed,
this “attention” mechanism has proven really useful in various tasks including but not limited to
machine translation. They proposed a new model that defines each conditional probability at time i
depending on a dynamically computed context vector ci as follows:

p(yi|y1, y2, . . . , yi−1, x) = softmax(g(si)),

where si is the hidden state of the decoder RNN at time i which is computed by

si = RNN(yi−1, si−1, ci).

The context vector ci is computed as a weighted sum of the hidden states from encoder:

ci =
Tx

∑
j=1

αijhj,

where

αij =
exp(score(si−1, hj))

∑Tx
k=1 exp(score(si−1, hk))

.

Here, the function “score” is called an alignment function that computes how well the two hidden
states from the encoder and the decoder, respectively, match. For example, score(si, hj), where si is
the hidden state of the encoder at time i and hj is the hidden state of the decoder at time j implies
the probability of aligning the part of the input sentence around position i and the part of the output
sentence around position j.

Luong attention. Later, Luong et al. [41] examined a novel attention mechanism which is very similar to
the attention mechanism by Bahdananu et al. but different in some details. First, only the hidden states
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of the top RNN layers in both the encoder and decoder are used instead of using the concatenation
of the forward and backward hidden states of the bi-directional encoder and the hidden states of
the uni-directional non-stacking decoder. Second, the computation path is simplified by computing
the attention matrix after computing the hidden state of the decoder at current time step. They also
proposed the following three scoring functions to compute the degree of alignment between the hidden
states as follows:

score(ht, hs) =


hᵀt hs, (Dot)

hᵀt Whs, (General)

Vᵀ tanh(W[ht; hs]), (Concat.)

where V and W are learned weights. Note that the third one based on the concatenation was originally
proposed by Bahdanau et al. [40].

Multi-head attention (Transformer). While the previous encoder–decoder architectures are based on
RNN cells, Vaswani et al. [42] proposed a completely new network architecture, which is based solely
on attention mechanisms without any recurrence and convolutions. The most important characteristic
of the Transformer is the multi-head attention, which is used in three different ways as follows:

1. Encoder–decoder attention: Each position in the decoder can attend over all positions in the input
sequence.

2. Encoder self-attention: Each position in the encoder can attend over all positions in the previous
layer of the encoder.

3. Decoder self-attention: Each position in the decoder can attend over all positions in the decoder
up to and that position.

Moreover, as the Transformer uses neither recurrence nor convolution, the model requires some
information about the order of the sequence. To cope with this problem, the Transformer uses positional
encoding, which contains the information about the relative or absolute position of the words in the
sequence using sine and cosine functions.

5. Experimental Results

We implemented our networks using PyTorch [43], which is an open source machine learning
library for Python. The Adam optimizer [44] was used to train the network weights and biases for
50 epochs with an initial learning rate 0.001. During the training, we changed the learning rate every
20 epochs by the exponential decay scheduler with discount factor 0.5. We also used the dropout
regularization with a probability of 0.8 and the gradient clipping with a threshold 5. Note that the
dropout regularization is necessarily high as the size and the variation of the dataset is small compared
to other datasets specialized for deep learning training. For the sequence-to-sequence models including
the vanilla seq2seq model and two attention-based models, the dimension of hidden states was 256.
For the Transformer model, we used the dimension for input and output (dmodel in [42]) of 256.
The other hyper-parameters used for the Transformer were the same as in the original model including
the scheduled Adam optimizer in their own setting. Moreover, the batch size was 128, the augmentation
factor was 100, the number of chosen frames was 50, and the object 2D normalization was used unless
otherwise specified.

As our dataset is annotated in Korean, which is an agglutinative language, the morphological
analysis on the annotated sentences should be performed because the size of dictionary can be
arbitrarily large if we split sentences into words simply by white-spaces in such languages. For this
reason, we used the Kkma part-of-speech (POS) tagger in the KoNLPy package, which is a Python
package developed for natural language processing of the Korean language to tokenize the sentences
into the POS level [45].

To evaluate the performance of our translation model, we basically calculated “accuracy”,
which means the ratio of correctly translated words and sentences. It should be mentioned that the
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accuracy was calculated only for comparing sentence-level annotation and gloss-level annotation in
Table 3 since it is not suitable to compare two cases by accuracy since we had five ground truth sentences
for each sing video. In this experiment, we trained our model with a single ground truth sentence or a
single sequence of glosses. Besides, we also utilized four types of metrics that are commonly used for
measuring the performance of machine translation models: BLEU [46], ROUGE-L [47], METEOR [48],
and CIDEr [49] scores.

Table 3. Comparison of sign language translation performance on different types of annotations.
Note that bold numbers represent the best performance results.

Annotation Validation Set Test Set

Accuracy ROUGE-L METEOR BLEU Accuracy ROUGE-L METEOR BLEU

Sentence-level 82.07 94.42 67.35 90.57 45.56 66.10 41.09 57.37
Gloss-level 93.28 96.03 71.04 93.85 55.28 63.53 38.10 52.63

Sentence-level vs. Gloss-level training. As in [23], we conducted an experiment to compare the
translation performance depending on the type of annotations. Because each sign corresponds to a
unique sequence of glosses as well as to multiple natural language sentences, it is easily predictable
that the gloss-level translation shows better performance. Indeed, we can confirm the anticipation
from the summary of results provided in Table 3.

This also leads us to the future work for translating sequences of glosses into natural language
sentences. We expect that the sign language translation can be a more feasible task by separating the
task of annotating sign videos with natural language sentences by two sub-tasks where we annotate
sign videos with glosses and annotate each sequence of glosses with natural language sentences.

Comparison with CNN-based approaches. In Table 4, we compare our approach to the classical
methods based on CNN features extracted from well-known architectures such as ResNet [50] and
VGGNet [51]. Since the size of sign video frames (1920× 1080) is different from the size of input of
CNN models (224 × 224), we first cropped the central area of frames in 1080× 1080 and resize the
frames to 224× 224.

Table 4. Performance comparison with translation models based on CNN-based feature extraction
techniques. Note that the augmentation factor in this experiment was all set to 50.

Feature Type Validation Set Test Set

ROUGE-L METEOR BLEU CIDEr ROUGE-L METEOR BLEU CIDEr

VGGNet-16 [51] 66.85 41.92 56.75 2.369 44.75 25.79 27.88 1.016
VGGNet-19 [51] 61.77 38.72 50.95 2.060 42.75 24.81 24.27 0.839

ResNet-50 [50] 62.26 38.79 51.99 2.124 38.76 21.85 19.45 0.664
ResNet-101 [50] 66.28 41.81 56.26 2.368 40.10 22.68 21.86 0.772
ResNet-152 [50] 74.10 48.03 66.73 2.841 38.44 22.71 20.78 0.753

OpenPose [32–34] 96.92 72.14 96.11 4.380 73.95 46.66 64.79 2.832

The experimental results show that ResNet-152 exhibits the best translation performance on
the validation set and the VGGNet-16 demonstrates the best performance on the test set. In general,
the performance difference on the validation set is not large but it is apparent that the VGGNet models
are much better in generalizing to the test set compared to the ResNet models.

Expectably, the translation models using the CNN extracted features show significantly worse
translation performance than the models using the human keypoint features. It is well-known that
CNN-based architectures such as ResNet and VGGNet have a huge number of trainable parameters
(e.g., VGGNet-19 and ResNet-152 have over 143M and 60M parameters, respectively.) so that they
easily fall into the overfitting problem due to the lack of a sufficient number of training examples.
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Moreover, the CNN-based models have a weakness for recognizing signs of previously unseen signers
as they are weaker than our model in dealing with subtle variances of images.

It is still interesting to know whether the combination of any CNN-based features and human
keypoint features works better than when we solely rely on the human keypoint features. As the size
of sign language dataset grows, we expect that the CNN-based models improve their performances
and generalize much better.

Effect of feature normalization methods. To evaluate the effect of the feature normalization method
on the keypoints estimated by OpenPose, we compared the following five cases: (1) no normalization;
(2) feature normalization; (3) object normalization; (4) two-dimensional (2D) normalization; and (5)
object 2D normalization. In the first case, we did not perform any normalization step on the keypoint
feature generated by concatenating the coordinate values of all keypoints. In the feature normalization,
we created a keypoint feature as in (1) and normalized the feature with the mean and standard
deviation of the whole feature. In the object normalization, we normalized the keypoint features
obtained from two hands, body, and face, respectively, and concatenated them to generate a feature
that represents the frame. We also considered the case of 2D normalization in which we normalized
the x- and y-coordinates separately. Lastly, the object 2D normalization is the normalization method
that we propose in the paper.

Table 5 summarizes the result of our experiments. The table does not contain the results of the
case without any normalization as it turns out that the proposed object 2D normalization method is
superior to the other normalization methods we considered. Especially, when we trained our neural
network with the keypoint feature vector which was obtained by simply concatenating the x- and
y-coordinates of keypoints without any normalization, the validation loss never decreased. While any
kind of normalization seemed to work positively, it is quite interesting to see that there is an additional
boost in translation performance when the object-wise normalization and the 2D normalization were
used together.

Table 5. Effect of different feature normalization methods on the translation performance. The results
were obtained on the test set.

Method ROUGE-L METEOR BLEU CIDEr

Feature Normalization 66.28 40.94 56.91 2.401
2D Normalization 72.05 44.98 62.69 2.706
Object Normalization 64.16 38.84 53.83 2.235
Object 2D Normalization 73.61 46.52 65.26 2.794

Effect of attention mechanisms. Here, we compared four types of encoder–decoder architectures that
are specialized in various machine translation tasks. Table 6 demonstrates the clear contrast between
the attention-based model by Luong et al. [41] and the Transformer [42]. While the model of Luong et al.
shows better performance than the Transformer on the validation set that contains more similar data to
the training set, the Transformer generalizes much better to the test set, which consists of sign videos
of an independent signer.

Table 6. Performance comparison of sign language translation on different types of attention mechanisms.

Attention Type Validation Set Test Set

ROUGE-L METEOR BLEU CIDEr ROUGE-L METEOR BLEU CIDEr

Vanilla seq2seq [7] 90.03 62.66 87.79 3.838 62.93 38.03 50.80 2.129
Bahdanau et al. [40] 94.72 67.44 94.03 4.264 71.45 44.06 63.38 2.616

Luong et al. [41] 96.63 72.24 95.86 4.322 73.61 46.52 65.26 2.794
Transformer [42] 94.14 69.27 92.90 4.227 73.18 47.03 66.58 2.857
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Effect of augmentation factor. We examined the effect of data augmentation by random frame skip
sampling and summarize the experimental results in Table 7. We call the number of training samples
randomly sampled from a single sign video the augmentation factor. Since the number of sign videos in
the training set is 9432, the total number of training samples after the data augmentation is 943,200
when the augmentation factor is 100.

It should be noted that we do not include the result when we do not augment data by random
frame sampling because the validation loss did not decrease at all due to severe overfitting. The result
shows that the optimal augmentation factor is 50 for the validation and test set. This implies that
a larger augmentation factor does not always lead to improvement in performance and even in
generalization capability.

Table 7. Effects of data augmentation by random frame sampling on sign language translation performance.

Augmentation Factor Validation Set Test Set

ROUGE-L METEOR BLEU CIDEr ROUGE-L METEOR BLEU CIDEr

100 96.63 72.24 95.86 4.322 73.61 46.52 65.26 2.794
50 96.92 72.14 96.11 4.380 73.95 46.66 64.79 2.832
10 95.69 70.14 94.46 4.227 71.40 45.10 62.95 2.662

Effect of the number of sampled frames. It is useful to know the optimal number of frames if we plan
to develop a real-time sign language translation system because we can reduce the computational cost
of the inference engine by efficiently skipping unnecessary frames. Table 8 shows how the number
of sampled frames affects the translation performance. As the sequence-to-sequence model works
for any variable-length input sequences, we do not necessarily fix the number of sampled frames.
However, it is useful to know the optimal number of frames as the translation performance of the
sequence-to-sequence models tends to decline with longer input sequences due to the vanishing
gradient problem [52]. Our experimental result shows that the optimal number of frames for the best
translation performance is 40 for the validation set and 50 for the test set.

Table 8. Effects of the number of sampled frames on sign language translation performance.

Number of Frames Validation Set Test Set

ROUGE-L METEOR BLEU CIDEr ROUGE-L METEOR BLEU CIDEr

50 96.63 72.24 95.86 4.322 73.61 46.52 65.26 2.794
40 96.52 72.36 95.96 4.327 72.71 46.18 64.35 2.757
30 95.88 70.60 94.87 4.281 73.35 46.46 64.48 2.778
20 94.38 68.40 92.98 4.181 72.37 45.37 62.19 2.693
10 83.26 55.81 78.43 3.427 65.89 40.65 54.01 2.308

Effect of batch size. Recently, it is increasingly accepted that training with a small batch often
generalizes better to the test set than training with large batch [53,54]. However, our experimental
results provided in Table 9 show the opposite phenomenon. We suspect that this is due to the scale of
the original dataset because the large batch is known to be useful to prevent overfitting to some extent.

Table 9. Effects of the batch size on sign language translation performance.

Batch Size Validation Set Test Set

ROUGE-L METEOR BLEU CIDEr ROUGE-L METEOR BLEU CIDEr

128 96.63 72.24 95.86 4.322 73.61 46.52 65.26 2.794
64 96.94 73.20 96.35 4.332 72.93 46.06 63.91 2.725
32 95.65 70.68 94.57 4.231 71.94 45.30 62.71 2.673
16 93.74 67.58 92.74 4.118 70.63 43.86 61.94 2.571
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Generalizations to real world data. As we can see in Figure 2, the sign videos in our dataset were
recorded in a clear background. This led us to investigate the performance of our model when the
background area of sign videos was cluttered. Moreover, we also checked how well our system
generalizes to the real world situations by testing the system against more realistic sign video examples
that were collected in a much less constrained setting. We collected 30 additional sign videos of five
signs from six novice signers in relatively cluttered background to test the generalization ability of our
system. Note that we selected relatively easier five signs among the 105 signs since it is very difficult
to follow complicated signs for the novice singers who never learned signs before. Figure 5 contains
example frames from the additional sign videos. As a result, our system achieved 89.06 (ROUGE-L),
60.64 (METEOR), 77.08 (BLEU) and 2.860 (CIDEr) in the four metrics. The experimental result shows
that our system generalizes well to the real world conditions such as cluttered background area and
clumsy signs from non-experts.

Figure 5. Example frames of additional test set videos recorded with cluttered background and
non-expert signers.

Ablation Study

We also studied the effect of the use of keypoint information from two hands, body, and face.
The experimental results summarized in Table 10 imply that the keypoint information from both hands
is the most important among all the keypoint information from hands, face, and body.

Table 10. Ablation study on the contributions of keypoints from body, face, and hands. The results are
obtained on the test set.

Method ROUGE-L METEOR BLEU CIDEr

Body 68.82 42.68 59.96 2.554
Hand 72.03 45.19 62.90 2.681
Body, Face 60.08 36.66 48.90 2.051
Hand, Face 69.43 43.26 59.92 2.538
Hand, Body 74.02 46.84 65.83 2.831
Hand, Body, Face 73.61 46.52 65.26 2.794
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Interestingly, the experimental result tells us that the keypoint information from face does not
help to improve the performance in general. The performance even dropped when we added face
keypoints in all cases. We suspect that the reason is partly due to the imbalanced number of keypoints
from different parts. Recall that the number of keypoints from face is 70 and this is much larger than
the number of the other keypoints.

While the keypoints from both hands are definitely the most important features to understand
signs, it is worth noting that the 12 keypoints from body boosted the performance. Actually, we losy
the information about relative positions of parts from each other as we normalized the coordinates
of each part separately. For instance, there was no way to infer the relative positions of two hands
with the normalized feature vectors from both hands. However, it was possible to know the relative
position from the keypoints of body as there also existed keypoints corresponding to the hands.

6. Conclusions

In this work, we have introduced a new sign language dataset, which is manually annotated in
Korean spoken language sentences and proposed a neural sign language translation model based on
the sequence-to-sequence translation models. It is well-known that the lack of large sign language
dataset significantly hinders the full utilization of neural network based algorithms for the task of
sign language translation that are already proven very useful in many tasks. Moreover, it is really
challenging to collect a sufficient amount of sign language data as we need help from sign language
experts. For this reason, we claim that it is inevitable to extract high-level features from sign language
video with a sufficiently lower dimension. We are able to successfully train a novel sign language
translation system based on the human keypoints that are estimated by a famous open source project
called OpenPose [32–34] developed by Hidalgo et al.

In the future, we aim at improving our sign language translation system by exploiting various data
augmentation techniques using the spatial properties of videos. We also expect that the performance
of the proposed system can be improved if the performance of the human keypoint detection is
improved. For instance, there have been various approaches in human keypoint detection such as
Mask R-CNN [55] and AlphaPose [56] that exhibit even better performances than OpenPose in terms
of accuracy. It is also possible to apply landmark detection methods [57–59] for better performance of
keypoint detection from human body, face and both hands. We plan to implement different keypoint
detection methods for sign language translation and compare the performances of the methods. It is
also important to expand the KETI sign language dataset to sufficiently larger scale by recording
videos of more signers in different environments.
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