

Appl. Sci. 2019, 9, 2681; doi:10.3390/app9132681 www.mdpi.com/journal/applsci

Article

Improving Lossless Image Compression with
Contextual Memory

Alexandru Dorobanțiu * and Remus Brad

Computer Science Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu,

Romania

* Correspondence: alexandru.dorobantiu@ulbsibiu.ro; Tel.: +40-745-572-995

Received: 23 May 2019; Accepted: 28 June 2019; Published: 30 June 2019

Abstract: With the increased use of image acquisition devices, including cameras and medical

imaging instruments, the amount of information ready for long term storage is also growing. In this

paper we give a detailed description of the state-of-the-art lossless compression software PAQ8PX

applied to grayscale image compression. We propose a new online learning algorithm for predicting

the probability of bits from a stream. We then proceed to integrate the algorithm into PAQ8PX’s

image model. To verify the improvements, we test the new software on three public benchmarks.

Experimental results show better scores on all of the test sets.

Keywords: lossless; image compression; ensemble learning; contextual information; probabilistic

method; geometric weighting

1. Introduction

Why is compression a difficult problem? In general, when it comes to predicting something, you

need to understand the process behind the result. This requires the acquisition of knowledge about

the environment and the potential dynamics. For example, if you know the English language, it will

be rather easy to predict the letters missing from a truncated sentence. Predicting the value of the

pixels in an image requires a deep understanding of what is represented in the image. The predictor

needs to create an internal representation of segments that correspond to features of the image, like

shapes, patterns, textures, borders, and then make a guess based on which part of the segmented

image it is currently in.

An important application of image compression is in the field of medical imaging. Whether the

images come from radiography, magnetic resonance imaging, ultrasonography, or by other methods,

the number of acquired images is growing, which makes it increasingly necessary to use advanced

compression methods. There are two important operations that require improvement: the storage of

images, be it for long or short term (archiving), and the transmission of images via networks. When

it comes to quality, lossy methods need to keep the quality of the image high to prevent

mispronounced diagnostics. There may be cases where medical law is involved and the legislation

would state that a copy of the medical images should be long term stored in lossless mode to allow

diagnostic reconsideration in case of legal proceedings.

In this paper, we describe the state-of-the-art image compression method called PAQ8PX and

introduce a new algorithm for online automated learning. We tailored the implementation for our

proposed method by integrating it with PAQ8PX, which resulted in an improved 8 bpp grayscale

model. We tested our implementation and obtained improvements on four datasets belonging to

three benchmarks.

Appl. Sci. 2019, 9, 2681 2 of 19

2. Related Work

Since compression is a difficult problem, the techniques used come from many branches of

algorithmics. We provide a review of some of the algorithms that appeared in the literature in recent

years and some of the algorithms that use a similar contextual method as ours.

Wavelet compression involves decorrelating the neighboring pixel values by convoluting them

with a basis function and then entropy encoding the resulting coefficients. The Burrows–Wheeler

transform involves applying a reversible sorting algorithm to the data, making it compressible using

simple operations. Since these methods remove the contextual correlation in the data stream, the data

compression falls into the category of non-contextual methods. There is ongoing research in the area

of non-contextual methods applied for two-dimensional or three-dimensional images.

Lossless wavelet compression was improved in [1] by introducing a new family of update-then-

predict integer lifting wavelets. In [2], the authors extended the Burrows–Wheeler transform to two

dimensions. The bi-level Burrows–Wheeler compression algorithm applies the well-known block

sorting algorithm on the rows of the image and then on the columns, for an improved homogeneity

in the 2D space. It then uses a modified kernel move-to-front for the 2D subspace before the entropy

coding stage.

A mixture of lossless and lossy wavelet-based color image compression has been described in

[3], where the region of interest based on the saliency of the image is taken into account when sending

the image progressively through the communication network. It was applied for wildlife

photography where the images are sent through a limited bandwidth channel. The Region of Interest

(ROI) is extracted using a convolutional neural network to create a mask. Two wavelet encoding

types are then used: for the lossless part SPIHT coding, for the lossy one EZW coding.

Deep learning for residual error prediction has been described in [4]. Here, a residual-error

predictive convolutional neural network (REP-CNN) is introduced with the scope of refining the

prediction of the LOCO-I and CALIC predictors. In total, three REP-CNN are trained, one for direct

prediction and two for predicting the residuals of the aforementioned predictors. The big

disadvantage of such a method is that, in order for a decoder to work, the entire trained neural

network needs to be sent along with the compressed representation.

Contextual methods are still the basis for both lossless and lossy image compression. There is a

lot of diversity in the literature about the choice of context and how it is used. An example of a lossy

image compression applied for medical ultrasound images relies on contextual vector quantization,

as shown in [5]. In this algorithm, a separation method based on region growing distinguishes a

region of interest in the image starting from a seed point. Different vector sizes are chosen for

background and the contextual ROI. The regions are then encoded with high and low compression

ratios respectively, and, then, are merged in a final result.

Another lossy image compression for medical imaging [6] relies on the contextual prediction of

the quantized and the normalized sub-band coefficients after a discrete wavelet transform was

applied.

Extending the prediction by partial matching for two dimensions for lossless compression of

indexed raster images has been presented in [7]. Context models for sparse order lengths are created

and stored in an AVL-tree structure. A parallelization of the coding algorithm is presented by

splitting the image into independent blocks and compressing them individually.

Context-based predictor blending (CBPB) for lossless compression of color images is described

in [8], which is an extension of the algorithm CBPB [9], where the image is interpreted as an

interleaved sequence generated by multiple sources so that non-stationary signals are better

predicted. The blending prediction weights are selected based on the texture of the surrounding

pixels and a Pearson correlation coefficient is computed for adjusting these weights. The final

prediction also takes into account a template matching prediction. The CBPB algorithm was also

ported to parallel execution via a CUDA implementation [10].

Vanilc is a lossless image compression framework described in [11] for 8 bpp, multichannel color

images, and 16 bpp medical 3D volumes. The main contribution of the paper is a pixel probability

distribution predictor based on a weighted least squares approach that uses a weighting function that

Appl. Sci. 2019, 9, 2681 3 of 19

generalizes some of the proposed contextual schemes in the literature and provides good results

when it comes to the non-stationarities in the image while having only a few tuning parameters.

A lossless image compression algorithm is described in [12]. It is based on multi-resolution

compression for progressive transmission. It improves on prior work from [13], where the image is

decomposed into a pyramidal data structure and an edge adaptive hierarchical interpolation is

applied for coding and progressive transmission. The prediction accuracy is improved here by using

context-conditioned adaptive error modeling and by passing the estimates through an error

remapping function. In this way, it improves both the final bitrate and the visual quality of the

reconstructed images at intermediate stages.

Another lossless medical imaging compression algorithm using geometry-adaptive partitioning

and least square-based prediction is described in [14]. Because of the similarities of the images

obtained from the same imaging method, a prior segmentation via geometry adaptive partitioning

and quadtree partitioning of the image allows a good selection of a least squares optimized predictor

for sections of the image.

For lossless compression of 3D medical images, an extension of the minimum rate predictors

from 2D to 3D has been developed in [15]. Here, 3D-shaped predictors were introduced to benefit

from the volumetric redundancy, and, then, volume-based optimizations are applied, and hybrid 3D

block splitting and classification is done. The algorithm was also extended from 8 bpp images to 16

bpp images because they provide better diagnostic quality.

Lossless compression of multi-temporal hyperspectral images can also exploit the temporal

correlations besides the spatial and spectral ones. In [16], the fast lossless predictor, a variation of the

least means square applied to the causal context [17], has been extended to 4D to incorporate the

temporal aspect in the prediction. The residuals are computed as the difference between the

prediction and the current pixel and are then encoded using the fast Golomb-Rice coding.

3. PAQ8PX Algorithm for Lossless Image Compression in Detail

3.1. Introduction

PAQ is a series of experimental lossless data compression software aiming at the best

compression ratio for a wide range of file types without a focus on using few computing resources or

keeping backward version compatibility. It was started by Matt Mahoney and later developed by

more than 20 developers in different branches of compression. PAQ8PX is a branch of PAQ started

by Jan Ondrus in 2009 and that has recently adopted the best image compression models in the series

with the help of Márcio Pais. In short, we refer to version 167 of PAQ8PX.

A detailed description of the software in its current phase is not available in the literature. The

reason may be the everchanging filetype specific models and the amount of version branching this

software receives, from simplified models for fast compression to platform-specific optimization tests

and the generalization of the algorithms used. However, a description of the PAQ series of

compressors from the perspective of machine learning is available at [18].

The description of the overall compression algorithm and the techniques used can be found in

[19] and [20]. The PAQ8PX version has a development thread that can be found at [21]. The source

code is written in the C++ programming language and is contained in only one file with more than

12000 lines of code. The logic was not broken into different files in order to make it easier to compile

to any platform. The big downside of this is that it makes the code very difficult to read. Another

thing that makes the code difficult to develop is that numerous optimization techniques were inserted

along the code, which can slow down the understanding of what is going to execute and when.

3.2. General Aspects

Compressing a file goes through four main stages: preprocessing, model prediction, context

mixing, and probability refining. An optional pre-training phase can be activated via command line

parameters. The pipeline for image compression has been described schematically in Figure 1.

Appl. Sci. 2019, 9, 2681 4 of 19

Figure 1. PAQ8 Image compression diagram.

The preprocessing phase is also split into three parts. At first, it searches through the file to be

compressed for known stream types. Based on these types, different models are activated for the

second stage of compressing. For example, it searches for image (1 bpp, 4 bpp, 8 bpp, 8 bpp grayscale,

24 bpp, 32 bpp, png 8 bpp, png grayscale 8 bpp, png 24 bpp, png 32 bpp), jpeg, gif, text, audio (8 and

16-bit mono and stereo), exe, base64, zlib streams, file containers, and others. After this stage, an

optional transform phase is applied for certain stream types such as text, where an end of line

transform can be applied, or EXE, where certain instructions are replaced with others. The transform

phase is then applied in reverse and if the result matches the original stream, the transform is kept.

In the case of images, the preprocessing phase extracts the file header, which is compressed

separately, and the byte stream containing the pixel values of the image. The width and the bit depth

of the image are extracted from the header and the width is passed on to the image model selected

by bit depth.

The model prediction and context mixing phase happen consecutively. Probabilities of

individual bits from the input stream are predicted by many specialized models. All the probabilities

are combined into one probability via the context mixing algorithm. The output probability is refined

using a network of adaptive probability maps. The final prediction is used to encode the bit from the

stream using a binary arithmetic coder. The algorithm is symmetrical, meaning that both the coder

and the decoder do the same operations ending up with the same final probability. The decoder uses

the probability to decode the bit from the compressed stream.

3.3. Modeling

The term model is used with double meaning throughout the compressor. At first, it is used to

denote the unit of the algorithm that outputs a probability that will participate in the mixing phase.

One can interpret this as an “elementary” model. The second meaning is the collection of units that

are modeling a given type of data. The output of such models is, evidently, a collection of

probabilities. Example models are TextModel (for language-specific language stemming and word

modeling), MatchModel (for repeatable long matches of data), RecordModel (for data structured in

records), SparseModel, JpegModel (for specific jpeg data), WavModel, ExeModel, DmcForest (a

collection of dynamic Markov coding models), XmlModel, PpmModel (various order prediction by

partial matching), ImageModels (for different bit depth image data), and many more. One or more

of this type of model is selected according to the input stream type and compression parameters.

It is outside of the scope of this paper to explain models unrelated to image compression. These

can be further detailed in a general compression paper.

3.4. Image Compression

In the case of image streams, the match model can be optionally activated and can bypass the

image model if there is a long match found. But our focus will be set on the 8 bpp image model. The

output of this model contains predictions for four types of input streams: 8 bpp indexed color or

grayscale and 8 bpp png indexed or grayscale. If the stream is png, a part of the filtering scheme used

is undone in order to obtain the true pixel value.

Depending on the type of image, different correlations can be expected and, thus, exploited by

specific modeling. Before describing the specific contexts, we should describe which types of

Appl. Sci. 2019, 9, 2681 5 of 19

operations are possible with the contexts. Three major types of models can be identified: direct,

indirect, and least squares modeling. All of these models expect byte level context values (as data

coming from a file comes in byte chunks) and can output direct probabilities, stretched probabilities,

or both. The context mixing stage expects probabilities in the logistic domain (stretched probabilities)

and different operations are applied to probabilities to fit or skew them into this domain.

3.4.1. Direct Modeling

Direct modeling is implemented with the use of stationary context maps. This type of map takes

as input a context value and outputs a weighted stretched probability and a weighted probability

centered around zero (skewing). It is implemented using a direct lookup table where each entry stores

a probability (which is then stretched and skewed) and a hit counter. On the update phase, an error

is computed as the difference between the stored probability and the value of the bit. The error is

weighted with a value dependent on the hit counter. Fewer hits on the context value indicate a more

rapid update rate. This is implemented via a lookup table containing the values of an inverse linear

function of the hit count.

For each context that requires direct modeling, a new map must be created. This protects the

contexts from colliding with each other.

3.4.2. Indirect Modeling

Unlike direct modeling, which updates the probability based on the last probability predicted,

indirect modeling tries to learn the answer based on a similar sequence from the past.

Indirect modeling is implemented with the use of indirect context maps, which use two-step

mapping. An optional run context map is also included, which is used for modeling runs of bits.

The first mapping is between a context value and a bit history called state. The state is modeled

as an 8-bit value with the following meaning: A zero value means the context value was never seen

before. States from 1 to 30 map all the possible 4-bit histories. The rest of the states represent bit counts

of zero and one or an approximation of the ratio between zeroes and ones if the number of previously

seen bits exceeds a count of 16. The states are used as indexes in a state table which contains

transitions to the next state depending on the value of the next bit. The states were empirically chosen

to try to model non-stationarity and different state maps were proposed in other compression

programs [22].

The states are kept in a hash map implemented as a table with 64-byte entries to fit in a cache

line. The entries contain checksums for the context value to prevent collisions and up to seven state

values. Since the map expects byte data, at bit 0, 2, and 5, the bucket for a context value is recomputed

via a dispersion function. The seven state values can hold information about no bits known (one

value), one bit known (two values), and two bits known (four values). At bit zero, only three states

are needed and, as an optimization, the next four bytes implement a run map that predicts the last

byte seen in the same context value, logarithmically weighted by the length of the run. The hash map

implements a “least frequently used” eviction policy and a “priority eviction” based on the state of

the first element in the bucket. States are indexed based on the total number of bits seen, and,

therefore, the more information available is favored.

The next mapping is between the state and one or more probabilities. This is done in a similar

manner as in direct modeling by using a state map. For each input, four probabilities are returned,

one stretched, one skewed, and two depending on the bit counts of zero and one for that state. The

fifth probability out of the indirect context map comes from the run map.

Unlike stationary maps, more contexts can be added to the indirect map, meaning that they share

the same memory space and are identified by an index. Each context has its own state map accessed

by the index. Having states modeled as 8-bit values makes them more memory efficient than the 32-

bit representation for stationary maps.

Appl. Sci. 2019, 9, 2681 6 of 19

3.4.3. Least Squares Modeling

An ordinary least squares modeling is used to predict the value of the next pixel (not bit

prediction) based on a given set of context values and acts as a maximum likelihood estimator. The

prediction is a linear combination of the regressors, which are the explanatory variables. The update

phase tries to minimize the sum of squared differences of the true pixel value and the predicted value.

Finding the values of the weight vectors is done online by the method of normal equations that uses

a Cholesky decomposition that factors the design matrix into an n by n lower triangular matrix, where

n is the number of regressors. The matrix is then used to analytically find the weight values. The bias

vector and the covariance matrix are updated using parametrized momentum.

The value of the prediction is not used directly, but is used in combination with the known bits

of the current byte and the bit position in the byte as a key into a stationary context map.

3.4.4. Correlations

Different types of correlations are exploited for the type of images supported since we have

varying expectations of what the byte values from the input stream represent in the image. It is

difficult to describe all the operations used and only a minimal description will be provided. This

section does not cover png modeling.

The neighboring pixels are the best estimators for searching correlations. They form the causal

pixel neighborhood. Various notations are used for representing the position of the pixels. A simple

and meaningful representation is obtained by using the cardinal points on a compass (see Figure 2).

Figure 2. Causal pixel neighborhood.

Each time a cardinal point is mentioned, a step of the size of the pixel is taken into the direction

relative to the pixel that is being predicted.

Palette color indexed images, as the name suggests, use the byte value to index the true RGB

color in the palette table. This means that the direct values cannot be used with linear predictors

because a linear combination will also be an index and might end up suggesting a completely

different color. Another problem is that quantizing the values will also result in different indexes that

are not matched to the expected texture in the image. Moreover, since we know that we have 8-bit

indexes, we expect that only a small portion of the entire color plane is used. This makes the use of

indirect context maps useful and context values will be computed, for example, by hashing the W, N

and NW values together.

Grayscale images or individual color planes in color images require different modeling that is

dependent on what the content of the image represents. If the source of the image is artificial

(meaning computer generated, renders, drawings or screenshots), hard edges and continuous tone

regions may be expected. Photographic images may present noise, which makes the process of

prediction more cumbersome.

Appl. Sci. 2019, 9, 2681 7 of 19

Of course, like for palette images, texture tracking via indirect context maps is useful. Contexts

can now be computed also by quantizing the values or computing intensity magnitude levels using

logarithm functions of direct values or of logarithms of the difference of quotient of two values.

Additionally, modeling for the expected pixel value is needed. The results are used as keys into

stationary maps. Various prediction techniques work in many directions, including horizontal,

vertical, and diagonals.

Inspired from video compression schemes, half-pixel, quarter pixel, and n-th pixel interpolation

and extrapolation provide predictions and can be combined with other predictions by averaging

gradients and other interpolation techniques.

Linear pixel value combinations are used, such as averaging or gradients. For example, if the

two pixels from above have values 60 and 50, a combination of the form N*2 – NN will output 40. An

averaging combination of the form (N + NN) / 2 and will output 55. Another type of combination can

be a Lagrange polynomial used for extrapolating, like NNN*3 – NN * 3 + N. Extrapolated values from

different directions are then combined by linear combinations for new predictions. The result of a

prediction can be negative or above the maximum value of 255, and, therefore, two functions are

applied to the result. The clip function restricts the value in the [0, 255] interval. The clamp function

is similar to the strategy employed by the LOCO predictor for keeping the prediction in the same

plane as the neighboring pixel values that are also passed as parameters to the function.

Color images exploit the same correlations as the grayscale images, but include modeling for

the spectral correlation of the color planes. This means that an increased gradient in the red color plan

can also mean increased gradients in the other planes. The magnitude of the change in a previous

plane can be used to make predictions in a current plane or a prediction in the current plane can be

refined based on the residual of the prediction in the previous plane.

3.4.5. Grayscale 8 bpp

In the analyzed version of PAQ8PX, a number of 62 stationary maps are used for grayscale

images. Five of them are used in conjunction with OLS modeling, in order to model quadrants of the

causal pixel neighborhood of different lengths. The others accept as keys various clipped and

clamped predictions. An indirect context map is used which accepts 27 entries as keys computed as

hashed predictions. This means that the estimated number of probabilities which are the output of

the image model for grayscale images is 62 * 2 + 27 * 5 = 259.

3.5. Context Mixing

Encoding of a bit needs only one probability and the bit to code. Modeling produces many

probabilities that need to be combined to obtain a final probability. One option would be to do a

linear combination of the probabilities and adjust the weights accordingly after the true value is

available.

The solution in the PAQ8 family of compressors is to use a gated linear network, and context

mixing is one implementation of such a network. The details of GLNs are described in detail in [23],

which also include the mathematical proof of the convergence guarantee. The description of the

network is split into three parts: geometric mixing, gated geometric mixing, and gated linear

networks.

Geometric mixing is an adaptive online ensemble that was analyzed in depth and whose

properties are described in [24], [25], and [26]. The main difference to linear mixing, which implies

weighting the probabilities directly, is that the probabilities are first transformed into the logistic

domain using the logit function (sometimes referred to as stretch in the paper).

𝑙𝑜𝑔𝑖𝑡(𝑥) = log⁡(
𝑥

1 − 𝑥
) (1)

They are then linearly combined and then the result is transformed back into a probability using a

sigmoid function (sometimes referred to as squash in the paper).

Appl. Sci. 2019, 9, 2681 8 of 19

𝜎(𝑥) ⁡= ⁡
1

1 + 𝑒−𝑥
 (2)

The weights are updated using an online gradient descent together with a logarithmic loss. In

this way, a weighted redundancy minimization in the coding space can be achieved (minimized

Kullback–Leibler divergence) [25].

An advantage of this method when compared to regular probability weighting also comes with

the fact that weights do not need to be normalized or clipped to the positive domain.

Gated geometric mixing means adding a context selector. So far, we have a neuron that takes as

input stretched probabilities and has weights associated with the input. If, instead, we had a set of

weights from which we select one based on an index, we would create a gate. The index can be

computed as a function of a context or as additional information. We can now say that the neuron

has specialized weights.

Gated linear networks are a network of stacked gated geometric mixing layers of neurons. The

output of a gated geometric mixing neuron is a probability. A set of neurons that works on the same

input forms a layer. The set of outputs of one layer form the input for another layer. A final probability

is obtained when a layer contains only one neuron. At first glance, the network looks similar to a

multi-layer perceptron, but, in this case, the learning is not done via backpropagation. Instead, each

neuron output tries to approximate the end probability, and, since each layer constructs on the output

of the previous, it further improves the result.

In the following paragraph, we present some important considerations. The loss function is

convex, which implies a simplified training of a deep network. The network rapidly adapts to the

input, making it a perfect candidate for online learning. Weights can be initialized in more ways and

random assignment is not necessary because of the convexity of the loss function. The PAQ8

compressors initialize all the weights to zero with the implication that no predicting model has any

importance in the beginning and allowing a rapid update towards selecting the best specialist.

Clipping the weights and regularization techniques are also presented in [23], but are not used in

PAQ.

PAQ8PX uses a network with two layers for image compression, the first layer has seven

neurons and uses functions of immediate pixels and column information as contexts, which means

that the pixel position in the image is taken into account.

3.6. Adaptive Probability Maps

Adaptive probability maps (APM), sometimes referred to as secondary symbol estimation, have

a probability and a context value as inputs, and a probability as output. The context value serves as

an index in a set of transfer functions. Once selected, a set of interpolation points are available. In the

initial state, they should map the input probability to the same value. The input probability is

quantized between two points of the set; the output value is the linear interpolation of the value of

the points weighted by the distance from them. In the update phase, the two end values are updated

so that the output probability is closer to the value of the predicted bit.

There are variations of the APM. One of them, which is used in PAQ8, has a stretched probability

as an input with the benefit of having more interpolation points towards the zero and one probability,

where compression benefits from the fine-tuning. Other compression programs use APM with two

quantized predictions as inputs with a 2D interpolation plane.

It is not necessary to use only a single APM since they can be connected in a network. PAQ8PX

uses different architectures based on the type of stream detected. For 8 bpp grayscale images, three

APMs are used. Two of them take the output of the context mixing phase as an input and have

functions as contexts, including the current known byte bits, the number of mispredictions in the

past, and whether the prediction falls in a neighborhood plane or not. The output of the first APM is

again refined and the final prediction is a fixed weight linear combination of the three probabilities.

Appl. Sci. 2019, 9, 2681 9 of 19

3.7. Other Considerations

Predictions need to be perfectly identical when compressing and decompressing, because,

otherwise, the decoder will rely on false data. Floating point operations cannot guarantee cross

compiler, cross processor, and cross-operating system this hard constraint. It became even more

important to have fixed rules when support for streaming instructions like SSE and AVX was added.

It was decided that fixed point arithmetic will be used across all operations. Even setting initial values

for lookup operation tables like stretching, squashing or logarithm was done by interpolation of

initial integer values or by numerical integration. Components described here use fixed-point values

with varying point position. The representation can be on 16 bit or 32-bit integers. For example,

representing the weights of the context mixing algorithm in 16 bit is useful when using vector

instructions, since more values fit into operands. Some exceptions to this rule were made for the sake

of maximum compression for the wav model and the ordinary least squares algorithm used in image

compression.

Another unintuitive part is that the update part of each model takes place right before the

prediction part. The first prediction is by default 0.5 since it relies on no information. Afterward, each

time the predictor is queried, it does the update with the known bit and then computes a prediction.

This is done as an optimization since the accessed memory locations during the update might still be

loaded in the cache and the prediction might need the same locations.

4. The Proposed Method – Contextual Memory

The idea behind the algorithm is to encode probabilities in a memory-like structure. The

probabilities are accessed by using a set of keys computed on a known context. Resilience to noise

(since lossless compression for photographic images will mostly have to deal with noise) would be

handled by allowing that not all the keys will find a match in the memory.

4.1. Context Modeling

When it comes to predictive compression, we need to decide what best describes the part of the

image we are currently trying to predict. This means that we need to look around the target pixel in

the hope that the information will be enough to help a decision mechanism recognize which part of

the image we are in and choose to use the appropriate representation of the internally created

segmentation of the image.

Before continuing, we need to define the terms used in Figure 3. The word context represents the

region of the image that participates in the prediction mechanism. “Context value” is the numeric

value of the context, either a direct value or a function of that value, which will be used as an index

in the memory structure. The algorithm makes no assumption about the memory structure, but we

provide some implementation details. The output of indexing the memory is the “memory value”.

Appl. Sci. 2019, 9, 2681 10 of 19

Figure 3. Block scheme of the proposed method.

We choose a simple model for contexts for predicting the bits of the pixels. We use rays in four

directions and with various lengths, and the quantized derivatives along the rays. Since the pixels of

the image are predicted from left to right, top to bottom, the only information we can rely on are

known pixels, which means the directions are to the west, 45 degrees north-west, north, and 45

degrees north-east. The rays are depicted as gray background in Figure 4. We choose rays of varying

lengths from length 1 to 7, but use this as a parameter. The derivative with respect to the intensity

value is computed as the difference between the consecutive pixels of the ray and quantizing is done

by masking the lower order bits from the derivative. We use three levels of quantizing, each cutting

out one more bit than the other. The current pixel participates in the contexts only with the currently

known bits.

Figure 4. Contexts as rays.

In order to compute the context value from the contexts, we use a hashing function. We chose

Fowler–Noll–Vo hash function (FNV) that is a non-cryptographic one byte at a time, designed to

compute fast and with a low collisions rate. It is found to be particularly suited for hashing nearly

identical strings [27].

Appl. Sci. 2019, 9, 2681 11 of 19

As an optimization, since we know that we will need to compute hashes for rays, we exploit the

fact that FNV computes one byte at a time hashes and pass as input only the longest ray and output

all the intermediate results. We apply the same optimization for the quantized derivatives of the rays.

4.2. Description of the Contextual Prediction

4.2.1. Model Prediction

To make a prediction, we propose the following algorithm (simplified from the original

proposed algorithm [28], which had a probability refinement phase):

1. We obtain a value from the memory for each context. One way to do that is to index the hash of

the “context value” in a table

2. We average all the obtained “memory values”

3. Convert the average into a probability using the sigmoid function

𝑝 = 𝜎 (
𝑘

𝑛
∑𝑣𝑖

𝑛

𝑖=0

) , 𝑣𝑖 = 𝑀[𝑖][ℎ𝑎𝑠ℎ(𝑐𝑖)] (3)

p is the output probability (that a bit is one),

n is the number of input contexts,

ci is the context value of the i-th context,

vi is the memory value from the memory M for context i,

k is some ad-hoc constant

σ is the sigmoid function.

4.2.2. Interpretation of Values

Logistic regression is a way of combining probabilities when they are fed as inputs to the

algorithm. Using stretched probabilities as inputs (applying logit function to them), logistic mixing

becomes optimal for minimizing wasted coding space (Kullback–Leibler divergence) [24] because the

weighting becomes geometric.

𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖 +⋯+ 𝛽0𝑥𝑘,𝑖 (4)

where 𝑥𝑗,𝑖 is a probability, becomes

𝛽0 + 𝛽1𝑡1,𝑖 + 𝛽2𝑡 + ⋯+ 𝛽0𝑡𝑘,𝑖 (5)

where

𝑡𝑗,𝑖 =⁡ logit(𝑥𝑗,𝑖) (6)

The update formula for minimizing the relative entropy is:

𝛽𝑗 = 𝛽𝑗 + ⁡𝛼 ∗ ⁡𝑡𝑗 ∗ (𝑦𝑖 − 𝑝𝑖) (7)

The set of weights carries a part of the predictive part of the ensemble, and they get updated to

better represent the potential of individual components. In the case of PAQ8, the components gather

statistics independently and the network independently mixes the statistics. Adding more weights

to the mixer can result in improved predictive power since the model can better discriminate between

the contexts. But what if instead of separating the mixer from the statistics we move the mixing

information towards the components? How can we pass the mixing information to the weak learners

of the ensemble?

So far, we know that the memory value vi is taken from a memory structure. The index in the

memory is computed based on the context value. But the feature is the context, not the memory value.

We can assume that the memory value is

𝑣𝑖 = 𝛽𝑖 ∗ ⁡𝑡𝑖 (8)

Appl. Sci. 2019, 9, 2681 12 of 19

with ti a stretched probability and β the weight of the probability in the ensemble. Computing the

output probability resembles logistic regression, with the main difference being that we apply

averaging. The average in itself is a weighted stretched probability

𝑘

𝑛
∑(𝛽𝑖 ∗ ⁡ 𝑡𝑖)

𝑛

𝑖=0

 (9)

which is converted into a regular probability by applying the sigmoid function.

4.2.3. Updating the Model

In order to pass mixing information to the weak learners, we propose a dual objective

minimization function (as depicted in Figure 5):

• In respect to the output of the network – global error

• In respect to the output of the individual nodes (side predictions) – local error

Figure 5. Block scheme for the proposed update algorithm.

Like PAQ8, we use reinforcement learning. Since we do not know the true value of the

probability that a bit is 0 or 1 in a given context, we cannot use supervised learning. We

backpropagate the binary outcome in the network and try to minimize the cumulative logistic loss in

an online manner. The square loss can be also used, but we are trying to minimize the wasted coding

space.

For minimizing the logistic loss, the formula we used for the global error is

𝐸𝑔 = 𝛽𝑔(𝑝 − 𝑦) (10)

If we wanted to minimize the square loss, the formula would be

𝐸𝑔 = 𝛽𝑔(𝑝 − 𝑦) ∗ 𝑝 ∗ (1 − 𝑝) (11)

with Eg as the global error, βg the global error learning rate, p is the output probability of the entire

network, and y the binary ground truth.

The local error is computed for each memory value in a similar fashion to the global error.

𝐸𝑙 =⁡𝛽𝑙 ∗ (𝑝𝑖 − 𝑦), ⁡𝑝𝑖=𝜎(𝑘𝑣 ∗ 𝑣𝑖) (12)

with El as the local error, βl the local error learning rate, pi is the output probability for the i-th context

(side prediction) multiplied by an ad-hoc value kv, computed as the sigmoid of the memory value vi,

and y is the binary ground truth.

Appl. Sci. 2019, 9, 2681 13 of 19

All the “memory values” are then updated by subtracting the local and global errors:

𝑣𝑖 = 𝑣𝑖 − 𝐸𝑙 − 𝐸𝑔 (13)

Instead of updating weights of the mixture, we update directly the values that contribute to the

average. We have no layer to separate the context weights from the input probabilities, making the

method different from the context mixing algorithm.

4.3. Memory Implementation and Variations

The algorithm makes no assumption on how to organize the memory structure. We describe

here potential implementation and give more details to the implementation we chose to use. The

proposed implementations are based on hash tables since they give fast retrieval, given the fact that

the context values are computed by hashing series of pixel values. We chose the 32-bit FNV hashing

with table sizes the power of two so that indexing an entry will be done by masking. We use separate

tables for each context so we have collision independence. The difference between the memory types

comes from the way collisions and new entries are treated.

• simple lookup – we ignore the potential collisions and average the memory values, multiply the

result by an ad-hoc constant, and then apply the sigmoid function,

𝑝 = 𝜎(𝑠𝑢𝑚 ∗ 𝑐), 𝑐 =
𝑘

𝑛
 (14)

where n is the number of contexts and k is an ad-hoc constant. Once the number of contexts

becomes known, c becomes a constant and can be computed only once.

• tagged lookup – for each memory value a small tag is added that is computed by taking the higher

order bits of the context value. If a table address size is less than 32 bits, the remaining bits still

can bring value to the indexing. If the tag matches, we can use the value for the average.

𝑝 = 𝜎(
𝑠𝑢𝑚 ∗ 𝑘

𝑛𝑡
) (15)

where nt is the number of tag matches. In an empirical study we concluded that instead of simply

averaging the values, we can get better results by dividing the sum by the average of the number

of contexts and the number of tag matches. The formula becomes

𝑝 = 𝜌(
𝑠𝑢𝑚 ∗ 𝑘
𝑛𝑡 + 𝑛
2

) (16)

This is an approximate weighting of the confidence of the output based on how many inputs

participate in the result.

On update, we update the tag of the location where it does not match. The value of the location

can be reset to zero or the old value can be kept and the regular updated formula used. Keeping

the old value sometimes gives better results and we believe this is because the collisions

generated by noise can reset a very biased context value. This method uses more memory and

has a more complex update rule, but gives better results than the simple lookup with the cost of

improved computing complexity.

• bucket lookup – the context value indexes a bucket with an array of tagged values. The selection

of the memory value is done by searching the bucket for a matching tag. In this way, we can

implement complex replacement rules for the values inside the bucket. We provide a “least bias”

eviction rule when no tag is matched in the bucket. This means kicking the location with the

value closest to zero. In this way, we keep the values that can bring benefits to the compression.

Computing the output and the update rules are the same as in tagged lookup. If the bucket size

is kept small (4 to 8 entries), the linear search is done in the same cache line, making the speed

comparable to the tagged lookup.

Appl. Sci. 2019, 9, 2681 14 of 19

The tests we performed yielded different results for the proposed memory implementations.

Each implementation should be chosen by taking into account the balance of speed versus the quality

of prediction (from the first to the third).

As an optimization, instead of having the memory values represented as floating point numbers

that occupy 32 bits, we quantize the value to a fixed-point represented by a short integer that only

uses 16 bits. In the future, we could replace this representation with the FP16 standard. For tagged

values we have found that 8-bit values are enough, making the whole tag-value pair to be 24 bits. In

this way, we can use lookup tables for computing the local error, since we know that the values are

constricted to 65536 possibilities and we avoid the multiply and squash operations.

Memory implementations consider the 8 bits per byte structure of the image. This means that

the buckets should be indexed using a proximity function for faster memory access. We used the XOR

function of the initial context value hash with the partial known nibble (4 bits of a byte) to create a

new index. This ensures that the new context value will fall inside the same (or at most another) cache

line of 64 bytes. After 4 bits, a new hash is computed with the known full nibble.

5. Experimental Results

5.1. PAQ8PX Contextual Memory Implementation Details

We implemented the contextual memory algorithm for the 8 bpp lossless image compression.

This section describes the architecture and some of the implementation details of the application.

The application is implemented in the C++ programming language, since the PAQ8PX was

already implemented in this language. The code is compiled in Visual Studio and separates the

original code, the changes required for compilation and the additional implementation into different

commits, making clear which part is which.

The source code containing a full implementation of the algorithm will be publicly available at

the GitHub page [29] repository [30].

5.2. Evaluation on the Benchmarks

In order to test the effectiveness of the algorithm, we applied the augmented version of the

PAQ8PX algorithm with contextual memory to four test sets. The command line option for the

compression for all the images selects memory level 8 and adaptive learning rate (-8a).

The Waterloo image compression benchmark [31] contains two test sets with image sizes from

256 x 256 pixels up to 1118 x 1105. For this benchmark, we used as parameters for the contextual

memory ray length 5 and memory size 20. The results are presented in Table 1 and Table 2. A newer

benchmark, Sachin Garg’s test images corpus [32], contains images ranging from 2268 x 1512 pixels

up to 7216 x 5412. For this benchmark, we used ray length 7 and memory size 23 as parameters for

the contextual memory. The results are presented in Table 3. We also included the Squeezechart 8

bpp grayscale images test set [33] where four of the five images are medical images. For this

benchmark, we used ray length 6 and memory size 20 as parameters for the contextual memory. The

results are presented in Table 4. The best results in the table are highlighted using bold font weight.

Table 1. Waterloo gray test set 1.

Set
JPEG

 2000
JPEG-LS MRP ZPAQ

Vanilc

WLS

D

Paq8px167
Paq8px167+CM

(proposed)

bird 3,6300 3,4710 3,2380 4,0620 2,7490 2,6073 2,6077

bridge 6,0120 5,7900 5,5840 6,3680 5,5960 5,5074 5,5037

camera 4,5700 4,3140 3,9980 4,7660 3,9950 3,8176 3,8173

circles11 0,9280 0,1530 0,1320 0,2300 0,0430 0,0281 0,0282

crosses1 1,0660 0,3860 0,0510 0,2120 0,0160 0,0176 0,0171

goldhill1 5,5160 5,2810 5,0980 5,8210 5,0900 5,0220 5,0197

Appl. Sci. 2019, 9, 2681 15 of 19

horiz11 0,2310 0,0940 0,0160 0,1220 0,0150 0,0139 0,0140

lena1 4,7550 4,5810 4,1890 5,6440 4,1230 4,1302 4,1293

montage1 2,9830 2,7230 2,3530 3,3350 2,3630 2,1505 2,1501

slope1 1,3420 1,5710 0,8590 1,5040 0,9600 0,7186 0,7194

squares1 0,1630 0,0770 0,0130 0,1770 0,0070 0,0129 0,0128

text1 4,2150 1,6320 3,1750 0,4960 0,6210 0,1053 0,1052

Average 2,9510 2,5060 2,3920 2,7280 2,1310 2,0109 2,0103

_1 Non-natural / artificially generated image

Table 2. Waterloo gray test set 2.

Set
JPEG

2000
JPEG-LS MRP ZPAQ

Vanilc

WLS D
Paq8px167

Paq8px167+CM

(proposed)

barb 4,6690 4,7330 3,9100 5,6720 3,8710 3,9319 3,9297

boat 4,4150 4,2500 3,8720 4,9650 3,9280 3,8165 3,8145

france1 2,0350 1,4130 0,6030 0,4220 1,1590 0,0992 0,0966

frog 6,2670 6,0490 _2 3,3560 5,1060 2,4656 2,4581

goldhill2 4,8470 4,7120 4,4650 5,2830 4,4630 4,4227 4,4214

lena2 4,3260 4,2440 3,9230 5,0660 3,8680 3,8608 3,8604

library1 5,7120 5,1010 4,7650 4,4870 4,9110 3,3253 3,3200

mandrill 6,1190 6,0370 5,6790 6,3690 5,6780 5,6364 5,6339

mountain 6,7120 6,4220 6,2210 4,4930 5,2150 4,0799 4,0744

peppers2 4,6290 4,4890 4,1960 5,0950 4,1740 4,1493 4,1470

washsat 4,4410 4,1290 4,1470 2,2900 1,8900 1,7478 1,7466

zelda 4,0010 4,0050 3,6320 4,9200 3,6330 3,6437 3,6435

Average 4,8480 4,6320 4,3680 3,9910 3,4316 3,4288

_1 Non-natural / artificially generated image

_2 Supported image size only multiple of eight

Table 3. Imagecompression.info 8 bpp gray new test images.

Set
JPEG

2000

JPEG-

LS
MRP ZPAQ

GraLI

C

Vanilc

WLS

D

Paq8p

x167

Paq8px1

67+CM

(propos

ed)

artificial1 1,1970 0,7980 0,5170 0,6730 0,4464 0,6820 0,3188 0,3186

big_building 3,6550 3,5920 _2 4,3350 3,1777 3,2430 3,1250 3,1216

big_tree 3,8050 3,7320 _2 4,4130 3,4080 3,4680 3,3823 3,3803

Bridge 4,1930 4,1480 _2 4,7250 3,8700 3,8420 3,7958 3,7953

cathedral 3,7100 3,5700 3,2600 4,2390 3,1900 3,3020 3,1539 3,1519

Deer 4,5820 4,6590 _2 4,7280 4,3116 4,3760 4,1788 4,1750

fireworks 1,6540 1,4650 1,3010 1,5550 1,2500 1,3640 1,2324 1,2325

flower_foveon 2,1980 2,0380 _2 2,4640 1,7761 1,7470 1,6944 1,6943

hdr 2,3440 2,1750 1,8540 2,5890 1,9197 1,8730 1,8330 1,8327

leaves_iso_200 4,0830 3,8200 3,4000 4,7430 3,2630 3,5370 4,0509 4,0473

leaves_iso_1600 4,6810 4,4860 4,1860 5,2600 4,0720 4,2430 3,2168 3,2130

nightshot_iso_100 2,3000 2,1300 1,8390 2,5760 1,8240 1,8750 1,7811 1,7805

nightshot_iso_1600 4,0380 3,9710 3,7430 4,2680 3,6610 3,7820 3,6295 3,6272

spider_web 1,9080 1,7660 1,3490 2,3640 1,4441 1,4220 1,3498 1,3502

zone_plate1 5,7550 7,4290 2,8340 5,9430 0,8620 0,9110 0,1257 0,1257

Average 3,3400 3,3190 3,6580 2,5650 2,6500 2,4579 2,4564

_1 Non-natural / artificially generated image

Appl. Sci. 2019, 9, 2681 16 of 19

_2 Supported image size only multiple of eight

Table 4. Squeezechart 8 bpp grayscale.

Set MRP
cmix

v14f
GraLIC Paq8px167

Paq8px167+CM

(proposed)

blood8 2,1670 2,1600 2,3200 2,1308 2,1304

cathether8 1,5350 1,5351 1,6580 1,5382 1,5380

fetus 4,0650 3,9730 4,1310 3,8236 3,8225

shoulder 2,8660 2,9080 3,1130 2,8697 2,8676

sigma8 2,6870 2,6290 2,7200 2,6266 2,6263

Average 2,6640 2,6410 2,7880 2,5978 2,5970

We used as learning constants global learning rate βg = 0.9 and local learning rate βl = 0.1 and the

constants k and kv were set to 0.4.

The results in Table 1, 2, 3, and 4 are expressed in bits per pixel which is an image size independent

absolute measure of the compression ratio. It represents the average number of bits needed to encode

the pixel information from an image. It is computed as the compressed size of the image divided by

the number of pixels. This is not to be confused with bits per byte, which measures the compressed

ratio of a general file, though in our case the two values coincide since the size of a pixel in an 8-bit

color depth grayscale image is one byte. The header of the compressed file should be excluded when

computing the bits per pixel, but it is not always the case since the header is usually a minor payload

compared to the content. However, it should be specified if the header is included or not in

computing the bits per pixel so that the results can be verified.

5.3. Discussion on the Results

The reason for choosing these benchmarks is that they are publicly available and that they are

provided without conflicts of interest. They contain images of various types such as artificially

generated, edited, photographs, and scans. This makes them suitable for publications and there are

published papers using them, such as [11]. We present our results on all the images in the datasets in

order to prove that we did not tune the algorithm to a selected few. The images are compressed

separately (as in not a solid archive) to prevent reusing correlations.

The PAQ8 family of algorithms was designed to achieve good compression ratios at the expense

of a long compression time and a large memory footprint. Even though there are some optimizations

applied, the running time will be much larger than some of the other algorithms. The contextual

memory algorithm also does not contain too many speed optimizations in its provided form.

Therefore, a running time comparison is out of the scope of this paper, but to give the reader a sense

of the execution time scale, we provide a relative comparison on the image lena2 from the Waterloo

gray test set (see Table 5). The algorithms where run on the same processing architecture.

Table 5. Compression running time comparison on image lena2 (expressed in seconds).

Image MRP
JPEG

2000
JPEG-LS GraLIC Paq8px167

Paq8px167+CM

(proposed)

lena2 258 s 0.04 s 0.02 s 0.25 s 12 s 24 s

The compression running time does not equal the decompression running time for all the

algorithms. For instance, the MRP algorithm is highly asymmetric due to its multiple pass

optimizations, decompression of the same image taking only 0.6 seconds. The timings were measured

using the x64 version of the Timer 14.00 tool created by Igor Pavlov and available for public domain

on the 7-cpu website [34].

Memory requirements depend on the compression parameters. PAQ8PX reports using 2493MB

of memory for command line parameter -8a. The contextual memory algorithm adds to this

Appl. Sci. 2019, 9, 2681 17 of 19

depending on the parameters set. We can estimate the memory consumption of the current

implementation by multiplying the number of rays by ray length, table size (2memory size), 4 (no

quantization plus 3 quantized derivatives), 3 (number of bytes per memory location). For ray length

5 and memory size 20, we estimate that it adds another 240 MB of memory.

The results in Table 1, 2, and 3 for all the compressors, except Paq8px167 and the proposed

method, were taken directly from [11], and the results in Table 4 were taken from the PAQ8PX thread

[21]. The results missing in the paper for GraLIC and the results for Paq8px167 and the proposed

method are computed using a tool we created for this purpose, available at [35]. The tool does not

exclude the file headers when computing the bits per pixel.

6. Conclusions and Future Work

This paper provides a description of the state-of-the-art compression program PAQ8PX from the

point of view of grayscale image compression. The main contribution of this paper is an application

agnostic algorithm for predicting probabilities based on the contextual information available with

learning done in an online fashion. The usefulness of the algorithm is demonstrated by integrating it

with the PAQ8PX algorithm and testing it on several image compression benchmarks. The results

show an overall compression ratio improvement across all the datasets without special crafted

features. One important difference from existing ensemble mixing algorithms is that, in our

algorithm, we assume that various contexts apply together and the prediction benefits from the

synergy of the side predictions, unlike the ensembles that assume model independence.

In its current state, the algorithm was not applied to color or 16 bpp images. For future

developments, we intend to extend the algorithm for three-dimensional medical image compression

and support 16 bpp depth. Context modeling can be done similarly to the work described in [15].

The architecture chosen for the algorithm does not take into account parallel optimization

techniques that are suitable for hardware implementation like the CCSDS developed image

compression algorithms [17]. Unlike the CCSDS standard, the focus for PAQ8 is set to provide the

unconstrained liberty for exploring techniques to improve the compression ratio. However, if one

wants to standardize an epoch of development, the code can be converted to the ZPAQ open standard

[36] that, among other things, aims for forward and backward compatibility of archives. Although

not presented in this paper, in future releases we can compare the compression ratio with the CCSDS

family of algorithms.

In [37], a context function is proposed to statistically discriminate error residual classes of full

pixel prediction, useful for lossless and near-lossless compression schemes. Due to its properties, such

a function could be integrated within the context mixing layer and the adaptive probability maps.

Design space exploration needs to be done for context modeling. Moving contexts from other

modeling types to the contextual memory predictor might also bring benefits. The side predictions

of the algorithm can be also be passed to the context mixing network. Splitting various contexts into

two or more contextual memory structures can also lead to finding better correlations.

Author Contributions: conceptualization, A.D. and R.B.; methodology, A.D.; software, A.D.; validation, A.D.;

formal analysis, A.D.; investigation, A.D.; resources, A.D.; writing—original draft preparation, A.D.; writing—

review and editing, A.D.; supervision, R.B.

Funding: This research received no external funding.

Acknowledgments: We thank Assoc. Prof. Macarie Breazu for his helpful comments during the writing of this

paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, D.; Li, Y.; Zhang, H.; Gao, W. Invertible update-then-predict integer lifting wavelet for lossless image

compression. EURASIP J. Adv. Signal Process. 2017, 2017, 8-17, doi:10.1186/s13634-016-0443-y.

Appl. Sci. 2019, 9, 2681 18 of 19

2. Khan, A.; Khan, A.; Khan, M.; Uzair, M. Lossless image compression: Application of Bi-level Burrows

Wheeler Compression Algorithm (BBWCA) to 2-D data. Multimed. Tools Appl. 2017, 76, 12391–12416,

doi:10.1007/s11042-016-3629-2.

3. Feng, W.; Hu, C.; Wang, Y.; Zhang, J.; Yan, H. A Novel Hierarchical Coding Progressive Transmission

Method for WMSN Wildlife Images. Sensors 2019, 19, 946, doi:10.3390/s19040946.

4. Schiopu, I.; Munteanu, A. Residual-error prediction based on deep learning for lossless image compression.

Electron. Lett. 2018, 54, 1032–1034, doi:10.1049/el.2018.0889.

5. Hosseini, S.M.; Naghsh-Nilchi, A.-R. Medical ultrasound image compression using contextual vector

quantization. Comput. Biol. Med. 2012, 42, 743–750, doi:10.1016/j.compbiomed.2012.04.006.

6. Eben Sophia, P.; Anitha, J. Contextual Medical Image Compression using Normalized Wavelet-Transform

Coefficients and Prediction. IETE J. Res. 2017, 63, 671–683, doi:10.1080/03772063.2017.1309998.

7. Borusyak, A.V.; Vasin, Yu.G. Development of an algorithm for adaptive compression of indexed images

using contextual simulation. Pattern Recognit. Image Anal. 2016, 26, 4–8, doi:10.1134/S1054661816010041.

8. Strutz, T. Context-Based Predictor Blending for Lossless Color Image Compression. IEEE Trans. Circuits

Syst. Video Technol. 2016, 26, 687–695, doi:10.1109/TCSVT.2015.2416611.

9. Knezovic, J.; Kovac, M.; Mlinaric, H. Classification and Blending Prediction for Lossless Image

Compression. In Proceedings of the MELECON 2006–2006 IEEE Mediterranean Electrotechnical

Conference, Benalmadena, Spain, 2006; pp. 486–489, doi:10.1109/MELCON.2006.1653144.

10. Strizic, L.; Knezovic, J. Optimization of losless image compression method for GPGPU. In Proceedings of

the 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 2016; pp. 1–6,

doi:10.1109/MELCON.2016.7495398.

11. Weinlich, A.; Amon, P.; Hutter, A.; Kaup, A. Probability Distribution Estimation for Autoregressive Pixel-

Predictive Image Coding. IEEE Trans. Image Process. 2016, 25, 1382–1395, doi:10.1109/TIP.2016.2522339.

12. Biadgie, Y.; Kim, M.; Sohn, K.-A. Multi-resolution Lossless Image Compression for Progressive

Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation. Ksii

Trans. Internet Inf. Syst. 2017, 11, 6017–6037, doi:10.3837/tiis.2017.12.018.

13. Biadgie, Y. Edge Adaptive Hierarchical Interpolation for Lossless and Progressive Image Transmission.

Ksii Trans. Internet Inf. Syst. 2011, 5, 2068–2086, doi:10.3837/tiis.2011.11.011.

14. Song, X.; Huang, Q.; Chang, S.; He, J.; Wang, H. Lossless medical image compression using geometry-

adaptive partitioning and least square-based prediction. Med Biol. Eng. Comput. 2018, 56, 957–966,

doi:10.1007/s11517-017-1741-8.

15. Lucas, L.F.R.; Rodrigues, N.M.M.; da Silva Cruz, L.A.; de Faria, S.M.M. Lossless Compression of Medical

Images Using 3-D Predictors. IEEE Trans. Med. Imaging 2017, 36, 2250–2260, doi:10.1109/TMI.2017.2714640.

16. Shen, H.; Jiang, Z.; Pan, W. Efficient Lossless Compression of Multitemporal Hyperspectral Image Data. J.

Imaging 2018, 4, 142, doi:10.3390/jimaging4120142.

17. Consultative Committee for Space Data Systems CCSDS Recommended Standard for Image Data

Compression, 2017. Available online: https://public.ccsds.org/Pubs/122x0b2.pdf (accessed on 29 June 2019).

18. Knoll, B.; De Freitas, N. A Machine Learning Perspective on Predictive Coding with PAQ8. In Proceedings

of the 2012 Data Compression Conference, Snowbird, UT, USA, 2012; pp. 377–386,

doi:10.1109/DCC.2012.44.

19. Mahoney, M.V. Adaptive Weighing of Context Models for Lossless Data Compression; The Florida Institute of

Technology: Melbourne, FL, USA, 2005; Volume 6.

20. Data Compression Explained. Available online: http://mattmahoney.net/dc/dce.html#Section_43 (accessed

on 11 May 2019).

21. Paq8px thread. Available online: https://encode.ru/threads/342-paq8px (accessed on 11 May 2019).

22. Chartier, M. MCM File Compressor. Available online: https://github.com/mathieuchartier/mcm (accessed

on 29 June 2019).

23. Veness, J.; Lattimore, T.; Bhoopchand, A.; Grabska-Barwinska, A.; Mattern, C.; Toth, P. Online Learning

with Gated Linear Networks. arXiv 2017, arXiv:1712.01897 [cs, math].

24. Mattern, C. Mixing Strategies in Data Compression. In Proceedings of the 2012 Data Compression

Conference, Snowbird, UT, USA, 2012; pp. 337–346, doi:10.1109/DCC.2012.40.

25. Mattern, C. Linear and Geometric Mixtures-Analysis. In Proceedings of the 2013 Data Compression

Conference, Snowbird, UT, USA, 2013; pp. 301–310, doi:10.1109/DCC.2013.38.

Appl. Sci. 2019, 9, 2681 19 of 19

26. Mattern, C. On Statistical Data Compression. Ph.D. Thesis, Technische Universität Ilmenau, Ilmenau,

Germany, 2016.

27. Fowler–Noll–Vo Hash Functions. Available online:

http://www.isthe.com/chongo/tech/comp/fnv/index.html (accessed on 11 May 2019).

28. Dorobanţiu, A.; Brad, R. A novel contextual memory algorithm for edge detection. Pattern Anal. Appl. 2019,

1–13, doi:10.1007/s10044-019-00808-0.

29. Alexandru Dorobanțiu-GitHub. Available online: https://github.com/AlexDorobantiu (accessed on 11 May

2019).

30. Dorobanțiu, A. Paq8px167ContextualMemory. Available online:

https://github.com/AlexDorobantiu/Paq8px167ContextualMemory (accessed on 13 May 2019).

31. Image Repository of the University of Waterloo. Available online:

http://links.uwaterloo.ca/Repository.html (accessed on 11 May 2019).

32. Garg, S. The New Test Images-Image Compression Benchmark. Available online:

http://imagecompression.info/test_images/ (accessed on 11 May 2019).

33. Squeeze Chart Lossless Data Compression Benchmarks. Available online: http://www.squeezechart.com/

(accessed on 11 May 2019).

34. 7-cpu. Available online: https://www.7-cpu.com/utils.html (accessed on 13 June 2019).

35. Dorobanțiu, A. Compute Bits Per Pixel for Compressed Images. Available online:

https://github.com/AlexDorobantiu/BppEvaluator (accessed on 29 June 2019).

36. Mahoney, M. The ZPAQ Open Standard Format for Highly Compressed Data-Level 2. 2016, Available

online: http://www.mattmahoney.net/dc/zpaq206.pdf (accessed on 29 June 2019).

37. Aiazzi, B.; Alparone, L.; Baronti, S. Context modeling for near-lossless image coding. IEEE Signal Process.

Lett. 2002, 9, 77–80, doi:10.1109/97.995822.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an

open access article distributed under the terms and conditions of the

Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

