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Abstract: In this study, the ability of a bench-scale simulated constructed wetland (CW) to remove
organic matter (OM) and tetracycline (TC) from water was examined. The performance of CW was
evaluated by varying the initial concentrations of the target compounds and the hydraulic retention
times (HRTs). Findings showed that OM removal efficiencies were 55.2–80.8%, 28.1–71.9% and
72.1–79.7% for ultraviolet absorbance at 254 nm (UV-254), dissolved organic carbon (DOC) and
soluble chemical oxygen demand (sCOD) respectively, under 1 day-HRT, whereas higher initial
DOC concentration achieved better removal efficiencies. Changing from 1 day-HRT to 2 day-HRT,
the removal efficiency of OMs remained practically unchanged, while that of NH3-N increased
considerably, from 61.7% to 73.0%, implying that the removal of ammonia in CW needs a longer
time for complete treatment. CW also showed an excellent performance in removing TC, especially
in the first two hours of operation through the absorption process. In addition, the findings from
this research revealed an improvement in effluent water quality when photocatalysis (TiO2/α-Al2O3,
with ultraviolet A (UVA) irradiation) was used as the post-treatment following CW, presented by
the increase in removal efficiency of OMs of the combined system compared to that of CW alone.
This study points to the possible and promising application of the low-cost water treatment system
for dealing with OMs and TC in water.

Keywords: constructed wetlands; organic matter; tetracycline; removal efficiency; photocatalysis;
water quality

1. Introduction

Declining water quality is considered a global concern due to the rapid growth of the population
and the expansion of industrial and agricultural activities [1]. Therefore, the scarcity of clean, safe and
adequate fresh water is predicted to become worse and worse globally in the coming decades, not only
in the arid regions, but also in regions presently considered water-rich [2]. Unfortunately, the surface
water in lakes, rivers, streams, and reservoirs that are used as the main source of potable water is
currently polluted by a combination of both anthropogenic and natural activities. This serious problem
threatens the health and well-being of humans, plants, and animals, and is a cause of climate change.

Natural organic matter (NOM) is one of the major compounds contained in surface or groundwater.
NOM is considered a challenge in drinking water treatment since its presence in water results in

Appl. Sci. 2019, 9, 2680; doi:10.3390/app9132680 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7443-0538
https://orcid.org/0000-0001-6492-6417
http://dx.doi.org/10.3390/app9132680
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/13/2680?type=check_update&version=2


Appl. Sci. 2019, 9, 2680 2 of 17

several negative impacts on the performance of standard water treatment processes such as granular
activated carbon filtration and membrane filtration [3]. Humic acid (HA), one of the major fractions
of NOM in natural water, not only causes taste and odour issues and imparts a yellowish to brown
color in natural water, but also poses serious problems for treatment systems. Through various
transformation processes, HA can form different kinds of disinfection by-products (DBPs) which are
very toxic and harmful for human health [4]. Typically, trihalomethanes (THMs), which are the result
of a reaction between the chlorine used for disinfecting tap water and natural organic matter in the
water, are associated with negative health effects such as cancer and adverse reproductive outcomes.
Therefore, the removal of NOM from raw water before the disinfection process is necessary and
considered a great health and environmental issue [5].

Pharmaceuticals and personal care products are currently recognized as a new class of emerging
pollutants and have been the subject of increasing attention and scientific consideration [6,7].
The occurrence of a huge number of pharmaceuticals in the aquatic environment has been gaining
prominence because of their negative effects on human health. Although low concentrations can be
currently detected in water bodies (just up to several µg/L), the continuous discharge of pharmaceutical
compounds into the environment from different sources makes them “pseudo-persistent” [8]. Among a
large variety of pharmaceutical compounds, antibiotics are of special concern due to their widespread
use in human and veterinary medicine [9]. Especially, tetracycline (TC) is one of the most commonly
used antibiotics in agricultural applications such as husbandry, cattle, swine, poultry, and fishery
production, with an extensive presence in surface waters. Unfortunately, the active components in
most pharmaceuticals are transformed only partially in the human body and animal body and then a
mixture of metabolites and bioactive forms are excreted into the sewage systems [10].

Constructed wetlands (CWs) have been proven to be a cost-effective ecological technology
for the treatment of numerous kinds of contaminated waters, including for the treatment of
domestic wastewater, industrial wastewater, agricultural wastewater, landfill leachate and stormwater
runoff [11,12]. A few years ago, these systems were also under study for their ability to remove
emerging microcontaminants like pharmaceuticals [13]. Not only this, but the removal of NOM in
water by using CWs was investigated by some researchers recently [14]. Such low-tech treatment
systems are often more economical than energy-intensive engineered treatment plants, easier to operate
and they provide numerous secondary benefits. The use of CWs has been successfully tested in
pilot-scale and field-scale applications, contributing data on overall contaminant removal efficiency on
the basis of either concentrations or loads [15,16].

Although CWs show several advantages in treating polluted water, they still have some limitations;
for example, CWs require a large area of operation and long hydraulic retention time (HRT) as well.
Therefore, to get the high water quality after treatment, it is necessary to investigate some methods
to improve CWs’ treatment efficiency, for example, incorporating with other treatment processes for
complete removal of contaminants [17,18]. Recently, advanced oxidation processes (AOPs) using
chemical oxidants, such as ozone and hydrogen peroxide (with or without photoassistance), have been
under consideration to remove humic acid. Photocatalytic processes, or photocatalysis (PC) using
TiO2 as photocatalysts, is one of the most attractive processes because of its abundance, low cost and
complete destruction of humic acid molecules by the direct oxidation process [19].

As mentioned above, the undesirable effects of NOM (represented by HA) and TC on human
and animal life are serious, thus requiring efforts to limit the concentration of these compounds in
water. There are various methods which can be used to deal with such a problem. To a certain extent,
each technique shows good performance in removing HA and TC; however, they are recognized as
either expensive or have low removal efficiency. For that reason, it is very important to seek effective
methods, which not only improve the contaminants’ removal efficiency but also cut down the cost of
installation. Both CW and PC are being considered as promising methods that can bring benefits in
terms of technical, economic and environmental aspects. In fact, these methods of purifying water can
be optimized to be more viable, at a lower cost and with less energy, while at the same time minimizing



Appl. Sci. 2019, 9, 2680 3 of 17

the use of chemicals and impact on the environment. However, there have been few reported studies
that demonstrate the capability of CW to reduce HA and TC in polluted water as well as the potential
to combine both CW and PC in removing HA from raw water.

To fill in this knowledge gap, the main objectives of this study were:

(i) To investigate the feasibility of a CW for treating water with varying initial dissolved organic
carbon (DOC) concentrations and with different HRTs.

(ii) To evaluate the removal efficiency of TC by using only a CW system for treatment. This experiment
was conducted under the condition of 1day-HRT and with different initial TC concentrations.

(iii) To examine the feasibility of combining CW and PC in treating water with influent DOC
concentrations ranging from 10 mg/L to 12 mg/L. The integrated system, biological degradation
in a CW model and chemical degradation with a TiO2-photocatalytic process, was operated in
sequence. CW was considered here as a pre-treatment system, while PC played the role of a
post-treatment process.

2. Materials and Methods

2.1. Preparation of the Influent Water

The raw water was collected from Jing-Si Lake in Pingtung, Taiwan. The characteristics of the raw
water are shown in Table 1.

Table 1. Water characteristics of Jing-Si Lake.

Parameter Unit Raw Water

pH - 7.50 ± 0.52
Alkalinity mgCaCO3/L 88.75 ± 5.00

UV-254 cm−1 0.089 ± 0.030
DOC mg/L 3.19 ± 0.64
sCOD mg/L 8 ± 2

NH3-N mg/L 0.127 ± 0.017
PO4-P mg/L 0.024 ± 0.011
NO3-N mg/L 0.72 ± 0.25

Tetracycline mg/L Not detected

With the aim of investigating the feasibility of using a CW for treating water with different
initial organic concentrations, synthetic water was prepared by adding HA stock solution (1000 mg/L)
with different volumes into raw water to get three initial DOC concentrations, namely 3.0–4.5 mg/L,
4.5–6.0 mg/L and 10–12 mg/L. Analytical-grade HA, purchased from Sigma-Aldrich (Steinheim,
Germany), was used as a simulant. This kind of HA contains approximately 3.1 mmol/g carboxylic
groups. The stock solution of HA at 1000 mg/L was prepared by mixing 1 g of HA with 62.5 mL of
NaOH (2 N) solution, because HA dissolves well in alkaline conditions, and then dissolved to 1 L with
deionized water (DI water) in a 1-L volumetric flask [5]. After that, this solution was put in a shaker to
agitate substances in a flask and then the stock solution was filtered through a 0.45 µm membrane filter
to remove the residual non-dissolved humic acid powder. Finally, the pH of HA solution was adjusted
to around 8.0 and this stock solution was kept in the dark in the fridge at the temperature at 4 ◦C in
maximum two weeks.

With the purpose to evaluate the removal efficiency of varying TC concentrations by using
CW, the TC stock solution was added into raw water to get three levels of input TC concentrations
(1, 5 and 10 mg/L). The stock solution of TC (1000 mg/L) was prepared by dissolving 0.1 g tetracycline
hydrochloride (Sigma-Aldrich, China, purity > 95%, kept in −20 ◦C) in 100 mL DI water [20]. After one
hour of agitation, TC stock solution was filtered through a 0.45 µm membrane filter and then stored in
amber bottles at 4 ◦C in the fridge.
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2.2. Constructed Wetland System Set-up

A bench-scale CW was set up based on a free-water flow wetland pattern, where effluent leaves
from the bottom of the system [21] (Figure 1). It is a rectangular tank made of glass, with dimensions of
40 cm long, 25 cm wide and 28 cm deep. This glass tank was filled in layers with gravel in the bottom
and mixture of sand and soil on the top, where Cyperus involucratus were planted. Cyperus involucratus
is the umbrella sedge, a close cousin of the famous Egyptian papyrus plant (Cyperus papyrus), which has
been used successfully in small-scale gravel-bed CWs in Australia and New Zealand [22]. After the
system was built, it took nearly two months to run an adaptive phase in order to ensure a stable effluent
quality. The system was operated by using peristaltic pumps to transfer the input water from the
influent tank to CW and from CW to the effluent tank. Inside CW, treatment processes such as organic
removal processes and nutrient removal processes occurred to remove both organic and inorganic
substances, and then, the effluent was collected in the collecting pit in CW.
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2.3. Photocatalytic System Set-up

The photocatalytic experiments were performed in a 1-L cylindrical Pyrex beaker (Ø120,
H = 150 mm) with continuous stirring by using a magnetic stirrer. Both the reactor and the magnetic
stirrer were put in a box covered with aluminium foil in all inner walls. The photocatalytic process
used two UVA lamps (10 W, 28 mm O.D., manufactured by Philips (Amsterdam, The Netherlands)),
which emitted light with a wavelength between 315 and 400 nm, were placed at the top of the box [19].
UVA lamps were set at 160 mm above photocatalyst and 65 mm above water level. Figure 2 illustrates
the layout of a photocatalytic reactor (PCR).

Supported TiO2 was prepared by adsorption according to the impregnation method, with α-Al2O3

being used as catalytic support. Commercially available P25 type titanium dioxide (TiO2 Degussa
P25 (Tokyo, Japan), with its crystal structure comprising of approximately 80% anatase and 20%
rutile and with a BET specific surface area of 50 m2/g, was used as photocatalyst [19]. α-Al2O3

balls (Eikme International Ltd., Hsinchu, Taiwan, size: 3–5 mm, shape in bead) were immersed in
a TiO2 solution consisting of TiO2 Degussa P25. After that, the balls were washed by RO water
until the effluent was clear; this means that all TiO2 had been adsorbed into α-Al2O3 surface [23].
Then supported catalysts were placed in an oven at 105 ◦C for 2 h for drying and calcined in a muffle
furnace at 450 ◦C for calcination for 3 h.
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Figure 2. The layout of the photocatalytic reactor.

2.4. Experimental Operation

Three phases of the experiment were conducted to achieve three established objectives. In the first
phase, the experiments were performed in a sequence to investigate the feasibility of CW for treating
water containing varying initial organic concentrations. In the next step, the investigation of treatment
efficiency of CW in different HRT conditions was also carried out in turn. The scheme was presented
in Figure 3.
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The volume of 6 L containing synthetic water prepared by adding HA stock solution into raw
water was pumped from the influent tank into bench-scale CW. Two peristaltic pumps were used to
pump water continuously from influent tank to wetland and from wetland to effluent tank. CW was
operated in turn with three different input organic concentrations, including 3.0–4.5 mg/L, 4.5–6.0 mg/L
and 10–12 mg/L (named run 1, 2 and 3, respectively), with the HRT was fixed at 1 day, flow rate was
3.47 mL/min. The water level in CW was maintained in the height of 30 mm above the mixture of
sand and soil layer. Samples were collected daily from the influent and the effluent of CWs, where Si,
S’i representing influent and effluent samples, respectively. Collected samples were analyzed with
the following parameters: pH, alkalinity, ultraviolet absorbance at 254 nm (UV-254), DOC, sCOD,
ammonia nitrogen (NH3

−N) and nitrate (NO3
−-N). Only samples for analyzing DOC were stored in the

fridge at 4 ◦C for a maximum of 1 week, the others were analyzed immediately after daily collecting.
In terms of investigating effects of the change of HRTs, CW was run under the conditions of

fixed DOC concentration influent at 10–12 mg/L and 1 day-HRT and 2 day-HRT (named run 3 and
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4, respectively). The flow rate of each pump was set according to different HRTs, 3.47 mL/min and
1.74 mL/min with 1 day-HRT and 2 day-HRT, respectively.

Regarding the second phase, with the aim to evaluate the removal efficiency of TC in water by
using only CW system for treatment, phase 2 of this study was conducted under the condition of
HRT-1day, flow rate was set up 3.47 mL/min and with different initial TC concentrations, 1 mg/L,
5 mg/L and 10 mg/L. The procedure to operate CW in this phase was mostly similar to that in phase 1.
However, the influent was made different, synthetic water in this phase was prepared by adding TC
stock solution with various dosages into raw water. Monitored parameters in phase 2 were pH and TC
concentration. One important thing in this phase is that during the experiments, the influent tank was
covered with aluminium foil to obstruct sunlight, to prevent photolysis of TC because TC can be easily
degraded under the light. Samples from the influent and the effluent were collected daily in clean
brown glass vials and frozen until analysis. In addition, during the first days after periods of 2, 4, 6,
12 and 24 h of operation, samples were taken to examine the change of TC concentration during the
periodic time in 1 day.

In the final phase, the experiment was conducted with the combination of CW and PCR to
examine the feasibility of this combined system in treating water with initial DOC concentration
ranging from 10 mg/L to 12 mg/L. The combination was operated in sequence, CW was considered as a
pre-treatment system, PCR played the role of a post-treatment process. The flow rate was controlled at
3.47 mL/min, corresponding to effective volumes (5 L and 0.8 L) and HRTs (1 day and 3.84 h) for CW
and PCR, respectively. The amount of TiO2/α-Al2O3 used in PCR was 20 g. The water level in CW still
remained at 30 mm above the substrate layers and the height of water in the PCR was 95 mm. Samples
were collected daily from the influent and the effluent of each system (Figure 4). pH, DOC, sCOD,
and UV-254 were monitored to investigate the treatment efficiency of this combined system.
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bar; (13) UVA lamp; (14) Magnetic stirrer; (15) Box covered with aluminium foil; (16) Effluent pipe;
(17) Effluent tank.

2.5. Analyses

Before being analyzed, all collected samples were filtered through a 0.45 µm membrane filter
(Pall Gelman, Mexico) to eliminate the effect of suspended particles on the measurements. Water quality
parameters surveyed during the experiment were pH, alkalinity, DOC, sCOD, NH3-N, NO3

−-N, UV-254,
and TC. Sampling was conducted at the inlet and outlet of each system. Analyses were performed
according to Standard Methods for the Examination of Water and Wastewater [24].

3. Findings and Discussion

3.1. Effects of the Initial Organic Concentration on the Treatment Efficiency of CW

The findings showed that in all the first three runs of the experiment, most of the selected
water quality parameters, namely UV-254, DOC, sCOD, NH3

−N experienced a significant decrease
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in concentration after treatment in the CW, with removal efficiencies in the ranges of 55.2–80.8%,
28.1–71.9%, 72.1–79.7% and 60.1–61.7%, respectively (as shown in Figure 5). The removal efficiencies
of UV-254 and DOC (as organic matter (OM) indicators) rose with an increase of the initial DOC
concentration. At the lowest initial concentration of DOC (3–4.5 mg/L – Run 1), the efficiency in removal
of OMs was relatively low (ranging 55.2 ± 2.4% and 28.1 ± 2.4% for UV-254 and DOC respectively)
because most of the removed OMs were compensated by soluble microbial products released by
microorganisms [25,26]. On the contrary, in Run 2 and Run 3, the CW showed better performance in the
removal of OMs, with 68.2 ± 4.0% and 41.8 ± 2.1% in Run 2, followed by 80.8 ± 0.6% and 71.9 ± 1.5%
in Run 3, for UV-254 and DOC, respectively.
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Also seen from Figure 5, sCOD removal efficiencies had a slightly decreasing tendency from 79.7%
to 79.3% and to 72.1% for Run 1, Run 2, and Run 3, respectively. An explantion for this may be that
through the last time of operation, plants roots may be decomposed and dissolved and therefore sCOD
of effluent may increase to a higher value at the end of this experiment [27].

From the literature review, it is clear that the treatment process of CW is based on a complex
number of biological and physical processes such as adsorption, precipitation, filtration, nitrification,
decomposition, plant uptake, etc. Therefore, it can be explained that the reduction of OM in this study
was achieved by these above mechanisms. Microorganisms attached in the substrates (soil, sand,
and gravel) and in the plant root had responsibility on the degradation of labile OM through aerobic,
anoxic, and anaerobic processes [28], while stable OM fractions may be accumulated on the surface of
substrates and/or biofilm through an adsorption process.

In terms of the adsorption process, the reduction of non-biodegradable organic contaminants
in the influent could be contributed by the adsorption of biofilm and/or substrates in CW. In fact,
as observation, the color of the substrate medium (sand) changed from white to light brown, indicating
that there was some adsorption of HA onto the surface of substrates and/or biofilm, and clearly,
adsorption was one of the main OM removal mechanisms in the CW, which was in accordance with
the findings of Saeedi et al. [25], who pointed out that the adsorption onto the biofilm was one of the
NOM removal mechanisms in their experiments. Furthermore, as reported by Nguyen [29], over 90%
of the OM accumulated in a gravel-bed constructed wetland over a period of 5 years consisted of
recalcitrant OM fractions, indicating that CW operation in treating stable OM was probably due to the
accumulation of refractory OM in the gravel bed.

Along with the substrates in the CW, plant roots might contribute to the adsorption of OM in the
influent. According to the review of Trevisan et al. [30], there are different hypotheses which favor the
adsorption of humic substances by plant roots. The available evidence proved that HA was absorbed in
the root surface or accumulated passively in the “apparent free space” [31]. The results of the research
of Nardi et al. [32] also support the interpretation that humic substances of all molecular weights can
be absorbed. However, until now, the mechanisms through which humic substances interact with the
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root cells and may subsequently affect plant physiology and growth have not been completely clarified
yet [30].

In addition, humic substances may also be taken up by microbes. There is strong proof that HA
was taken up into mycelia of Aspergillus niger [33]. Once taken up by plant tissues, humic materials
may directly influence the growth of plants via biochemical mechanisms [34]. Prát [35] also reported
microscopic evidence that HA was taken into the shoots of several plant species which were allowed
to stand with their cut ends in HA solutions. It is likely that in most cases humic substances enhance
microbial growth by serving as a food source [34].

Along with the biodegradation of labile OM by microorganisms, there might be some degradation
of less degradable organic matter, which would be decomposed by specialized natural soil bacteria [36].
The larger molecular weight OM was firstly degraded into smaller molecule one by microorganism
activity, and then absolutely eliminated gradually. During the experiment, the average removal range
of UV-254 was higher than that of DOC, 55.2–80.8% compared to 28.1–71.9%, indicating that there were
considerable changes in structure (simple break-up) without causing the complete mineralization of
large aromatic structures [14].

In addition, an interesting result found from this study is that while the initial DOC concentrations
in three runs increased, the DOC concentrations of effluents maintained nearly similar values,
ranging from 2.880 ± 0.257, 2.673 ± 0.219, 3.119 ± 0.149 mg/L. This may imply that CW treatment could
have a high tolerance of variation of DOC concentration in the influent water and maintain stable
effluent water quality. This result agrees with the conclusion of Mancilla et al. [37] who indicated that
there was a load fluctuation tolerance in CWs.

In terms of nitrogen removal in CWs, according to Vymazal and Kröpfelová [12],
nitrogen undergoes several processes in wetlands, including ammonification, nitrification,
denitrification, adsorption, bacterial degradation, and plant uptake. In this experiment,
the concentration of NH3-N underwent a significant decrease and a removal efficiency higher
than 60% was achieved while that of NO3

−-N increased to a slight extent from 0.956 ± 0.312 to
1.109 ± 0.255, and form 0.707 ± 0.234 to 1.052 ± 0.155 for run 2 and run 3, respectively. In addition, it is
well-known that biological nitrogen removal depends on successful nitrification (ammonia oxidation
to nitrate) and the subsequent denitrification (nitrate reduction to nitrogen gas) [20]. However, in this
case, plants in CW also played an important role in eliminating NH3-N concentration. As stated
by Stecher et al. [38], umbrella palms should be considered when maximum NH4

+ reduction is a
treatment goal. That NO3

−-N levels showed no significant difference in the influent and effluent
concentrations may be explained by the fact that the HRT in this experiment was not enough for the
process of denitrification. It probably occurs in most wetland systems that the removal of nitrogen
requires longer HRTs [39].

3.2. Effects of the HRT on the Treatment Efficiency of CW

In general, the levels of UV-254, DOC, sCOD, and NH3-N in the effluent in the last two runs of
the first phase experiment were less than those in the influent. It can be also realized that there was a
relatively stable removal during the operational period, which could be seen from the low standard
deviation values. As can be seen from Figure 6, most of monitored water quality parameters in the case
of a HRT of 2 days had higher removal efficiencies than those of HRT of 1 day; however, there was only
a small discrepancy among all values in these two treatment processes. For example, the percentages
of removal of UV-254 and DOC were 80.8 and 71.9 in the 1 day HRT test, compared to 85.0 and 73.0 in
the HRT 2 day test, respectively.
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In terms of OMs removal, the results showed that there was a slight decline in concentrations
of UV-254, DOC and sCOD during both operation time of 1 day-HRT and 2 day-HRT. However,
the difference in the removal rate of OMs between two runs was small. This can be explained by the
fact that most of the labile biological organic compounds were degraded during the first day of the
treatment process, although there was still a process of degradation of OM by microorganisms in CW
which kept occurring on the second day, shown by a slight decrease of UV-254 from 0.178 ± 0.012 cm−1

for 1 day HRT to 0.135 ± 0.017 cm−1 for 2 day HRT. This process just helps to degrade the large
molecule OM into smaller species without complete mineralization because the level of DOC in the
effluent in the two cases recorded little change, at 3.119 ± 0.149 mg/L for 1 day-HRT, compared to
3.017 ± 0.292 mg/L for 2 day-HRT.

On the other hand, a considerable increase from 61.7 ± 7.0% to 73.0 ± 4.4% in the removal efficiency
of NH3-N can be seen from Figure 6 during two studied runs (Run 3 and Run 4). This leads to the
conclusion that the more the contact time with the CW is, the higher ammonia removal efficiency is
obtained, thanks to the more complete ammonification process. In fact, HRT plays a more significant
role in the removal of ammonia [39].

3.3. The Removal of Tetracycline in the CW Treatment System

As seen from Figure 7, when the influent concentration of TC was stable during the period of
operation, at 0.980 ± 0.078 mg/L, 4.819 ± 0.273 mg/L, and 10.481 ± 1.070 mg/L, its effluent concentrations
were 0.096 ± 0.015 mg/L, 0.598 ± 0.129 mg/L and 0.474 ± 0.033 mg/L, respectively. Corresponding TC
removal rates of 90.20 ± 1.02%, 87.60 ± 2.48% and 95.42 ± 0.73% were also obtained from these trials,
indicating that CW system was effective in eliminating TC from the influent water.

It is well-known that the removal of TC in biologically-based treatment systems is related to a
variety of physical, chemical and biological processes [40]. In this study, the removal of tetracycline as
shown in Figure 7 may be achieved either through adsorption and/or biodegradation. However, it has
been reported that TC was mainly removed via adsorption in biological systems while biodegradation
can be completely ignored [41,42]. In addition, Thiele-Bruhn [43] declared that TC is strongly adsorbed
by soil and sediments, with a high potential for adsorption (kD = 70–5000 L/kg) [44]. Therefore,
partitioning onto the biofilm and solid matrix in CW was expected to play an important role. In fact,
although TC is a substance with high water solubility (231 mg/L) and a low n-octanol/water partition
coefficient (logkow =−1.3), it is still considered to sorb strongly onto soil [44] and several materials such
as clay, sediment, humic compounds, etc. [45]. Ionic interactions and the metal-complexing properties
of TC have been proved to largely govern its adsorption characteristics [46]. Since suspended particles
from the wastewater were retained in a wetland bed, sorption of dissolved organic contaminants in
that organic matter and on the biofilm coating the CW bed could represent a significant mechanism for
the removal of TC in CW, which was in agreement with the result which indicated that biosorption
was the main mechanism of TC removal [47].
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Figure 7. The effects of the initial TC concentrations on treatment efficiency of CW.

Another removal mechanism considered to be responsible for the removal of TC in this study is
the photodegradation process. In fact, photodegradation is known as one of the main transformation
reactions of tetracyclines in the environment [46]. Since the CW in these tests was uncovered,
high photolability of TC may have occurred [8,48]. In fact, according to the study of Garcia-Rodriguez
et al. [8], the difference in TC removal efficiency between experiments with a covered control and an
uncovered control was really clear, 15 ± 8% and 89 ± 3%, respectively.

The improvement of the removal efficiency of TC may also be attributed to the presence of plants
in the CW. Plants are generally considered favorable in a CW, as they act as an anchoring surface
for biofilm, pump and release O2 to the bottom of the systems, they retain suspended particles and
insulate against low temperatures. It cannot be denied that plants actively contribute to TC removal
via uptake. In fact, Liu et al. [49] found that three antibiotics (ciprofloxacin HCl, oxytetracycline
HCl, and sulfamethazine) could be taken up by plant roots and translocated to shoots, which was in
agreement with the findings of Dettenmaier et al. [50], who observed the similar phenomenon for
highly water soluble organic compounds. From these results, those authors suggested that removal
of such highly water-soluble organic compounds was most likely to be driven by the transpiration
water stream in the plant uptake and the translocation within plant tissues. Furthermore, they also
indicated a positive correlation between the antibiotic concentration and the levels of antibiotic
accumulation inside plants [51]. In addition, Di Marco et al. [52] studied the accumulation of TC in
Iberis sempervirens L. and their results confirmed the plant’s ability to take up TC. For example, a recent
study reported that Phragmites australis, a large perennial grass from tropical and temperate regions,
could successfully remediate several antibiotics, including TC, from an aqueous system [53]. Not only
this, but Sengupta [54] found that Vetiver grass has the ability to remediate TC from a water source by
taking up TC into its roots and translocating it to the shoots, and by metabolizing or transforming
TC. From the literature, it can be concluded that TC can be taken up by plant roots and translocated
to shoots.

Interestingly, during operation time, no visible symptoms (such as yellow spots and stripes) were
observed on the Cyperus involucratus leaves, which means that Cyperus involucratus growth was not
significantly affected by the initial TC concentration of the tests, 1–10 mg/L, and perhaps Cyperus
involucratus is a TC-tolerant plant. In this study, other TC removal mechanisms could occur in the
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CW based on volatilization, hydrolysis [10,41] and cation exchange, with different processes often
occurring simultaneously [40].

It can be seen that when the initial TC concentrations in the CW were 0.980, 4.819, and 10.481 mg/L,
the TC concentrations in the effluent were 0.097, 0.598, and 0.474 mg/L, respectively. This suggests
that the initial TC concentration affected the removal of TC. A lower TC concentration is probably
associated with a higher removal efficiency. As mentioned above, TC was adsorbed onto biofilm, soil,
and gravel with little biodegradation and there would be an adsorption coefficient that indicates the
substrates adsorbed TC at a certain concentration. When the TC concentration in the influent is high
enough to exceed the adsorption capacity, the media would no longer adsorb TC and this would lead
to lower removal efficiency [55]. However, this phenomenon was not observed in our test at 0.980 and
4.819 mg/L of TC concentration in the influent. Even in the high TC initial concentration at 10.481 mg/L,
the decrease in the TC level was significant, reaching 0.474 mg/L, which was lower than that in case
where the initial TC concentration of 4.819 mg/L. This may due to mechanisms other than adsorption
which help to reduce TC concentration in water.

According to the results shown in Figure 8, TC removal in the CW system was characterized by an
initial phase (0–2 h) of rapid TC removal, followed by a slower removal rate period. It was respectively
found that about 81.3%, 80.6% and 95.1% of the initial TC concentrations of 0.840, 4.728, and 12.113 mg/L
was removed from influent water during the first two hours for three tests. It can be assumed that
the initial removal of TC was mainly due to adsorption and photodegradation, followed by other
abovesuggested processes. After the initial period, maybe adsorption fully reached equilibrium and
thus reduces the removal rate during the later time of operation in the CW considerably [42]. In fact,
according to the study of Bao et al. [56], the adsorption kinetics of TC on soils exhibits two distinct
stages: a very rapid adsorption (< 1 h) during the initial stage, followed by a relatively slow adsorption.
Kulshrestha et al. [57], and Fei and Li [58] also observed similar results for oxytetracycline adsorption
on clay and for TC adsorption on sediments, respectively.

3.4. Performance of the Combination of Constructed Wetland and TiO2 Photocatalysis in Treating Water

In general, using a CW in conjunction with PCR produces better effluent water quality than
that obtained by using CW alone [17,59,60]. In fact, one of the drawbacks of only using CW is that
the disinfection obtained in many cases is not high enough to meet the standards for the reuse of
the treated water [59]. In addition, in this study, the CW effluent may consist of microbiological
organisms, bacteria and OM. Effluent from the CW, therefore, has to be disinfected before being used
for drinking. A post-treatment such as PC should be used to control bacteria and OM releases because
of the concern regarding OM release due to the formation of potentially carcinogenic disinfection
byproducts, particularly THMs, during chlorination. Indeed, PC is an emerging alternative technology
for the removal of organic compounds as well as the inactivation of the bacteria [61–63]. Therefore,
the application of PC is expected as an effective post-treatment process for the removal of the OMs and
bacteria released by a biological process in CW.

It can be seen from the Figure 9 that the removal efficiencies of the combined system in terms
of sCOD, UV-254 and DOC were 80.3, 90.0 and 76.1%, respectively, which were higher than those of
CW treatment alone (71.2, 81.8, 73.8%, respectively). The results show that the combination of CW
pre-treatment and the photocatalytic post-treatment helped to improve effluent water quality with
less chemical consumption that if chlorination were applied after this system. In fact, Liu et al. [17]
declared that the photocatalytic process might work more efficiently as a post-treatment step as it
requires favorable transparency for radiation penetration. In such case, the colour of the influent which
is due to the presence of HA was solved in the CW; thus, its support helps the TiO2 photocatalysis
process to be more successful and the amount of catalyst used in this step will be lower. In addition,
due to the formation of OH. during the photocatalytic process, the reduction of UV-254 decreased more
efficiently from 0.155 cm−1 to 0.085 cm−1.
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disinfection obtained in many cases is not high enough to meet the standards for the reuse of the 
treated water [59]. In addition, in this study, the CW effluent may consist of microbiological 
organisms, bacteria and OM. Effluent from the CW, therefore, has to be disinfected before being 
used for drinking. A post-treatment such as PC should be used to control bacteria and OM releases
because of the concern regarding OM release due to the formation of potentially carcinogenic 
disinfection byproducts, particularly THMs, during chlorination. Indeed, PC is an emerging 
alternative technology for the removal of organic compounds as well as the inactivation of the 
bacteria [61–63]. Therefore, the application of PC is expected as an effective post-treatment process 
for the removal of the OMs and bacteria released by a biological process in CW. 

It can be seen from the Figure 9 that the removal efficiencies of the combined system in terms of 
sCOD, UV-254 and DOC were 80.3, 90.0 and 76.1%, respectively, which were higher than those of 
CW treatment alone (71.2, 81.8, 73.8%, respectively). The results show that the combination of CW 
pre-treatment and the photocatalytic post-treatment helped to improve effluent water quality with 
less chemical consumption that if chlorination were applied after this system. In fact, Liu et al. [17] 
declared that the photocatalytic process might work more efficiently as a post-treatment step as it
requires favorable transparency for radiation penetration. In such case, the colour of the influent 
which is due to the presence of HA was solved in the CW; thus, its support helps the TiO2

photocatalysis process to be more successful and the amount of catalyst used in this step will be

lower. In addition, due to the formation of OH. during the photocatalytic process, the reduction of 
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However, there was a minor improvement of water quality in the effluent after the treatment of
the combined system, especially in the parameter of DOC (which just increased 2.3%). This can be due
to the fact that the CW followed by the photocatalytic process might not lead to a significant change in
the molecular weight distribution [60]. Actually, the main purpose of using PC as post-treatment in this
study was the fact that PC acts as an additional stage for further OM reduction before chlorination and
reuse, with the hope that DOC concentration in effluent would be lower than the maximum contaminant
level (MCL) for total THMs of drinking water quality standard. For example, Gulyas et al. reported
that formed THM concentrations were above 0.01 mg/L (the guideline for German drinking water)
when the concentration of TOC of the raw water exceeded 2 mg/L. In this research, the concentration
of DOC in the effluent was recorded at 2.701 ± 0.300 mg/L, which may meet the MCL for total THMs
egulated by the Taiwan Environmental Protection Administration (Taiwan EPA), which is 0.08 mg/L r.

In terms of the sCOD parameter, sCOD in the effluent was 7.43 ± 0.98 mg/L, which was lower than
the acceptable value of 25 mg/L recommended for raw water quality for drinking water by Taiwan
EPA. With this sCOD value, the treated water can be considered as a potable water source.

4. Conclusions

In this research, the ability of a CW to remove OM and TC from water was investigated in a
continuous scheme with various HRTs (1 day and 2 days) with varying initial DOC concentrations
and TC concentrations. In different experimental runs with variable concentrations of OM operating
during HRT-1 day CW treatment can have a high tolerance of variation of DOC concentrations in
influent water and maintain stable effluent water quality. The discrepancy in the removal efficiency of
OM between HRT-1 day and HRT-2 day was minor. This indicates that most of OM may be reduced
on the first day of operation. However, HRT played an important role in the removal of ammonia in
this experiment. The removal efficiency of NH3-N increased considerably with the increase of HRT.

In terms of TC removal, CW showed an excellent performance in reducing TC in water, especially
in the first two hours of the operating period, when more than 80% of the TC was removed from the
influent water. In addition, TC removal efficiencies of 90.20 ± 1.02%, 87.60 ± 2.48% and 95.42 ± 0.73%
were obtained from these trials with 1, 5, 10 mg/L of initial TC concentration respectively, indicating
that the CW system was effective in eliminating TC.

In terms of applying the combination of CW and PCR (TiO2/α-Al2O3, UVA) in treating water
containing OM, the findings of this research showed an improvement in the quality of the effluent.
The concentration of sCOD in effluent water was estimated to be compliant with THM standards
if chlorination was applied to the treated water. However, the increase in treatment efficiency of
the combined system compared to that of CW alone was minor. Therefore, further research on the
combination of CW and photocatalytic oxidation needs to be done to enhance the performance of this
combined system.

Although the combined system decreased OM and TC successfully in this study, there are still a few
limitations which must be taken into account. There is a great need to illuminate the black box CW to
gain performance data for both the adsorption process and microbial activity. Also, the contribution of
the plants to the overall removal process should be considered to enhance the treatment performance of
CWs for specific compounds. In addition, other water quality parameters, for example, microorganisms
and DBP (such as THMs) should be investigated. Further experimental investigations with longer
operation time periods are required to provide more comprehensive and convincing evidence which
will help gain more insights into the removal mechanism of target compounds in combined CW and
PCR systems.
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27. Bilgin, M.; Şimşek, İ.; Tulun, Ş. Treatment of domestic wastewater using a lab-scale activated sludge/vertical
flow subsurface constructed wetlands by using Cyperus alternifolius. Ecol. Eng. 2014, 70, 362–365. [CrossRef]

28. Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R.
Microbial processes influencing the performance of treatment wetlands: A review. Ecol. Eng. 2009, 35,
987–1004. [CrossRef]

29. Nguyen, L. Accumulation of organic matter fractions in a gravel-bed constructed wetland. Water Sci. Technol.
2001, 44, 281–287. [CrossRef] [PubMed]

30. Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil
interface: From environmental aspects to molecular factors. Plant Signal. Behav. 2010, 5, 635–643. [CrossRef]

31. Vaughan, D.; Ord, B.J. Uptake and incorporation of 14C-labelled soil organic matter by roots of Pisum sativum
L. J. Exp. Bot. 1981, 32, 679–687. [CrossRef]

32. Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher
plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [CrossRef]

33. Ruocco, J.; Barton, L.L. Energy-driven uptake of humic acids by Aspergillus niger. Can. J. Microbiol. 1978, 24,
533–536. [CrossRef]

34. Vaughan, D.; Malcolm, R. Influence of humic substances on growth and physiological processes. In Soil
Organic Matter and Biological Activity; Springer: Dordrecht, The Netherlands, 1985; pp. 37–75.

35. Prát, S. The effect of humus substances on the regeneration of plants. Stud. Humus 1962, 223–235.
36. Hoffmann, H.; Platzer, C.; Winker, M.; von Muench, E. Technology Review of Constructed Wetlands: Subsurface

Flow Constructed Wetlands for Greywater and Domestic Wastewater Treatment; Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2011.

37. Mancilla, R.A.; Zúñiga, J.; Salgado, E.; Schiappacasse, M.C.; Chamy, R. Constructed wetlands for domestic
wastewater treatment in a Mediterranean climate region in Chile. Electron. J. Biotechnol. 2013, 16, 5. [CrossRef]

38. Stecher, M.; Weaver, R. Effects of umbrella palms and wastewater depth on wastewater treatment in a
subsurface flow constructed wetland. Environ. Technol. 2003, 24, 471–478. [CrossRef] [PubMed]

39. Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency
of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191. [CrossRef]

40. Matamoros, V.; Sala, L.; Salvado, V. Evaluation of a biologically-based filtration water reclamation plant for
removing emerging contaminants: A pilot plant study. Bioresour. Technol. 2012, 104, 243–249. [CrossRef]
[PubMed]

41. Li, B.; Zhang, T. Removal mechanisms and kinetics of trace tetracycline by two types of activated sludge
treating freshwater sewage and saline sewage. Environ. Sci. Pollut. R. 2012, 20, 3024–3033. [CrossRef]
[PubMed]

42. Song, C.; Sun, X.-F.; Wang, Y.-K.; Xia, P.-F.; Yuan, F.-H.; Li, J.-J.; Wang, S.-G. Fate of tetracycline at high
concentrations in an enriched mixed culture system: Biodegradation and behavior. J. Chem. Technol.
Biotechnol. 2016, 91, 1562–1568. [CrossRef]

http://dx.doi.org/10.1016/j.watres.2010.04.022
http://www.ncbi.nlm.nih.gov/pubmed/20494393
http://dx.doi.org/10.1016/j.biortech.2007.07.018
http://dx.doi.org/10.1080/01919510009408790
http://dx.doi.org/10.1089/ees.2011.0077
http://dx.doi.org/10.1016/j.cattod.2011.06.013
http://dx.doi.org/10.1016/j.ecoleng.2014.06.032
http://dx.doi.org/10.1016/j.ecoleng.2008.12.030
http://dx.doi.org/10.2166/wst.2001.0841
http://www.ncbi.nlm.nih.gov/pubmed/11804108
http://dx.doi.org/10.4161/psb.5.6.11211
http://dx.doi.org/10.1093/jxb/32.4.679
http://dx.doi.org/10.1016/S0038-0717(02)00174-8
http://dx.doi.org/10.1139/m78-086
http://dx.doi.org/10.2225/vol16-issue4-fulltext-5
http://dx.doi.org/10.1080/09593330309385582
http://www.ncbi.nlm.nih.gov/pubmed/12755448
http://dx.doi.org/10.1016/j.ecoleng.2006.06.013
http://dx.doi.org/10.1016/j.biortech.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22153292
http://dx.doi.org/10.1007/s11356-012-1213-5
http://www.ncbi.nlm.nih.gov/pubmed/23054779
http://dx.doi.org/10.1002/jctb.4806


Appl. Sci. 2019, 9, 2680 16 of 17

43. Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils—A review. J. Plant Nutr. Soil Sci. 2003, 166,
145–167. [CrossRef]

44. Tolls, J. Sorption of Veterinary Pharmaceuticals in Soils: A Review. Environ. Sci. Technol. 2001, 35, 3397–3406.
[CrossRef] [PubMed]

45. Guler, U.A.; Sarioglu, M. Removal of Tetracycline From Wastewater Using Pumice Stone: Equilibrium,
Kinetic, and Thermodynamic Studies. J. Environ. Health Sci. Eng. 2014, 12, 79. [CrossRef]

46. Kim, S.; Eichhorn, P.; Jensen, J.N.; Weber, A.S.; Aga, D.S. Removal of Antibiotics in Wastewater: Effect of
Hydraulic and Solid Retention Times on the Fate of Tetracycline in the Activated Sludge Process. Environ.
Sci. Technol. 2005, 39, 5816–5823. [CrossRef]

47. de Godos, I.; Muñoz, R.; Guieysse, B. Tetracycline removal during wastewater treatment in high-rate algal
ponds. J. Hazard. Mater. 2012, 229, 446–449. [CrossRef]

48. Chen, Y.; Hu, C.; Qu, J.; Yang, M. Photodegradation of tetracycline and formation of reactive oxygen species
in aqueous tetracycline solution under simulated sunlight irradiation. J. Photochem. Photobiol. A Chem. 2008,
197, 81–87. [CrossRef]

49. Liu, L.; Liu, Y.-H.; Liu, C.-X.; Wang, Z.; Dong, J.; Zhu, G.-F.; Huang, X. Potential effect and accumulation of
veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol. Eng. 2013, 53, 138–143.
[CrossRef]

50. Dettenmaier, E.M.; Doucette, W.J.; Bugbee, B. Chemical Hydrophobicity and Uptake by Plant Roots. Environ.
Sci. Technol. 2009, 43, 324–329. [CrossRef] [PubMed]

51. Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A review on removing pharmaceutical contaminants from wastewater
by constructed wetlands: Design, performance, and mechanism. Sci. Total Environ. 2014, 468, 908–932.
[CrossRef] [PubMed]

52. Di Marco, G.; Gismondi, A.; Canuti, L.; Scimeca, M.; Volpe, A.; Canini, A. Tetracycline accumulates in Iberis
sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition. Plant Biol.
2014, 16, 792–800. [CrossRef] [PubMed]

53. Carvalho, P.N.; Basto, M.C.P.; Almeida, C.M.R. Potential of Phragmites australis for the removal of veterinary
pharmaceuticals from aquatic media. Bioresour. Technol. 2012, 116, 497–501. [CrossRef]

54. Sengupta, A. Remediation of Tetracycline from Water Sources Using Vetiver Grass (Chrysopogon zizanioides L.
Nash) and Tetracycline-Tolerant Root-Associated Bacteria. Ph.D. Thesis, Michigan Technological University,
Houghton, MI, USA, 2014.

55. Qi, F.F.; Huang, M.H.; Zheng, Y.; Xu, Q. Optimization of an A(2)/O process for tetracycline removal via
response surface methodology coupled with Box-Behnken design. J. Environ. Sci. Health A Tox. Hazard.
Subst. Environ. Eng. 2015, 50, 735–743. [CrossRef]

56. Bao, Y.; Zhou, Q.; Wan, Y.; Yu, Q.; Xie, X. Effects of Soil/Solution Ratios and Cation Types on Adsorption and
Desorption of Tetracycline in Soils. Soil. Sci. Soc. Am. J. 2010, 74, 1553–1561. [CrossRef]

57. Kulshrestha, P.; Giese, R.F.; Aga, D.S. Investigating the Molecular Interactions of Oxytetracycline in Clay and
Organic Matter: Insights on Factors Affecting Its Mobility in Soil. Environ. Sci. Technol. 2004, 38, 4097–4105.
[CrossRef]

58. Fei, Y.H.; Li, X.Y. Adsorption of tetracyclines on marine sediment during organic matter diagenesis. Water
Sci. Technol. 2013, 67, 2616–2621. [CrossRef]

59. Araña, J.; Herrera Melián, J.A.; Doña Rodríguez, J.M.; González Díaz, O.; Viera, A.; Pérez Peña, J.; Marrero
Sosa, P.M.; Espino Jiménez, V. TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater.
Catal. Today 2002, 76, 279–289. [CrossRef]

60. Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and biological
treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [CrossRef]
[PubMed]

61. Bekbölet, M. Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E. Coli. Water Sci. Technol.
1997, 35, 95–100. [CrossRef]

http://dx.doi.org/10.1002/jpln.200390023
http://dx.doi.org/10.1021/es0003021
http://www.ncbi.nlm.nih.gov/pubmed/11563639
http://dx.doi.org/10.1186/2052-336X-12-79
http://dx.doi.org/10.1021/es050006u
http://dx.doi.org/10.1016/j.jhazmat.2012.05.106
http://dx.doi.org/10.1016/j.jphotochem.2007.12.007
http://dx.doi.org/10.1016/j.ecoleng.2012.12.033
http://dx.doi.org/10.1021/es801751x
http://www.ncbi.nlm.nih.gov/pubmed/19238959
http://dx.doi.org/10.1016/j.scitotenv.2013.09.018
http://www.ncbi.nlm.nih.gov/pubmed/24091118
http://dx.doi.org/10.1111/plb.12102
http://www.ncbi.nlm.nih.gov/pubmed/24118651
http://dx.doi.org/10.1016/j.biortech.2012.03.066
http://dx.doi.org/10.1080/10934529.2015.1011981
http://dx.doi.org/10.2136/sssaj2009.0402
http://dx.doi.org/10.1021/es034856q
http://dx.doi.org/10.2166/wst.2013.164
http://dx.doi.org/10.1016/S0920-5861(02)00226-2
http://dx.doi.org/10.1016/j.scitotenv.2010.08.061
http://www.ncbi.nlm.nih.gov/pubmed/20956012
http://dx.doi.org/10.2166/wst.1997.0716


Appl. Sci. 2019, 9, 2680 17 of 17

62. Bekbolet, M.; Uyguner, C.S.; Selcuk, H.; Rizzo, L.; Nikolaou, A.D.; Meriç, S.; Belgiorno, V. Application of
oxidative removal of NOM to drinking water and formation of disinfection by-products. Desalination 2005,
176, 155–166. [CrossRef]

63. Rizzo, L.; Rocca, C.D.; Belgiorno, V.; Bekbolet, M. Application of photocatalysis as a post-treatment method
of a heterotrophic–autotrophic denitrification reactor effluent. Chemosphere 2008, 72, 1706–1711. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.desal.2004.11.011
http://dx.doi.org/10.1016/j.chemosphere.2008.04.070
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Preparation of the Influent Water 
	Constructed Wetland System Set-up 
	Photocatalytic System Set-up 
	Experimental Operation 
	Analyses 

	Findings and Discussion 
	Effects of the Initial Organic Concentration on the Treatment Efficiency of CW 
	Effects of the HRT on the Treatment Efficiency of CW 
	The Removal of Tetracycline in the CW Treatment System 
	Performance of the Combination of Constructed Wetland and TiO2 Photocatalysis in Treating Water 

	Conclusions 
	References

