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Abstract: Detecting the Region of Interest (ROI) for video clips is a significant and useful technique
both in video codecs and surveillance/monitor systems. In this paper, a new model-based detection
method is designed which suits video compression codecs by proposing two models: an “inter” and
“intra” model. The “inter” model exploits the motion information represented as blocks by global
motion compensation approaches while the “intra” model extracts the objects details through objects
filtering and image segmentation procedures. Finally, the detection results are formed through a
new clustering with fine-tune approach from the “intra” model assisted with the “inter” model.
Experimental results show that the proposed method fits well for real-time video codecs and it
achieves a good performance both on detection precision and on computing time. In addition, the
proposed method is versatile for a wide range of surveillance videos with different characteristics.

Keywords: ROI detection; global motion detection & compensation; image segmentation; decision
tree; camera status classification

1. Introduction

Detecting Region Of Interest (ROI) for video sequences is widely applied both in
surveillance/monitor systems and in video encoders. In recent decades, people attempt to define
the concept of ROI based on Human Visual System [1]. Also, an ROI-based video encoding mode
is adopted both in previous research [2,3] and in latest video codecs such as VPX [4] or HEVC [5].
The notion of ROI is within an evolutionary process, In earlier works [6,7], researchers treat faces as ROI
details and adjust quantization parameters (QP) in video compression for ROI encoded blocks. Other
works such as [8,9] regard moving or high contrast image segments as ROI details for video codecs.
As the concept of the “objected-based” video coding raised from MPEG-4 [10], researchers begin to
focus on moving objects extraction and encoding. Hence, ROI is defined more likely as the foreground
moving objects in video clips. During the recent five years, many fore-background separation methods
are developed based on moving objects detection. The low-rank decomposition method is able to solve
the change detection problem by outlier pursuit algorithm, in which the changing components are
stored in a sparse matrix. Principle Component Analysis (PCA) has been proposed as a state-of-the-art
method for low-rank matrix recovery [11]. However, the classical PCA can be easily corrupted by
noise. With the rapid development of artificial intelligence, objects discovery is also used in navigation
system designs for autonomous cars, in which computers would recognize objects and make the
planning without specialized sensors [12]. Therefore, it is essential to design a detection algorithm
for both accuracy and efficiency, so that typical objects in videos or images can be automatically
discovered real time to help the computer understand their contents. In addition, object detection
can be embedded into the scope of motion estimation (ME) for video coding architectures in our
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previous works [13–15]. Specifically, the detection method based on ME can be embedded into some
ME processors. For example, the custom-instruction with the combination of synchronous dynamic
random access memory (SDRAM) and on-chip memory architecture-based Nios II processor [16,17],
and the FPGA architecture-based processor [18].

1.1. Related Work

One of the state-of-the-art methods for ROI detection is the Gaussian Mixture Model
(GMM) [19–21], in which fore-background are modeled with some weighted mixture components.
Another typical method is named as sparse and low-rank decomposition [11], in which moving
objects are computed as the sparse matrix. Derived from this idea, principle component analysis
(PCA) [22] is used to efficiently exploit the low-rank structure within errors or outliers, and it is
well extended by RPCA [23–25] where the robustness is improved to work even in the presence
of large errors. Also, a probabilistic model for RPCA is proposed in [26] which provides a good
visual results. Other low-rank models are treated as the variations of RPCA such as Grouse [27],
RASL [28] and SSGodec [29], in which the computing costs are optimized. Moreover, texture-based
objects extraction is proposed in Chan et al. [30–33]. In these works, the authors cluster and extract
dynamic textures by the HEM-DTM approach corresponding with Hidden Markov Model (HMM).
In addition, background modeling-based approaches such as Vibe [34], LBP [35], SOBS [36], etc. have
introduced different background-model update policies based on time, color-distance, and some
reliable factors. Meanwhile, the machine learning approaches such as unsupervised clustering [37,38],
Markov Random Field (MRF) for graph cut [39–42] also achieve a good performance on ROI extraction
and detection.

The other parts of research for ROI detection methods focus on deep-learning based method.
Architectures of deep neural network with repeated convolution and pooling layers have become the
dominant idea for high-quality objects recognition and detection [43]. Szegedy et al. [44] introduced
the idea of bounding box masks regression for object detection. Similar works on MultiBox [45,46],
improved the previous work by enhancing efficiency and scalability. Ren et al. [47] improved
the architecture of R-CNN by proposing a Region Propsal Network (RPN) that shares full-image
convolutional features with the detection network. He et al. [48] designed a framework of Spatial
Pyramid Pooling (SPP) which enhances robustness to size variations in the network. The paper also
claimed that the detection speed was improved compared to R-CNN. YOLO by Redmon et al. [49]
used a single network to predict bounding boxes and class labels for objects. Hence, the detection
speed has a significant breakthrough. Later, Single Shot Multibox Detector (SSD) [50] by Liu et al.
discretized the output space of bounding boxes into a set of default boxes over different resolutions
per feature map location. Both the detection speed and the accuracy have been improved since it only
uses a single deep neural network with multiple resolutions of feature maps for boxes regression.
Other R-CNN based methods [51–53] attempted to optimize the network structure by introducing
dense connections, reusing computations, applying per-region subnetwork structures to improve
the detection performance. However, the multi-stage pipeline training framework of R-CNN brings
expensive training costs in space and time. Meanwhile, features extracted from each object proposal
are slow at test time [54]. As for machine learning-based methods, a state-of-the-art motivation is to
detect objects by using pattern mining with a dictionary model [55]. Our previous work [56] proposed
a word-topic model based on Latent Dirichlet Allocation (LDA) model, in which the image features
are transformed into corresponding words for ROI object description. Also, an Anchor-box fine-tuning
algorithm is proposed to improve the detection precision. It makes a trade-off between the computing
costs and model accuracy.

1.2. Overview and Contributions

According to the related research listed, a motivation is to propose a method which suits video
codecs like HEVC/VPX. In this paper, a new ROI modeling-based detection scheme is designed which
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copes with video compression standards by proposing two ROI models: “inter” and “intra”. The “inter”
part includes camera status detection and global motion compensation (GMC). The “intra” part
includes image segmentation and objects filtering. At last, the detection results are combined together
based on the output of two models. Please note that each model can only observe a partial information:
The “inter” corresponds with motion information and the “intra” with objects information, as depicted
in Figure 1. Previous works [57–60] introduce an adaptive feature-based methods (FBMs) which
estimates the camera motion with error-least matching points assisted by the Single Homographic
(SH) matrix. However, minimizing the movement errors of matching points brings computational
costs that reduce the speed in real-time systems. To overcome this disadvantage, we propose a fast
and approximate global motion compensation way which uses a flexible sampling set and a decision
tree model for classification in the “inter” model. The motion vector blocks for objects are acquired via
global motion compensation techniques. As for the “intra” model, a Kernel Fuzzy-C Means image
segmentation approach is proposed to cluster pixels into specific groups. Then, we use a new motion
area pruning method to eliminate the “noise” motion blocks extracted through the “inter” model.
Please note that the purpose of “intra” model is to cluster objects by colorspaces and combine them
with the motion information separately owing to the connectivity correlation of each cluster.

Combination
ROI 

Objects

ROI
Motion Blocks

Video 
Sources

Codecs

ROI Result

Camera Status Detection
and

Global Motion Compensation

Objects filtering
and segmentation

Inter model

Intra model

Figure 1. Basic structure of ROI Detection model.

The contributions of this paper are illustrated below: First, we address the ROI detection problem
by designing the “inter” and “intra” models. In the inter model, we first propose a sampling criteria
which accurately samples the background motion blocks. Then, a fast and approximate way for global
motion detection and compensation techniques based on the camera status and the decision tree model
are proposed. In the intra model, a new adaptive and accurate image segmentation method is designed
for clustering foreground objects. We innovate combining two models as the finial detection results by
developing a combination algorithm based on color correlation and distance. A motion area pruning
algorithm is proposed to eliminate noise motion blocks extracted via GMC. Besides, we test our
method on different open datasets. Performance evaluations on both the change detection dataset [61]
and official HEVC/AVC test sequences [62] shows our method performs well in terms of detection
precision and computing time. The rest of this paper is organized as follows. In Section 2, we elaborate
the details of the two proposed models of ROI and the detection algorithm. In Section 3, experimental
results are displayed with sufficient analysis for visual effect comparisons and performance. Finally,
conclusion is drawn in Section 4.
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2. Detection Model

2.1. Foreground Motion Blocks Extraction

2.1.1. Sampling Areas Determination

We propose a sample-area criteria for a single frame illustrated in Figure 2. There are eight sample
areas in a frame, namely, X1, X2, · · ·X8, which are located at four diagonal positions and four middle
positions in the boundary. Each sample area contains twenty-five 8× 8 blocks whose types include
both inter and intra, and the size of each sample area is 40× 40. The two green rectangles in Figure 2
are represented as the outer and the inner boundary respectively, and the center point in this frame is
named as the anchor point. For mathematical analysis, we define sampling set X = {X1, X2, · · ·X8},
and each block in Xi (1 ≤ i ≤ 8) is represented as xi

i1(1 ≤ i1 ≤ 25). Also, we define Ii as the intercoded
block set and set IC

i be the intracoded block set for sampling area Xi. Consider the motion vectors
(MVs) for the filtered sampling blocks of the previous frames has a distribution named q(x), and the
current unfiltered sampling blocks has a distribution named p(x), we can compute Kullback-Leivler
Divergence (KLD) between them as:

D(p||q) = Ex∼P

[
log

P(x)
Q(x)

]
=
∫

p(x) log
p(x)
q(x)

dx, (1)

in which Ex∼P[·] is a statistical average value. To minimize D(p||q), a trick is to quantize these MVs
into X into l levels. Let mvi

j (j ∈ Ii) denote the jth block’s MV in Ii, the maximum and minimum MVs
are represented as:

mvmin(x) = min⋃
Ii
(min

j∈Ii
(mvi

j(x))); mvmin(y) = min⋃
Ii
(min

j∈Ii
(mvi

j(y)))

mvmax(x) = max⋃
Ii
(max

j∈Ii
(mvi

j(x))); mvmax(y) = max⋃
Ii
(max

j∈Ii
(mvi

j(y)))
(2)

mv(x) and mv(y) stand for the horizontal and vertical components. The MV step ∆s equals to
‖mvmax − mvmin‖/l, where ‖ · ‖ is the L2 norm. Let rs be the sth level of the quantized MVs, its
probability has the following expression:

Pr(rs) =
ns

n
, 1 ≤ s ≤ l. (3)

Here, ns means the number of MVs at level s and n stands for the total quantized MVs. Then, (1)
can be rewritten in a discrete way:

D(Pr||P′r) = ∑
s

Pr(rs) log
Pr(rs)

P′r(rs)
, (4)

in which P′r is the historical MV distribution for previous frames. Now, we elaborate the proposed
sampling block filter algorithm (Algorithm 1):
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Algorithm 1 Sampling block filter algorithm

1: Initialize sample set X = ∅, κ = 1, l, the expected sample size Sz, and the decay factor γ = 0.9.
2: while |X| < Sz do

3: Reset X = ∅.
4: for s = 1, · · · , l do

5: Compute the relative deviation d = | ‖Pr(rs)−P′r(rs)‖
Pr(rs)

|.
6: for each intercoded block xi

j whose MV belongs to level k do

7: Add xi
j into X with an acceptance probability Pa = 1− κd.

8: end for
9: end for

10: Decrease κ by κ = γκ.
11: end while
12: Update P′r(rs) by rules in (5).

Please note that the algorithm first calculates the relative deviation d between Pr(rs) and P′r(rs) at
each level and accept each block with a probability according to δ. Next, it maintains the lower bound
of the sampling size by reducing κ during each loop. Finally, it updates P′r(rs) by the following rule:

P′r(rs) =

∑
i

∑
j∈Ii

δ(xi
j /∈ I′i)δ(Q(mvi

j) = rs) + n′s

∑
i

∑
j∈Ii

δ(xi
j /∈ I′i) + n′s

. (5)

where δ(x) is the indicator function: δ(x) = x ≡ True? 1 : 0, I′i is the previous sampled intercoded block
set of the ith area, n′s stands for the previous number of sampled blocks, and Q(mv) represents the
quantized level of a MV. Please note that the updating rule recalculates P′r(rs) by updating the previous
and current sampling sets with different sampling blocks. At the first P-frame, all the intercoded
blocks in Xi are added into sampling set X. Then, the filter algorithm reduces the “error” blocks via an
updating process to get the correct sampling blocks for global motion detection.

X1 X2 X3

X7 X6 X5

X4X8 O

SampleMap

InterCoded

IntraCoded

Figure 2. An illustration of sampling areas.

2.1.2. Camera Status Detection

The global motion estimation (GME) method handles for these situations specifically: stable,
camera panning, camera zoom in/out and others. A status assemble H = {Cs, Cp, Czi, Czo, C′} is
defined according to the listed situations. Each camera state and its decision model are demonstrated
in details:
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• Panning

To determine Camera Panning, an intuitive approach is to compare the norm and direction of MVs
among different sampling areas. For each area Xi, its average MV value is computed as follows:

mvi(x) = 1
|Ii | ∑

j∈Ii

mvj(x)

mvi(y) = 1
|Ii | ∑

j∈Ii

mvj(y)
(6)

We define MV setMV(X) = {mv1, · · · , mv8}. For normalization, we have:{
mvi(x) = mvi(x)/(mvmax(x)−mvmin(x))

mvi(y) = mvi(y)/(mvmax(y)−mvmin(y))
(7)

and their variance without the minimum and maximum values are listed below:
Var(mv(x)) = 1

N ∑
i∈MV(X)

(mvi(x)−mv(x))2

Var(mv(y)) = 1
N ∑

i∈MV(X)
(mvi(y)−mv(x))2

(8)

Please note that mv(·) denotes the average values of mvi(·), and N equals to the size ofMV(X).
Meanwhile, the angle components ofMV(X) are taken into consideration as well. Let θi be the
angle component for mvi(x):

θi = arctan
|mvi(x)|
|mvi(y)|

, (9)

and its variance is followed by:

Var(θ) =
1
N ∑

i
(θi − θ̄)2 (1 ≤ i ≤ N). (10)

Then, a score parameter Scp for judging camera panning is formed as:

Scp = [1− 1
2
(Var(mv(x)) + Var(mv(y)))]| ln(1−Var(θ)) + 1|−1. (11)

Scp is within a range of (0,1) since normalization process is done before calculation,
and ln(1 − Var(θ)) is treated as the penalty function. When Var(θ) → 1, Scp ' 0 since
we attempt to put more weight on the variance of θ to decide the camera panning circumstance.

• Zoom-In and Out:

In this status, each sampling area has a different direction of motion vector. An illustration for the
zooming model is displayed in Figure 3.
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X1 X2 X3

X8 X4

X7 X6 X5

OZoom-Out

Zoom-In

Figure 3. An illustration of the camera zoom in and out status.

Obviously, the directions of motion vectors for these sampling areas can be regarded as a factor to
determine the zooming in and out situation. Also, the norm of motion vectors is relevant with
the distance between the anchor point and each center of the character block. To be specific, we
categorize X into two groups: Xdiag = {X1, X3, X5, X7} and Xmid = {X2, X4, X6, X8}. Also, define
a set of vectors F = {~f1, ~f2, . . . , ~fN} that:

~fi = (Xo − Xi(x), Yo − Xi(y)) Xi ∈ X, (12)

where (Xo, Yo) is the coordinate of the anchor point o, and (Xi(x), Xi(y)) is the mean coordinate
of Xi. For camera zoom-in status, the inner product ofMV(X) and ~f is a positive value while it is
negative in zoom-out status. We can compute the offset angle Ω for zoom in and out by:

Ωi = arccos
mvi · ~fi

| mvi || ~fi |
. (13)

Apparently, Ωi > 0 means Xi is in the direction of zoom-in, otherwise zoom-out. We keep Ω
in a belief range [Ωl , Ωr], in which the max difference between Ωr and Ωl is set assigned with a
constant value (marked in Figure 3 as gray solid arcs). Suppose Ω obeys the normal distribution:
Ω ∼ N (µ, σ). Then, the likelihood factor L is given as:{

L(Ω) = 2πσ−
1
2 exp( (Ω−µ)2

2σ2 )

L̃(Ω) = L(Ω)/L(µ).

Please note that L̃(Ω) is normalized to unify the range. Besides, a ’hit and miss’ voting scheme
is induced: for the zoom-in situation, if Ωi > σ, we say that sampling area i misses the zoom-in
contribution, otherwise hit; for the zoom-out situation, if π −Ωi > σ, we say miss, otherwise hit.
Now, the voting rate for zooming situation is declared as:

V(X) = 1
N ∑

i
δ(Ωi, σ) 1 ≤ i ≤ N (14)
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where δ(Ωi, σ) is also an indicator function:

δ(θi, σ) =


1 Ωi < σ and mvi · ~fi > 0

−1 π −Ωi < σ and mvi(x) · ~fi < 0

0 otherwise.

(15)

When |V(Xi)| ≥ p, the voting rate’s error is given as 1− p. It can be seen that the sampling areas
with opposite motion directions show more negative contributions on V(X) than ones with higher
variances, which is reasonable since motion direction plays an important role in zoom judging.
Another factor that influences zoom judging is the norm ofMV(X), it satisfies:

E(|MV(Xdiag)|) '
h√

w2 + h2
E(|MV(Xmid)|), (16)

where w and h are width and height of a frame, |MV(Xdiag)| stands for the average norm of
MVs in Xdiag. Observe that this equation is the approximate one, and its relative error ε can be
defined as:

ε =
2|E(|MV(Xdiag)|)− h√

w2+h2 E(|MV(Xmid)|)|

E(|MV(Xdiag)|) + h√
w2+h2 E(|MV(Xmid)|)

(17)

Finally, the score for deciding camera zooming is given below:

Sz =
(1− ε)V(X)

N ∑
i
L̃(Ω) (1 ≤ i ≤ N) (18)

When Sz is negative, it is inclined to zoom-out situation, otherwise zoom-in. In addition, we have
to set a threshold th that must satisfy |Sz| > th for the zooming circumstances.

• Stable and Others:

For a stable situation, it is easy to judge by checking whether E(|V(X)|) ' 0 or Var(|MV(X|) ' 0.
Besides, the sampling set X contains most of intracoded blocks (|IC| � |I|), which indicates the
stable situation as well. The last circumstances C′ is named as “rest” when it does not satisfy any
of the above circumstances. Please note that C′ may consist some important situations that we
have ignored in previous detection steps. For example, the combination of panning and zooming,
which occurs frequently in video recording. It is hard to decompose both panning and zooming
motion vector component since the panning component can have any directions and norms.
An alternative way is to simplify this problem by extracting the horizontal and vertical panning
motion vectors from the composed one separately. We consider the upper-right corner sampling
area in Figure 4 for instance, solid lines represent the extracted motion vectors, and they can be
forced to decompose into the zoom-in and the retrieved horizontal/vertical components (dotted
lines and red solid lines). The norm of the zoom-in component is set as a fixed value to make sure
the retrieved motion vector is horizontal or vertical. We re-compare the retrieved horizontal and
vertical components for the sampling areas using the camera panning model; if it satisfies the
conditions, the status of camera is both panning and zooming. On the other hand, the zoom-out
situation follows the same rule as the zoom-in.
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Figure 4. Motion vector decompostion on horizontal and vertical directions.

We propose a decision tree model is designed for global motion detection, as depicted in Figure 5.

Motion
Data

Stable

Detec
tion

Stable
Yes

Pannin
g

Detec
tion

No

Zoom
Detec
tion

No

Pannin
g

Yes

Zoom
In&OutYes

Others
No

Figure 5. A decision tree model for global motion detection.

Also, a related algorithm is written in Algorithm 2.

Algorithm 2 Global motion decision algorithm

1: if (E(|V(X)|) ' 0 and Var(|V(X)|) ' 0) or |IC| � |I| , return Cs.
2: Compute Scp using (11), if Scp > th1, return Cp.
3: Compute Sz using (18), if |Sz| > th2 and Sz > 0 return Czi.
4: else if |Sz| > th2 and Sz < 0 return Czo.
5: else return C′.

The tree is mainly classified into three categories: stable, panning, zooming, and they are ordered
by occurrence probabilities. Threshold th1 and th2 are induced to control the detection precision.

2.1.3. Global Motion Compensation

A global motion compensation procedure is recommended for each block to retrieve the
foreground MVs. Since the coding unit (CU) has different resolutions both in VPX and in HEVC,
it is recommended to unify the block size for processing as 8× 8. For each block bi in a frame, its
compensated motion vector is computed through:

mvr(bi) = mv(bi)−mvg(bi), (19)

where mvr(bi) and mvg(bi) denote the real and global motion vector respectively. The key problem is
to compute mvg for each block bi in different camera circumstances. Consider each element h ∈ H ,
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for h = Cs, mvr(bi) = mv(bi); For h = Cp, mvg(bi) = E(MV(X)); For h = Czo and h = Czi, according
to Figure 3, it might be asserted that mvg(bi) and

# »

fbi have the same or opposite directions, in other

words, mvg(bi)·
#»
fbi

|mvg(bi)||
#»
fbi |
' ±1. When h = Czi, mvg(bi) = α

# »

fbi, and when h = Czo, mvg(bi) = −α
# »

fbi.

α denotes the scaling factor, which has the following expression:

α =
1
N

N

∑
i=0

|mvi|
|~fi|

. (20)

Last but not least, if h = C′, we check whether the combination of panning and zooming occurs
first, if so, mvg(bi) is composed of the two motion vectors and mvr(bi) can be acquired by (19) and (20).
Otherwise, it is recommended to check out the previous result of h in the reference frame buffer for
the current one. If the current one is I frame (has no reference frame), or hre f = C′ without combining
the cases of panning and zooming, we have to ignore mvg(bi) and leave it as zero since lacking of
global motion information. If hre f 6= C′, we use mvg(bi)

′ of the reference frame instead of this one as
the last choice.

2.1.4. Discussion

Figure 6 displays some extracted motion blocks for ROI foreground objects via different
approaches. Each method is introduced in brief:

• Gradient-Descent (GD) [63]: It aims to compute the gradient by Newton-Raphson method for the
error distance between the true and the estimated MVs, then it updates parameters based on the
gradient descend direction so that the error distance is reduced.

• Least-Sum-Square M-Estimator (LSS-ME) [64]: It involves formulating the error distance by an
over-determined regression: AT Am = ATb, where A ∈ R2N×8, b is a 2N vector of transformed
coordinates (x′, y′), and N is the total number of MVs. It also uses iterative outlier rejection
through a robust M-Estimator to estimate motion components m.

• RANSAC [65]: This method induces a statistical method for GME in different computer vision
problems. It computes the homography matrix via a large number of iterations to achieve the
maximum transformed matching points between the current and the reference frames.

(a) (b) (c) (d) (e) (f)

Figure 6. Visual comparisons of foreground motion blocks extraction with global motion among
different approaches. (a) Sequences (From the top to bottom): Coastguards, Flower, Stefan. (b) Motion
blocks distribution. (c) Our method. (d) The GD approach [63]. (e) The LSS-ME approach [64]. (f) The
RANSAC approach [65].

One can see that the proposed method retrieves the foreground MV blocks more accurately than
others by eliminating “noisy” background blocks. Instead of using the regression (GD, LSS-ME) or
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statistical (RANSAC) methods to estimate the global motion parameter m, the proposed decision
tree model is efficient on judging the global camera status. The average running time (sec/frame)
performances are tested on OpenCV (C++) with a 2.8GHZ Core i7 CPU. Table 1 displays that the
proposed method achieves a better result in time performance since high computation costs of matrix
SVD and iterations are substituted by the tree model with O(n) complexity.

Table 1. Running time tests for GME approaches. (Platform: OpenCV 3.1, Core-i7 CPU 2.8GHZ× 4).

Sequences Our Method GD LSS-ME RANSAC

Flower 0.097 s 0.181 s 0.466 s 0.240 s
Stefan 0.293 s 0.665 s 0.712 s 0.497 s

CoastGuard 0.225 s 0.604 s 0.811 s 0.472 s

To justify how these thresholds influence the classifier’s performance, several sequences are
collected for test with different characteristics. These sequences are pre-analyzed by the photographer’s
comments for status judgements, and any decision result which obeys the objective comments is treated
as the misjudgement. For performance evaluation purpose, we extract partial frames in each sequence
to ensure that each sequence has at least two camera states. Frames with main status are regarded as
positive samples while others are negative samples. Without loss of generality, we select the number of
negative samples nearly the same as the positive ones. For example, in foreman, frames between 47–81
are commented as the stable state and 82–115 are commented as the panning state. Table 2 displays
some performance indexes (e.g., recall, precision, F-score) for different settings of threshold th1 and
th2. The panning and zooming groups are tested with six sequences, and the results are acquired by
computing their average values. One can see that an optimal combination of (th1, th2) is (0.3, 0.5),
which indicates that the classifier is able to make acceptable decisions for camera statuses.

Table 2. Performance of camera status decision with different settings of thresholds.

Seq Status th1 th2 prec Recall F-Score

BQTerrace
Flower
Foreman

panning
/rests

0.1 0.3 0.818 0.901 0.857
0.3 0.3 0.940 0.901 0.922
0.5 0.3 0.846 0.880 0.863
0.7 0.3 0.702 0.801 0.747

PartyScene
BQSquare
Mobile

zooming
/rests

0.3 0.1 0.649 0.740 0.692
0.3 0.3 0.722 0.780 0.750
0.3 0.5 0.773 0.820 0.796
0.3 0.7 0.693 0.680 0.686

2.1.5. Marking Motion Areas

After acquiring the global compensated motion data of foreground ROI objects, a MV clustering
method is proposed to segment blocks into motion areas. For each ROI block, we apply the target
clustering function J based on the following definition:

J =
N

∑
i=1

K

∑
j=1

µij(‖x̃
p
i − c̃p

j ‖
2 + ‖x̃mv

i − c̃mv
j ‖2 + ‖x̃I

i − c̃I
j ‖2), (21)

where x̃p
i , x̃mv

i and x̃I
i denote the normalized vectors of position, motion vector, pixel intensity for block

i correspondingly. Please note that x̃I
i has three components (Y/U/V) while the others have two. µij

indicates the belongingness of block i to cluster area j, and c stands for the center vector. Apparently,
the target function J considers blocks’ position together with pixel and motion similarities. To solve
non-spherical clusters, we use Kernel Fuzzy C-Means (KFCM) method for block classification, which

induces the kernel function K(x̃i, c̃j) = exp(− ‖x̃i−c̃j‖2

σ2 ) in criteria computation. To adaptively classify
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these foreground blocks, we propose a clustering algorithm which optimally classifies blocks into
adequate areas, see Algorithm 3 for details.

Algorithm 3 KFCM Motion Areas Clustering Algorithm

1: Set k = 1, c̃1 = E(x̃p
i , x̃mv

i , x̃I
i ).

2: while k ≥ Kmax do

3: Segment N blocks into k clusters by KFCM algorithm with the stopping criteria: |J
t+1−Jt |

Jt < ε.

4: Compute Jj =
|c̃j |
∑

i=1
(‖x̃p

i − c̃p
j ‖

2 + ‖x̃mv
i − c̃mv

j ‖2 + ‖x̃I
i − c̃I

j ‖2).
5: if maxj∈(0,k] Jj < ε|c̃j| and |c̃j| ≥ N/(k + o) then

6: return µ, k, c̃j, j ∈ (0, k].
7: end if
8: k = k + 1;
9: end while

10: return µ, Kmax, c̃j, j ∈ (0, Kmax].

Notice that the clustering algorithm segments the foreground blocks into k clusters, where k
increases from 1 to Kmax iteratively. At each turn, it computes the target function (Jj) for each cluster
j. When each cluster’s size satisfies that |c̃j| ≥ N/(k + o) (o is an offset, empirically set as 2) and Jj is
constrained on a upper bound ε|c̃j|, the algorithm stops and returns the optimal cluster labels.

To specify the parameter influences on segmentation results, we set Kmax = 4 and change ε from
0 to 1. The clustering results are displayed in Figure 7, whereas three sequences are included for
comparisons. We find that when ε ≥ 0.25, the algorithm outputs two clusters; as ε decreases, more
clusters are generated with margin details. Next, we collect the margin points for each cluster. Let
us assume that Mi = {bt, bl , br, bb}, in which collection Mi contains the top, left, right and bottom
block for cluster i. Then, a rectangle area can be drawn based on these blocks. However, some “noise”
blocks may reduce the precision of determining Mi. For example, in Figure 8c, the rectangle area
covers many blank areas that are useless. To solve this problem, we propose a motion area pruning
algorithm, see Algorithm 4 for details. Please note that the algorithm first traverses each block cluster
from its margin points in a depth-first way. The searching procedure terminates when it reaches the
bounds or the visiting block is not ROI block (Rn). Then, the traversed data is collected into subset
B. If the size of B is small enough, the blocks in B are ignored as “noise” ones. Finally, the algorithm
returns the pruned block set B1. Please note that the search range r and step s are set as five and two
block-distance empirically, in which larger value of r would eliminate less “noise” blocks. Figure 8
shows the boundaries of motion areas before and after the pruning algorithm. We can observe that the
proposed method reduces the “noise” blocks effectively and obtains the precise rectangle.

(a) (b)

Figure 7. The motion segmentation results for different values of ε (Kmax = 4): (a) Raw sequences.
(From top to bottom: Suzie, Ice, Foreman) (b) Foreground motion blocks.
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(a) (b) (c) (d)

Figure 8. Visual effects before and after the pruning algorithm for motion areas: (a) Raw sequences.
(From top to bottom: Suzie, Ice, Foreman) (b) Foreground motion blocks. (c) Before pruning.
(d) After pruning.

Algorithm 4 Motion Area Pruning Algorithm
Search(b, Vis,B):

Input: b: The current processing block; Vis: Whether the block is visited; B: Temp block lists; Search

range r and step s.
1: If CheckBound(b) == false or Vis(b) or Type(b) == Rn, return.
2: Vis(b)=true, append b to B.
3: for i = 1; i < r; i+ = s do

4: Search(b(x± i, y± i), Vis,B).
5: end for

Prune(M):

Input: : Margin block set M; Original block set Bi
0. Pruned block set Bi

1 = ∅ (0 < i ≤ k).
1: for each Mi in M do

2: for each bj in Mi do

3: Search(bj, Vis,Bj).
4: If |Bj| >

Bi
0

|Mi |+o , Bi
1
⋃

= Bj.
5: end for
6: end for
7: return

⋃Bi
1.

2.1.6. Mask Drawing and ROI Extracting

After obtaining the boundaries of motion areas for each cluster, we consider drawing the margin
masks for the motion areas. First of all, the “edge” blocks of each cluster are filtered by edge detection
methods (i.e., Canny, Sobel). Let us assume that Bi

E is the set of “edge” blocks of the ith cluster,
the shape of mask is then generated by the Gift-Wrapping algorithm in [66], see Figure 9 for details.
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(a) (b) (c) (d)

试用限制Figure 9. Visual effects of mask drawing and mask inflation: (a) Raw sequences. (From top to bottom:
CoastGuard, Suzie. (b)“edge” feature blocks. (c) Mask shape with ι = 1.4. (d) Mask shape with ι = 1.

Please note that the Gift-Wrapping algorithm performs as a convex hull scan method, in which
the convex shape of the motion area is clearly formed. For alternating the cover area, we define the
center of motion area i as:

C i
m(r, c) =

1
|Bi

E|
∑

bE∈Bi
E

bE(r, c), (22)

where C i
m(r, c) denotes the center coordinate ((r, c) means row and column). We also declare an

inflation factor ι which controls the scaling extent of the mask. Given a fixed ι, the updated “edge”
blocks b′E(r, c) can be expressed as:{

b′E(r) = bE(r) + (ι− 1) · (bE(r)− Cm(r))

b′E(c) = bE(c) + (ι− 1) · (bE(c)− Cm(c))
(23)

To specify how ι influences the mask shape, we change ι from 1 to 1.4, the visual effects of which
is displayed in Figure 9c,d. After acquiring the mask data, we can determine the result of foreground
objects inside the mask. We use the extracting method in our previous work [14], it implements
a multidimensional segmentation method with the Expectation Maximization (EM) algorithm to
segment the mask data into an optimal number of clusters. Then, for each cluster inside the mask,
it computes the KLD (D(pb||p f )) between the background pixel histogram pb(x) and foreground
pixel histogram p f (x). When D(pb||p f ) is below a threshold ξx, the current cluster is treated as the
background cluster and it is removed from the mask. At the end of each iteration, pb is updated based
on the removed clusters and sampling background blocks, see Formula 25 in our previous work [14]
for details.

3. Experiments

3.1. Visual Effect Analysis Experiments

3.1.1. Parameters Settings

It is essential to set some parameters before performing the visual analysis experiment. For ROI
inter model, two threshold th1 and th2 are set to 0.5 empirically since the score is normalized, and the
norm of the real motion vector should satisfy ||mvbi

|| >
√

2 as a condition to determine whether block
bi belongs to motion mask M. For ROI intra model, the initial value of ϑ(τ, µ, Σ) is set manually
instead of a random value for reducing iteration steps. Practically, τ is set initially as {0.5, 0.5} for
K = 2 classes, and µ, Σ are recommend to be acquired by running the K-means cluster (K = 2) method
first and use the outputs as their initial values. zi is assigned by an uniform distributed binary array
{0, 1, 0, 1, . . . } with the same probability for each value. β is set as 1.5 and ξ1, ξ2 are initiated as 8 and
0.12 respectively. Besides, the max-iteration steps for EM algorithm are constrained to 10 for reducing
the computing costs.
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3.1.2. Visual Comparisons on CDNet Dataset

In this sub-experiment, the performance of our method is evaluated by using five video clips from
the change detection data set (CDNet) [61]. These clips contain: Shade (periodic motion, shadow), Office
(slow-moving), Highway (fast-moving) Winter (camouflage), and Canoe (dynamic background). They
are displayed from top to bottom in Figure 10. Seven methods are included for visual comparisons,
and they are classified into several categories: (1) Matrix completion approaches: Decolor [67], PCP [22],
GROUSE [27]; (2) Probabilistic modeling: GMM [21], VBRPCA [26]; (3) Background modeling:
Vibe [34], MKFC [38]. For fast-moving and slow-moving clips, all of these methods are able to
reveal ROI details (moving objects) while some noise pixels especially in PCP [22] and GROUSE [27].
When it faces to the shadow or dynamic background source, most of these methods fail because it is
hard to handle backgrounds with varying ambient variations. The proposed method shows better
results since it ignores ambient variations by object filtering. When processing some sequences like
Winter, the proposed method fades in ROI details a little bit since the target contains too small pixels
forM to retrieve, but it still meet a satisfactory result compared with other approaches.

Figure 10. Visual effect comparisons through different methods on CDNet. (a) Source frames.
(b) Ground truth. (c) The proposed method. (d) VBRPCA [26]. (e) GROUSE [27]. (f) MKFC [38].
(g) PCP [22]. (h) ViBe [34]. (i) GMM [21]. (j) Decolor [67].

3.1.3. Visual Comparisons On AVC/HEVC Sequences

In this sub-experiment, we test the proposed method among real AVC/HEVC (H.264/H.265)
video sample sequences by comparing with other approaches. All the methods are performed based
on the standard video compression software named HM13.0 for HEVC. The tested sequence are
introduced with a raster order in Figure 11a correspondingly: BQSquare (zooming, slowly move),
Carphone (dynamic background), Container (slowly and fast move), Ice (low-contrast fore-background
move), KristenAndSara (slowly high definition move), Mobile (zooming, low-contrast fore-background
move), Racehorse (large ROI fast move), Stefan (panning, fast move). For comparison purpose, two
well-suited for real-time processing embedded in video codec methods are introduced. They are
SSGoDec [29] and Σ−∆ motion detection [68], where the former uses outlier pursuit (OP) for low-rank
matrix estimation while the latter consists a simple non-linear recursive approximation for background
image based on an elementary increment/decrement value. The visual effect result is displayed in
Figure 11, where the motion vector outputM (represented as blocks) is displayed in Figure 11b after
global motion detection and compensation. One can see that the proposed method achieves better
performance especially on sequences with global motion (i.e., Mobile, Stefan) than others. Σ− ∆ can
extract an explicit margin details specifically in low-contrast fore-background sequences (i.e., Ice),
however, it also brings stable details such as the barricades. Our method is able to provide similar
object details as Σ− ∆ and it also focuses on moving objects with stable details neglected. Similar
result can be found in Racehorse.
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Figure 11. Visual effect comparisons through different methods on HEVC/AVC test sequences. (a)
Original frames. (b) Ground truth. (c) Motion vector mask. (d) The proposed method. (e) SSGodec [29].
(f) Sigma-Delta [68].

3.1.4. Miscellaneous Analysis

The performance of ROI detection and the computing time for different approaches are analyzed
in this sub-experiment. A state-of-the-art measurement for the performance analysis is to plot the ROC
curve and compute the area under the curve (AUC). The collected data for test includes the ROI data
(white pixels) of the ground truth together with the same amount of the non-ROI data (black pixels),
to make sure that we have the same positive and negative samples. The label of classifier is marked as
1 if it belongs to ROI and 0 if not. Unfamiliar with visual effect comparisons, the outputs IO of these
detection methods are gray-scale image (0-255) without binarization by threshold th, and the tested
data is sorted by a score metric ŝ(x) in a descend order. Also, this sub-experiment addressed some
performance metrics analyzes including recall, false positive rate (FPR), false negative rate (FNR),
precision (Prec), and F-measure, whose definitions are given by:

Recall = tp/(tp + fn); Prec = tp/(fp + tp);

FNR = fn/(fn + tp); FPR = fp/(fp + tn);

F-measure = (2× Recall× Prec)/(Recall + Prec)

(24)

where tp, fp, tn, fn denote true positive, false positive, true negative, false negative rate respectively.
To begin ROC analysis, we define set Te as the set of test examples (detection outputs); Te+ and Te−
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are the positive (foreground) and negative (background) subsets, respectively, of Te. Meanwhile,
a score function, ŝ(x), denotes the score function of the sample pixel x. Then, the ranking accuracy is
defined as:

rank− acc =
∑

x∈Te+ ,x′∈Te+
δ(ŝ(x) > ŝ(x′)) + 1

2 δ(ŝ(x) = ŝ(x′))

Pos · Neg
, (25)

where δ(·) is the indicator function, and Pos and Neg are the number of positive and negative samples,
respectively, in Te. For convenience, the output image data of each detection method are normalized
between 0 and 1 and binarized via a threshold ξ, and the score function ŝ(x) is defined as:

ŝ(x) =

{
(Ig(x)− ξ)2, Ig(x) > ξ

−(Ig(x)− ξ)2, Ig(x) < ξ.
(26)

Figure 12a,b provide the ROC curve for AVC/HEVC dataset sequences with three detecting methods,
and Figure 12a,b stand for CDNet dataset sequences with six detecting methods. One can see that
the proposed method has a larger AUC value. In other words, the demand of detection precision for
foreground/background classification is reached.

(a) (b)

(c) (d)

Figure 12. ROC curves for different test sequences based on several detection methods. (a) BQSquare;
(b) Stefan; (c) PeopleShade; (d) Highway.

For computation time analysis, we test the performance of each detection method both on CDNet
and on AVC/HEVC Sequences. As for CDNet dataset, three sequences (Canoe, Office, Highway) are
selected, and each sequence has separated in batches by 20 frames. Figure 13 shows the average
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batch-running time for these detection methods tested on CDNet dataset. For AVC/HEVC dataset,
four different resolutions of sequences are chosen, which are: Container (QCIF), Ice (CIF), Racehorse
(416 × 240), KristenAndSara (1280 × 720). Figure 13a displays the time consumption data for different
sequences while Figure 13b provides the time consumption data for sequences differ from data
resolutions. We can find that the proposed method achieves a lower computation time and better
performance on detection precision compared with other approaches. Also, the proposed method
intends to find a balance between time costs and detection accuracy.

(a) (b)

Figure 13. Running time evaluation for several ROI detection approaches. (a) Time consumption varies
from different sequences. (b) Time consumption varies from different resolution.

3.1.5. Performance Comparisons with Motion Vector Extraction Methods

In this subsection, we add some extra experiments that evaluate the performance compared with
some other motion vector extraction methods. Based on the authors’ acknowledgements, previous
works have introduced the idea of extracting motion vectors of moving objects as ROI detection
methods. For example, in [69,70], the authors proposed a two-stage method to identificate moving
objects. At the first stage, moving objects are detected based on the analysis of motion vectors
in predicted MBs and DCT coefficients in intra-coded MBs. Then, the authors proposed motion
vector informations such as spatial correlation, temporal correlation to identify moving objects. Also,
they considered the solutions for objects with intra-coded MBs. Niu et al. [71] presented a novel
segmentation approach to extract moving objects in the H.264 compressed domain, in which motion
vectors are first refined by the motion relativity in both space and time, then clustered based on
their differences with the reference of global motion vector. Similarly, work [72] used Global Motion
Compensation (GMC) to effectively extract moving objects based on motion vectors. The authors
proposed a search-matching algorithm to compute the background motion vectors for global motion
extraction. Then, foreground moving objects are identified by excluding global motion vectors. They
also introduced a statistic variable named fourth-order moment to distinguish the background signal
and moving objects. Recently, Serhan et al. [73] propose a hybrid tracking method which detects
moving objects in videos compressed according to H.265/HEVC standard. They introduced Markov
Random Field (MRF) model to captures spatial and temporal coherence of the moving object. Also,
background/foreground color modeling is proposed both for I frames and for P frames.

Figure 14 displays some visual effects comparisons among those previous works corresponding
with motion vector extraction methods. we have selected five sequences for performance tests.
These sequences contain both big or small objects (people) with various background changes. Three
methods are introduced for comparison purposes; they are Yokoyama et al. [69], Shun et al. [72]
and Serhan et al. [73]. As seen in Figure 14, the proposed method meets a satiable results that clearly
reflects the details of the moving objects. For detection accuracy analysis, we plot the presion curves
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among the four tested methods. This results are displayed in Figure 15, one can see that the proposed
method can meet the robustness demands for different test cases. Also, the detection precison is more
stable than others among the selected test sequences.

Figure 14. Visual effect comparisons among various motion vector extraction method (a) Original
sequences (from top to bottom: Pedestrians #3, Pedestrians #15, Johnny #31, Office #18, Akiyo #10, Party
#27 ). (b) Yokoyama et al. [69]. (c) Shun et al. [72]. (d) Serhan et al. [73]. (e) Our method.

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Detection precision curves for test sequences among different motion vector extraction
methods. (a) Akiyo (250 frames); (b) Carphone (300 frames); (c) Pedestrians (250 frames); (d) Salesman
(400 frames).

4. Conclusions

In this paper, we design a new foreground ROI detection method for video sequences based on
two ROI models: “inter” and “intra”. The “inter” model is in charge of acquiring the real motion
blocks via global motion detection and compensation. Several detection metrics and a decision tree
model are proposed in the inter model, including camera status decision, motion vector subtraction.
Also, different categories of camera statuses are taken into consideration with company of global
motion compensation. The “intra” model is in charge of revealing the object details by the object
filtering approach, and it extracts both the edge and inner part of objects in the frame. Notice that
ROI detection focuses on moving details of objects. The output of the “inter” model gives the motion
information however not specific which is represented as blocks, while the “intra” model uses this
motion information as the pilot and it reconstructs the output by image segmentation and combination
using the proposed cluster approach together with a motion area pruning algorithm. Experimental
results demonstrate that the proposed method gets a better result both on detection precision and on
computational time. Future works will include machine learning approaches to detect the actions of
ROI objects and improves the detection quality specifically in the action areas, and the parameters of
the proposed method will be optimized which suits video with various characteristics.
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