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Abstract: In order to realize automatic steering controls of rice transplanters in paddy fields, an
automatic steering control algorithm is essential. In this study, combining the fuzzy control with the
proportional-integral-derivative (PID) control and the kinematics model, a compound fuzzy PID
controller was proposed to adjust the real time data of the PID parameters for the automatic steering
control. The Kubota SPU-68C rice transplanter was then modified with the new controller. Next,
an automatic steering control experimental with the modified transplanter was carried out under
two conditions of linear tracking and headland turning in verifying the automatic steering effect of
the transplanter in different steering angle situations. The results showed that the deviation with
the new controller and the modified transplanter was acceptable, with maximum deviation in linear
tracking of 7.5 cm, the maximum headland turning a deviation of 11.5 cm, and the average a deviation
of less than 5 cm. In conclusion, within the allowable deviation range of the field operation of the
rice transplanter, the proposed algorithm successfully realized automatic steering controls of the
transplanter under different steering angles.
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1. Introduction

With the development of computers, automatic control, intelligent agricultural equipment
technologies, and automatic navigation technology has received increased attention in the field of
intelligent agricultural machinery [1,2]. The automatic steering control system in navigation is a key
step in providing support for subsequent navigation control [3,4]. Many different control methods
have been developed for the automatic control system, including the pure pursuit model [5–8],
the proportional-integral-derivative (PID) control [9,10], the fuzzy control [11–13], and the neural
network [14–17]. Among these, the pure pursuit model is the most commonly used approach for the
automatic control. The main aim of the pure pursuit model was to establish a dynamic model which
considers the steering angle as the control variable [18,19]. When accurate mathematical models are
not available, another option is to design a controller based on the PID control, the fuzzy control, and
the neural network to realize automatic steering controls for agricultural machines.

In order to improve the automatic operation level and realize automatic steering controls for rice
transplanters, much research has been done. Nagasaka et al. [20] developed an automatic steering
method for a rice transplanter, which includes path tracking and steering with a fixed front wheel
angle. This method occupies small headland space; however, it needs to be reversed when headland
turning. However, the steering control was complicated and the work efficiency was low. To simplify
the steering control structure, a new ground steering control algorithm, based on the Kubota SPU-60
rice transplanter, was proposed [21]. This algorithm applies a two-wheeler model to dynamically
plan a steering path and adjust the reverse stance, which is without position feedback and reverse
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steering; however, the steering control accuracy is not high. In 2011, Xu [22] designed a fuzzy controller
and established an automatic steering control method based on the fuzzy control to improve steering
control accuracy. The fuzzy controller takes the rotation angle deviation and deviation change rate as
inputs and the motor frequency as the output. This method can meet the needs of the agricultural
machinery operation, but the stepper motor will drift, which will affect the control precision. To solve
this problem, a PD (proportional-derivative) controller was introduced to build an automatic steering
control method [23], in which P and D parameters are adjusted online, according to the traveling
speed of the agricultural machine, and the desired steering angle of the steering wheel is the output of
the controller. It has good control performance, high stability, and fast response speed, though the
parameter acquisition is more difficult.

However, it is difficult to establish an accurate mathematical model and acquire parameters for
the mentioned controllers above, due to the nonlinear and time-varying characteristics of the steering
system of rice transplanters and the complex operating environment. The PID controller has the
advantages of a simple principle, a convenient operation, strong adaptability, and high robustness, and
its control quality is insensitive to changes in the controlled object. With these characteristics, the PID
controller is very suitable for agricultural machine operating in a complex environment. The fuzzy
controller does not need to establish an accurate mathematical model, making control mechanisms
and strategies easy to accept and understand, and has high robustness and self-adjustability [24,25].
Therefore, an automatic steering control algorithm was presented by taking full advantage of the
fuzzy control and the PID control. Firstly, the kinematics analysis of the transplanter was carried out,
combining with the fuzzy control, the PID control and the kinematics model, a compound fuzzy PID
controller was designed, with the appropriate PID control parameters able to be selected in real time.
Then, the steering actuators of the experimental platform were modified, and the simulations and field
experiments were carried out in verifying the feasibility of the compound fuzzy PID control system.
The simulations and field experimental results show that the compound fuzzy PID controller has
good automatic steering tracking performance and control effect, which satisfies the field performance
requirements of the transplanter.

2. Materials and Methods

2.1. Automatic Steering Experimental Platform

The Kubota SPU-68C rice transplanter was chosen as a research object in this study. The modular
design was used to modify the experimental platform without changing the original structure of the
transplanter steering system. The modified experimental platform is shown in Figure 1, which includes
a rice transplanter body, a Beidou high-precision differential positioning system, and an automatic
steering system.
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Figure 1. Automatic steering control experimental platform. (1) Navigation controller; (2) reference
station; (3) base station antenna; (4) automatic steering system; (5) steering servo motor; (6) antenna of
the movable station; (7) steering angle sensor of the front wheel.
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The Beidou high-precision differential positioning system consists of a base station and a
mobile station. The base station includes one receiver, one measurement antenna, and one radio
communication module. The mobile station contains one receiver, two measurement antennas, and
one radio communication module. The base station provides a reference coordinate signal to the
mobile station through the radio communication module. The navigation controller was composed of a
host computer PC (personal computer) and a lower computer STM32 (Stmicroelectronics 32-bit series)
single chip development board. The compound fuzzy PID automatic steering algorithm was stored in
the host computer, and the lower computer was connected with the automatic steering system and a
wheel angle measuring sensor. The navigation controller makes processing decisions according to the
position and angle information outputted by the Beidou positioning system and the front wheel angle
sensor. The compound fuzzy PID controller sent a control signal to the automatic steering system in
realizing the automatic steering of the rice transplanter. The automatic steering system was a modified
automatic steering actuator, as shown in Figure 2. The servo motor and the gear pair are mounted on
the modified automatic steering actuator on the rice transplanter to drive the original steering wheel
shaft. The perform structure can realize the coexistence of a manual and automatic operation and has
the characteristics of a compact structure, high transmission efficiency, low installation cost, and fast
response speed. The main parameters of the navigation hardware for the experimental platform are
shown in Table 1.
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Figure 2. Actuator of the automatic steering system. (1) Steering wheel of the transplanter; (2) steering
axle gear; (3) output axle gear; (4) reducer; (5) servo motor; (6) motor bracket; (7) absolute encoder.

Table 1. Parameters of the navigation hardware for the experimental platform.

Name Component Type Number Parameter

Beidou high-precision
differential positioning system

Positioning receiver C201 2
±2 cm, ±0.5◦

(precision)Measuring antenna 3
Radio communication module 2

Navigation controller Host computer PC 1
Lower computer STM32

microcontroller 1

Automatic steering system

Servo motor RE50 1 30 Nm (Torque)
i = 1/91

(transmission ratio)
Reducer GP52C 1
Driver EPOS2 70/10 1

Gear pair 1 i = 1/2
(transmission ratio)

Front wheel angle
measuring sensor Absolute encoder Rongwei

Technology 1 0◦~360◦

(working range)
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2.2. Analysis of Kinematics of Rice Transplanter

The working environment of the agricultural machine is complex and varied, especially the
operation environment of the rice transplanter in the paddy field. To simplify the kinematics model of
the vehicle, the transplanter wheel was regarded as a rigid wheel, regardless of the slip between the
wheel and the ground. According to Kelly’s simplified two-wheel kinematic model [26], the motion of
the rice transplanter was simplified to a two-dimensional plane motion. The pure pursuit model was a
geometric principle-based calculation method, which can be used to calculate the curved trajectory
of the vehicle moving from the current position to the target point [27]. The model is simple and
intuitive, without considering the dynamic model of the vehicle in the calculation process. Therefore,
we established a pure pursuit model of the transplanter based on a two-wheel model, as shown in
Figure 3, and analyzed the kinematics of the transplanter.
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Figure 3. The pure pursuit model of the transplanter.

In Figure 3, X–O–Y is the geodetic coordinate system, and YV–OV–XV is the rice transplanter
coordinate system. XV and YV correspond to the abscissa axis and ordinate axis, respectively. The red
line indicates the kinematic model of two-wheeler of the rice transplanter, and point G is the center of
gravity of the two-wheeler model. The dotted line is the predefined driving path, and the starting
point is at point G. ρ is the turning curvature of the rice transplanter; ρ > 0 is the curvature of the
rice transplanter when turning counterclockwise, and ρ < 0 is the curvature of the rice transplanter
when turning clockwise. R is the instantaneous turning radius of the rice transplanter. d is the lateral
deviation of the actual position of the rice transplanter from the desired path; d < 0 means that the
actual position is on the left of the desired path, d > 0 denotes that the actual position is on the right of
the desired path. Ld is the look-ahead distance of the rice transplanter in the pure pursuit model, in
which the distance can be regarded as the empirical value obtained by imitating the manual driving
method. θ is the heading deviation between the current position of the rice transplanter and the path
to the target position. M is the center of the rice transplanter moving along the curve of the turning
arc. Φ is the heading change angle of the rice transplanter when rotating around the center, M, and
reaching the target position along the turning arc. L is the wheelbase between the wheels before and
after of the rice transplanter.

In accordance with the geometric relationship shown in Figure 3, the coordinates (XVQ, YVQ) of
the target point Q in the YV–OV–XV coordinate system were defined as follows:

XVQ =
1
ρ

cos Φ −
1
ρ
=

cos Φ − 1
ρ

(1)

YVQ =
1
ρ

sin Φ (2)
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In the right triangle ∆POVQ, the look-ahead distance and the coordinate value of the target point
Q (XVQ, YVQ) satisfy the following relation:

X2
VQ + Y2

VQ = L2
d (3)

According to Equations (1)–(3), the curvature ρ of the rice transplanter was calculated as follows:

ρ = −2
XVQ

Ld
(4)

Automatic steering is aimed at obtaining the desired rotation angle of the front wheel because
of the rice transplanter with front wheel steering. Based on the pure pursuit model in Figure 3, the
desired rotation angle and turning radius of the front wheel of the rice transplanter satisfy the following
relationship:

δ = arctan(Lρ) (5)

where L denotes the front and rear wheelbase of the rice transplanter and δ indicates the desired angle
of the front wheel.

According to the geometric relationship shown in Figure 3, Equation (1) could be rewritten as:

XVQ = −d cosθ+
√

L2
d − d2 sinθ (6)

Under Equation (6), Equation (4) was rewritten as:

ρ =
2
(
d cosθ−

√
L2

d − d2 sinθ
)

Ld
(7)

Combining with Equations (5) and (7), the desired rotation angle of the front wheel of the rice
transplanter in the pure pursuit model could be calculated as follows:

δ = arctan
2L

(
d cosθ−

√
L2

d − d2 sinθ
)

Ld
(8)

3. Design of the Automatic Steering Control Algorithm

To enable the rice transplanter to follow the target path, it was ensured that the deviation between
the actual driving path and the target path was minimized. Thus, the automatic steering system not
only needed to grasp the current pose information of the rice transplanter accurately, but also realize
the accurate steering. From the analysis of the kinematics model, the lateral deviation of the vehicle is
caused by the heading angle, and there is a certain relationship between the change of front wheel
angle and the heading angle. It can be concluded that tracking the control angle in real-time, based on
the change of the front wheel angle, is the key to realize the automatic steering of the rice transplanter.

3.1. The Compound Fuzzy PID Control Algorithm

In an automatic steering control system, the control method plays a vital role in the overall control
system. In this study, the PID control and fuzzy control theory were combined to design a compound
fuzzy PID controller. The fuzzy controller is used to adjust the proportional, integral, and differential
parameters of the PID online. The adaptive adjustment of the control system parameters can well adapt
to the working environment. The schematic diagram of the compound fuzzy PID control is shown
in Figure 4. First, the desired steering angle δ of the automatic steering front wheel was obtained,
and the difference between the angle δ and the actual rotation angle was calculated, that is, the front
wheel rotation angle deviation e. Second, the deviation conversion rate ec = de/dt was calculated. When



Appl. Sci. 2019, 9, 2666 6 of 14

e > 10◦, the fuzzy controller was used to quickly adjust the deviation; when e ≤ 10◦, the compound
fuzzy PID controller was used to precisely adjust the front wheel angle [27].Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 14 
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As shown in Figure 4, the front wheel angle deviation e and the deviation change rate ec were
taken as inputs of the compound fuzzy PID controller. The PID parameters ∆Kp, ∆Ki, and ∆Kd are
outputs of the controller. The PID parameters were adaptively adjusted online by the fuzzy inference
method, which can meet different requirements of the different deviation e and the deviation change
rate ec, so that the controlled object achieves the quantitative dynamic and static performance.

According to the compound fuzzy PID control principle, the compound fuzzy PID controller
could be defined as follows:

u(k) =
(
Kp0(k) + ∆Kp(k)

)
× e(k) +

(
Ki0(k) + ∆Ki(k)

)
×

k∑
n=0

e(k) +
(
Kd0(k) + ∆Kd(k)

)
× [e(k) − e(k− 1)] (9)

where Kp0, Ki0, and Kd0 are the initial set values of the PID parameters and ∆Kp, ∆Ki, and ∆Kd are the
three outputs of the compound fuzzy PID controller.

3.2. Control Variable Fuzzification and Membership Function

As mentioned above, the front wheel angle deviation e and the deviation change rate ec are inputs,
and the parameters ∆Kp, ∆Ki, and ∆Kd are outputs. In this study, the conventional PID parameters were
determined by an experimental trial and error method. Through closed-loop operation or simulation,
the response curve of the system was observed, and the parameters were repeatedly tested, according
to the influence of each parameter on the system. The PID control parameters were determined
until a satisfactory response occurred, which were set as the initial parameters, Kp0, Ki0, and Kd0,
of the compound fuzzy PID controller. The appropriate fuzzy domain was then selected, based on
the parameters, and the parameters ∆Kp, ∆Ki, and ∆Kd of the compound fuzzy PID control were
determined by the fuzzy controller in real time. Based on the fuzzy control theory, the input and
output variables were fuzzified as follows [27]:

• Front wheel angle deviation e. The basic domain is: [−30◦, 30◦], the quantification domain is: {−6,
−4, −2, 0, 2, 4, 6} = {NB, NM, NS, ZO, PS, PM, PB}, and the quantization factor is: 6/30 = 0.2;

• Steering angle deviation change rate ec. The basic domain is: [−6, 6], the quantification domain is:
{−6, −4, −2, 0, 2, 4, 6} = {NB, NM, NS, ZO, PS, PM, PB}, and the quantization factor is: 6/6 = 1;

• Proportional parameter ∆Kp. The basic domain is: [−10, 10], the quantification domain is: {−3, −2,
−1, 0, 1, 2, 3} = {NB, NM, NS, ZO, PS, PM, PB}, and the quantization factor is: 3/10 = 0.3;

• Integration parameter ∆Ki. The basic domain is: [−8, 8], the quantification domain is: {−3, −2, −1,
0, 1, 2, 3} = {NB, NM, NS, ZO, PS, PM, PB}, and the quantization factor is: 3/8 = 0.375;
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• Differential parameter ∆Kd. The basic domain is: [−6, 6], the quantification domain is: {−3, −2, −1,
0, 1, 2, 3} = {NB, NM, NS, ZO, PS, PM, PB}, and the quantization factor is: 3/6 = 0.5;

With the high sensitivity of triangular membership function, they were selected as the membership
function of the input variables, including e and ec and the output variables ∆Kp, ∆Ki, and ∆Kd. The
triangle membership functions corresponding to the input and output variables are shown in Figure 5.
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3.3. Compound Fuzzy PID Control Rules

In the compound fuzzy PID controller, the interaction between three parameters and their
influences on other parameters must be considered. The tuning requirements of ∆Kp, ∆Ki, and ∆Kd
under different deviations |e| and deviation change rate |ec| are as follows [27]:

• When |e| is a small value, to maintain good steady-state performance of the system, ∆Kp and ∆Ki
should be set as larger values, and the value of ∆Kd depends on |ec|. When |ec| is small, ∆Kd takes
a larger value, whereas ∆Kd should take a smaller value to avoid oscillation of the system.

• When |e| is a medium value, to reduce the overshoot of the system, the values of ∆Kp and ∆Ki
should be smaller, and the value of ∆Kd should be appropriate to speed up the response of
the system.

• When |e| is a large value, to quickly reduce the system error and increase the reflection speed, the
∆Kp value should be larger; ∆Ki is often set to 0 to avoid the differential oversaturation caused by
the instantaneous increase of the |e| value.

According to the tuning requirements above, the fuzzy control rules for PID control parameters
were designed, as shown in Tables 2–4.

Table 2. ∆Kp fuzzy control rule.

∆Kp
ec

NB NM NS ZO PS PM PB

e

NB PB PB PM PM PS ZO ZO
NM PB PB PM PS PS ZO NS
NS PM PM PM PS ZO NS NS
ZO PM PM PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM PS ZO NS NM NM NM NB
PB ZO ZO NM NM NM NB NB
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Table 3. ∆Ki fuzzy control rule.

∆Ki
ec

NB NM NS ZO PS PM PB

e

NB NB NB NM NM NS ZO ZO
NM NB NB NM NS NS ZO ZO
NS NB NM NS NS ZO PS PS
ZO NM NM NS ZO PS PM PM
PS NM NS ZO PS PS PM PB
PM ZO ZO PS PS PM PB PB
PB ZO ZO PS PM PM PB PB

Table 4. ∆Kd fuzzy control rule.

∆Kd
ec

NB NM NS ZO PS PM PB

e

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS ZO
NS ZO NS NM NM NS NS ZO
ZO ZO NS NS NS NS NS ZO
PS ZO ZO ZO ZO ZO ZO ZO
PM PB NS PS PS PS PS PB
PB PB PM PM PM PS PS PB

According to the compound fuzzy PID control rule established above in Tables 2–4, the dynamic
tunings of ∆Kp, ∆Ki, and ∆Kd were obtained. The proportional, integral, and differential parameters of
the PID controller, Kp, Ki, and Kd, could then be calculated by the following Equation (10):

Kp = Kp0 + ∆Kp

Ki = Ki0 + ∆Ki
Kd = Kd0 + ∆Kd

(10)

where Kp0, Ki0, and Kd0 are the initial set values of the PID parameters.

4. Simulation Analysis

To verify the feasibility of the compound fuzzy PID automatic steering control algorithm, the
simulation model of automatic steering control for the rice transplanter was established in MATLAB.
The simulation model is shown in the Figure 6. In the simulation process, the front wheel rotation
angle deviation e = 10◦ was set as the demarcation point, and the simulation analysis was performed
when e = 8◦ and e = 25◦ [27], so that the compound fuzzy PID controller could adjust the parameters
∆Kp, ∆Ki, and ∆Kd in real-time. The step signal response curves of the front wheel rotation angle
deviation of 8◦ and 25◦ are as shown in Figure 7, respectively.
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The simulation analysis when the front wheel rotation angle deviation e is 8◦ and 25◦ is shown in
Table 5. When the front wheel rotation angle deviation e = 25◦, the response time of the compound
fuzzy PID control was reduced by 0.23 s compared with the traditional PID control, and the overshoot
was reduced from 3.5◦ to 1.6◦. When e = 8◦, the response time was reduced by 0.14 s and the maximum
overshoot was reduced from 0.4◦ to 0.2◦. It is noted that the compound fuzzy PID controller can speed
up the response speed of the system, reduce the overshoot, and quickly reach a steady state, and the
control effect is better.

Table 5. Performance comparison of control algorithms.

e Controller Response Process Overshoot Response Time Stable Time

8◦
Compound fuzzy PID Strict monotony 0.2◦ 0.34 s 0.52 s

Traditional PID Attenuation oscillation 0.4◦ 0.48 s 1.05 s

25◦
Compound fuzzy PID Slight shock 1.6◦ 0.45 s 0.94 s

Traditional PID Attenuation oscillation 3.5◦ 0.68 s 1.85 s

5. Field Experimental Results and Discussion

5.1. Field Experimental Scheme

The field experiment was conducted at the Guohe Experimental Base of Anhui Agricultural
University. The depth of the paddy soil was approximately 20 cm. The rice transplanter automatic
navigation field experiment is shown in Figure 8. To evaluate the accuracy of the automatic steering
control and robustness of headland turning, the field experimental tests included both linear tracking
and headland turning. As shown in Figure 9, four parallel predefined paths with a length of 50 m and
an interval of 1.8 m were set, namely A1B1, A2B2, A3B3, and A4B4, which were recorded as path 1, path
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2, path 3, and path 4. Before conducting the autonomous driving experiment, the maximum steering
angle, the net turning radius, and the maximum working width were measured as 45◦, 1.0 m, and
1.80 m, respectively, by manually driving the rice transplanter. During the autonomous navigation
operation, when the rice transplanter started to move from the point A1, the initial lateral deviation
was +10 cm and the heading angle deviation was +3◦. The compound fuzzy PID controller calculated
the required steering angle in real-time and sent a steering command to the automatic steering system
to realize automatic steering control. The experimental data, such as the pose information, speed,
heading, lateral deviation, and heading deviation of the transplanter, were saved in real-time.
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5.2. Analysis of Experimental Results

Figure 10a shows straight tracking experimental results, where the red line is the actual trajectory.
The corresponding lateral error and heading error were calculated and their deviation curves were
shown in Figure 10b,c, respectively. From the deviation curves, it can be seen that the curves started
out by fluctuating and then tended to be stable when the transplanter tracked the path along a straight
trajectory. The lateral deviation and the heading deviation, respectively, fluctuated around 0 at the
maximum of 7.50 cm and 3◦. The average lateral deviations of the tracking path 1, path 2, path 3, and
path 4 were for 3 cm, 2 cm, 2 cm, and 2 cm, respectively, and the average heading deviations were 1.9◦,
1.8◦, 1.8◦, and 1.7◦, respectively, which could meet the agronomic requirements of rice transplanting.
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In the field headland turning experiment, the turning radius of the transplanter was set to 1.20 m.
Figure 11 shows the headland turning curve. The transplanter automatically turned in the headland
of the paddy field when it drove to the end points, such as B1, A2, and B3, of three predefined paths.
As shown in Figure 11, the tracking curve fluctuated greatly when turning and tended to be stable
after headland turning. During headland turning, the lateral deviation and the heading deviation
fluctuated around 0 at the maximum of 11.5 cm and 5◦, respectively. The average lateral deviation
was 4 cm and the average heading deviation was 2◦. Most of the deviations were caused by the large
slippage of the rice transplanter when turning at the headland of the paddy field. According to the
field experimental results, the automatic steering control system with the proposed algorithm has a
high tracking accuracy and sufficient robustness to meet the field performance requirements of the
rice transplanter.
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6. Conclusions

In the manuscript, an automatic steering control algorithm, based on the compound fuzzy PID
control, combining the fuzzy control, the PID control and the kinematics model of a rice transplanter,
was proposed, and a compound fuzzy PID controller was developed. This controller can adjust
the PID control parameters in real-time in the fuzzy domain, which can make the compound fuzzy
PID controller output the best control variables. The automatic steering experimental platform was
modified according to the compound fuzzy PID controller. Simulations and field experiments were
performed to verify the effectiveness of the automatic steering control system. The experimental results
showed that the maximum lateral deviations of the linear tracking and headland turning were 7.5 cm
and 11.5 cm, and the average lateral deviation was less than 5 cm; the maximum heading deviation
was 3◦ and 5◦ and the average heading deviation was within 2◦. Both the lateral deviation and the
heading deviation were within the allowable deviation range of field operation for the rice transplanter.
In conclusion, the compound fuzzy PID control-based automatic steering algorithm developed in
this study can realize the automatic steering control of the transplanter at different steering angles,
effectively reduce the lateral deviation and heading deviation of the rice transplanter during the
automatic navigation process, which is beneficial to improve the control precision of the automatic
navigation, and can satisfy the agronomic requirements of the field operation of the rice transplanter.
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