
applied  
sciences

Article

Transfer Convolutional Neural Network for
Cross-Project Defect Prediction

Shaojian Qiu 1,2, Hao Xu 1,*, Jiehan Deng 1, Siyu Jiang 3 and Lu Lu 1,4

1 School of Computer Science and Engineering, South China University of Technology,
Guangzhou 510006, China

2 College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
3 School of Software Engineering, South China University of Technology, Guangzhou 510006, China
4 Modern Industrial Technology Research Institute, South China University of Technology,

Zhongshan 528400, China
* Correspondence: xuhao@scut.edu.cn

Received: 23 May 2019; Accepted: 24 June 2019; Published: 29 June 2019

Abstract: Cross-project defect prediction (CPDP) is a practical solution that allows software defect
prediction (SDP) to be used earlier in the software lifecycle. With the CPDP technique, the software
defect predictor trained by labeled data of mature projects can be applied for the prediction task of
a new project. Most previous CPDP approaches ignored the semantic information in the source code,
and existing semantic-feature-based SDP methods do not take into account the data distribution
divergence between projects. These limitations may weaken defect prediction performance. To solve
these problems, we propose a novel approach, the transfer convolutional neural network (TCNN),
to mine the transferable semantic (deep-learning (DL)-generated) features for CPDP tasks. Specifically,
our approach first parses the source file into integer vectors as the network inputs. Next, to obtain
the TCNN model, a matching layer is added into convolutional neural network where the hidden
representations of the source and target project-specific data are embedded into a reproducing
kernel Hilbert space for distribution matching. By simultaneously minimizing classification error
and distribution divergence between projects, the constructed TCNN could extract the transferable
DL-generated features. Finally, without losing the information contained in handcrafted features,
we combine them with transferable DL-generated features to form the joint features for CPDP
performing. Experiments based on 10 benchmark projects (with 90 pairs of CPDP tasks) showed that
the proposed TCNN method is superior to the reference methods.

Keywords: cross-project defect prediction; semantic feature learning; transfer learning; maximum
mean discrepancy

1. Introduction

As software scale and complexity increase, software testing has become one of the most critical
phases in the software lifecycle. Software defect prediction (SDP) based on static code inspection could
help the software quality assurance team find defect-prone modules or files, so that they could allocate
resources more efficiently. Many existing studies [1–3] proposed various approaches to perform SDP,
but they were usually limited to within-project defect prediction (WPDP), which attempts to train
prediction models by using historical data to detect undiscovered and future defects in the same
project. In the early stages of the software lifecycle, however, with this approach, reliable predictors
cannot be built due to the lack of software defect knowledge (e.g., data with a defective or clean label).

To allow SDP to be used in new projects earlier, cross-project defect prediction (CPDP) is proposed
as a more practical solution. The CPDP approach aims to transfer defect prediction knowledge from
a mature project (source project with sufficient labeled data) to a new project (target project with no

Appl. Sci. 2019, 9, 2660; doi:10.3390/app9132660 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app9132660
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2660 2 of 17

or very limited labeled data) so that the defect predictor trained by the source project can be used
to predict whether the files of the target project are defective. The CPDP technique is a promising
application of transfer learning [4].

In traditional CPDP methods, handcrafted features are commonly adopted to perform
CPDP (e.g., Halstead features based on operators and operands [5], McCabe features based on
dependencies [6], and CKfeatures based on the object-oriented concept [7]). In recent years, some
researchers [8,9] suggested that the generic convolutional neural network (CNN) and deep belief
network (DBN) models could extract semantic and structural features from project programs
and applied them to perform SDP for better prediction performance. We call these features
deep-learning-generated (DL-generated) features. Inspired by this, we believe that DL-generated
features could also be used to improve CPDP performance. However, whether the features extracted
from the program can be directly adopted to train the CPDP model requires further exploration.

In a previous study [9], it was assumed that the semantic features extracted by DBN can capture
the common characteristics related to defects in the source code, so the features extracted from the
source project can be directly applied to the target project. However, due to different scales, functions,
and coding rules of software, the data in different projects would show distribution divergence [10,11].
As shown in Figure 1 (left), the classifiers learned in source projects do not necessarily transfer well
to the target project when distribution divergence exists. If the distributions of the source and target
project could be matched by a transfer learning approach, the new learning data representations would
be project invariant [12], which would improve the transferability of the classifier across projects
(Figure 1 (right)).

Match distributions between 
projects

Minimize classification error

Classifier learned by 
source project

Source project

Target project
Target project

Source project

New data representations

Figure 1. The data in different projects have distribution divergence, so that classifiers learned in
a source project do not necessarily transfer well to the target project. If the distributions could be
matched, it would enhance the transferability of the cross-project defect predictor.

To handle the impact of semantic features’ distribution divergence between projects, we put
forward a transfer convolutional neural network (TCNN) model to mine the transferable semantic
(DL-generated) features for CPDP tasks. First, our approach parses the source file into integer vectors
as the network inputs. Second, to obtain the TCNN model, a matching layer is added into CNN
where the hidden representations of the source and target project-specific data are embedded into
a reproducing kernel Hilbert space (RKHS) for different distribution matching. By simultaneously
minimizing classification error and distribution divergence between projects, the constructed TCNN
could extract the transferable DL-generated features. Third, without losing the information contained
in handcrafted features, we combine the TCNN-generated features with the handcrafted features
processed by transfer component analysis (TCA) to form the transferable joint features. Finally, we feed
the joint features into a classifier to conduct CPDP.

The contributions of this paper are summarized as follows.
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- In this paper, we proposed a new CPDP approach called TCNN to obtain the transferable semantic
(TCNN-generated) features for cross-project prediction. The key improvement is that, considering
the data distribution divergence between projects, TCNN transforms CNN by imbedding the
representations of project-specific data to an RKHS for distribution matching

- Comprehensive experiments results showed that our TCNN can achieve better prediction
performance over classic CPDP methods (e.g., NNFilter [13], data gravitation (DG) [14],
TCA+ [10]) and state-of-the-art DL-based approaches (e.g., DBN [9], defect prediction through
CNN (DPCNN) [8]) on 90 pairs of CPDP tasks formed by 10 open-source projects.

The rest of the paper is organized as follows. We briefly review the related work in Section 2.
We elaborate the TCNN method in Section 3. We present our experimental settings in Section 4 and
show the experimental results in Section 5. After that, we discuss why TCNN works, parameter
selection, and threats to validity in Section 6. We conclude our work and point out possible future
directions in Section 7.

2. Related Work

Most existing SDP studies [1–3] use machine learning techniques to predict defects and evaluate
them under a within-project setting where the SDP model is trained and applied in the same project.
In practice, we can hardly obtain sufficient training data for a new project, but there is abundant labeled
data from public datasets provided by various organizations (e.g., PROMISE [15], AEEEM [16]).
Based on these datasets, many CPDP methods have been proposed to train a predictor by using
cross-project data.

In early CPDP studies, Zimmermann et al. [17] evaluated CPDP models on 12 real-world
applications containing 622 pairs of cross-project prediction tasks. Only 3.4% of tasks achieved
performance levels matching those of conventional SDP models indicating that cross-project prediction
was still a challenge. He et al. [18] conducted large-scale experiments on 34 datasets and concluded
that the CPDP approach based on data selection is comparable with the methods used in training
data in the same project. In recent years, various researchers have been trying to enhance CPDP’s
performance. Ma et al. [14] proposed an algorithm called transfer naive Bayes (TNB) that reweights
the instances of the source project by a data gravitation (DG) [19] method and feeds them into a
naive Bayes classifier. The DG method can weaken the impact of irrelevant source data to some
extent. Considering the data distribution divergence, Nam et al. [10] put forward a transferable
feature learning method named TCA+, which extends a classic TCA [20] algorithm with customized
normalization rules. In recent years, some researchers have explored the CPDP method with a small
ratio of labeled within-project data. Xia et al. [21] proposed a hybrid model reconstruction approach
(HYDRA), which first constructed N + 1 genetic algorithm (GA) classifiers by a small ratio of labeled
within-project data and a GA step. Then, HYDRA adopted a boosting step to learn a weight for each
classifier. In our paper, we focus on methods that only use source project labeled data because they
can handle the cold-start issue of software defect data.

In the above CPDP studies, the discriminant features adopted to construct predictive models were
elaborately extracted (e.g., Halstead [5], McCabe [6], and CK [7] features). These handcrafted features
usually do not contain semantic features of the programs, which may result in poor performance of
the SDP model [22]. In recent years, DL has been well studied as one of the techniques for automatic
feature generation [22]. In the field of SDP, DL could also be used to extract the semantic features of
software programs. To mine the relationship between semantic features and source code, Wang et al. [9]
leveraged a powerful DBN to learn the semantic representations from the programs’ abstract syntax
trees (ASTs). Li et al. [8] attempted to build a framework called defect prediction through CNN
(DPCNN) to generate semantic and structural features from programs automatically. It is worth
mentioning that DPCNN applies the word embedding technique and combines the CNN-generated
features with handcrafted features to enhance SDP’s performance. Both [8] and [9] evaluated the
methods for SDP tasks, and the results in terms of the F-measure showed that DL-generated features
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can contribute to SDP performance. However, whether the DL-generated features produced by DBN
and DPCNN can be directly used in the CPDP task needs further exploration. this is exactly what we
want to discuss in this paper.

3. Methodology

3.1. Overall Framework

Figure 2 presents the overall framework of the CPDP method we propose. We adjusted the
deep semantic feature learning procedure proposed by [9] underpinned by the TCNN building and
transferable joint features learning. Specifically, our framework contains four steps: (1) program
parsing and vector mapping, (2) TCNN building and DL-generated feature extracting, (3) transferable
joint feature constructing, and (4) cross-project prediction performing.

AST nodes index
WhileStatement 1

MethodDeclaration 2
BlockStatement 3

IfStatement 4

Source Token VectorsSource ASTs

TCA
Target Project

Source Project

Target ASTs

MethodDeclaration BlockStatement …MethodDeclaration BlockStatement …IfStatement MethodDeclaration ReturnStatement …

MethodDeclaration BlockStatement …MethodDeclaration BlockStatement …WhileStatement MethodDeclaration BlockStatement …

Unified Dictionary

1 2 3 …1 2 3 …1 2 3 …

1 2 3 …1 2 3 …4 2 5 …

Target Token Vectors

Source Integer Vectors

Target Integer Vectors

Pool Input
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Source Transferable 
DL-Based Features

Target Transferable 
DL-Based Features

Source Transferable
Joint Features

Target Transferable
Joint Features
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Train

ReturnStatement 5
…… …

Source Transferable 
Handcrafted Features
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① Program Parsing and Vector Mapping (Section 3.2)

② TCNN Building and DL-Based Features Extracting (Section 3.3)③ Transferable Joint Features Constructing (Section 3.4)

④ Cross-Project Prediction Performing (Section 3.5)

Figure 2. Overview of our TCNN framework to perform CPDP. AST, abstract syntax tree; TCNN,
transfer convolutional neural network.

3.2. Program Parsing and Vector Mapping

Our model takes an input of Java files of the source project with known labels (i.e., defective or
clean) and unlabeled Java files from the target project. Related work proved that ASTs can be used to
detect source code and defects [22], so in this paper, we adopt an AST as the representation of source
code. It is worth mentioning that ASTs can not only express the syntax features, but also the semantic
features of the source code [8].

In this step, Javalang (https://pypi.org/project/javalang/0.9.2/) was applied to parse the Java files
and generate corresponding token vectors. Each element in Java files can be represented as a node in the
tree. Table 1 shows the categories and types of nodes we used. Referring to [9], considering that the names
of methods and variables are usually project-specific, we use node type (e.g., MethodDeclarations and
ClassInvocation) to label nodes rather than the specific name. Furthermore, the token vectors extracted by
Javalang cannot be directly used as the input of our TCNN model, referring to [8], so we created a unified
mapping dictionary between the node types and the integers to convert the token vectors to integer
vectors. In addition, because CNN requires input vectors to have the same length, all input vectors were
padded with zeros to the length of the longest vector.

https://pypi.org/project/javalang/0.9.2/
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Table 1. The types of AST nodes we used.

Node Category Node Type

Nodes of method invocations and
instance creations

MethodInvocation, SuperMethodInvocation, ClassCreator

Declaration-related nodes PackageDeclaration, InterfaceDeclaration, ClassDeclaration,
ConstructorDeclaration, MethodDeclaration, VariableDeclarator,
FormalParameter

Control-flow-related nodes IfStatement, ForStatement, WhileStatement, DoStatement,
AssertStatement, BreakStatement, ContinueStatement,
ReturnStatement, ThrowStatement, TryStatement,
SynchronizedStatement, SwitchStatement, BlockStatement,
CatchClauseParameter, TryResource, CatchClause,
SwitchStatementCase, ForControl, EnhancedForControl

Other nodes BasicType, MemberReference, ReferenceType,
SuperMemberReference, StatementExpression,

3.3. TCNN Building and DL-Generated Feature Extracting

Relying on CNNs’ powerful feature generation capabilities, we hope to use it to capture the
semantics and local structure of the source code [8]. In this step, we extended the standard CNN
architecture to the TCNN with a matching layer to extract transferable DL-generated features for CPDP.
In particular, our TCNN consists of an embedded layer, a convolutional layer, a maximum pooling
layer, a fully-connected layer, a matching layer, and an output layer with a single unit that ultimately
acts as a classifier. The architecture of the TCNN is shown in Figure 3. In addition to using the sigmoid
as the activation function of the output layer, all other layers adopted the ReLU as the activation
function. We implemented our model by using Pytorch (https://pytorch.org), which is an open-source
DL platform that provides efficient tools for neural networks’ construction and flexible development.

In short, our TCNN model is a variant of the traditional CNN. The key difference between them
is that the former adds a matching process after the fully-connected layer to measure the divergence
between source and target projects, and the divergence is added to the loss calculation when the
network is training. In other words, when CNN is training through labeled integer vectors from
the source project, we simultaneously require that the distribution of the source and target projects
becomes similar under the hidden representation of the fully-connected layer [12]. Specifically, we aim
to optimize two complementary objective functions as follows: (1) minimizing the classification error
JC on the source labeled data and (2) minimizing the distribution divergence JD between the source
and target projects. The final optimization goal is represented as the following formula:

min JC + λJD (1)

where λ in the formula is a positive regularization parameter.
Regarding classification errors JC, letting Θ = {W, b} denote the set of all CNN parameters,

the empirical risk of CNN is:

JC =
1
m

m

∑
i=1

J(Θ(Xi, yi)) (2)

where J(·) is the cross-entropy loss function, Θ(Xi) is the conditional probability that the CNN assigns
Xi to label yi, and m represents the number of source project instances.

Regarding the measurement of distribution divergence JD, we adopted maximum mean
discrepancy (MMD) [23,24], which could compare different distributions based on the distance
between sample means of two datasets in an RKHS. Given Ps and Pt as the marginal distribution
of source and target projects, m and n as the number of source and target project instances, let

https://pytorch.org


Appl. Sci. 2019, 9, 2660 6 of 17

xs = {x1, . . . , xm} ∈ Rm∗d denote the instances of the source project and xt = {xm+1, . . . , xm+n} ∈ Rn∗d

denote the instances of target projects. The calculation of MMD (also known as JD) is formulated as:

JD = MMD(Ps, Pt) =

∥∥∥∥∥ 1
m

m

∑
i=1

φ(xi)−
1
n

m+n

∑
j=m+1

φ(xj)

∥∥∥∥∥
2

H

=
1

m2 K− 2
m2 κ> + const.

(3)

where ‖.‖2
H is the RKHS norm and φ(·) represents a data matching on the RKHS. In addition, Kij :=

k(xi, xj), K ∈ Rm∗m and κi =
n
m Σm+n

j=m+1k(xi, xj). In our paper, we used the Gaussian kernel function:

kij = exp(−‖xi − xj‖2/2σ), and σ is the super parameter of kernel width.
Combining with Formula (1) and Equations (2) and (3), the optimization objective function can be

formulated as:

min
Θ

1
m

m

∑
i=1

J(Θ(Xi, yi)) + λMMD(Ps, Pt) (4)

Based on the above calculation method of the loss function, the transferable features can be
extracted through multiple rounds of learning. In this paper, we used the minibatch stochastic gradient
descent (SGD) algorithm and Adam optimizer to train the TCNN model.

Integer vectors in source 
dataset with labels

Integer vectors in target 
dataset without labels

Embedding

Conv

ReLu

MaxPool

Fully Connected

Matching

Classify

Classification 
Loss

Embedding

Conv

ReLu

MaxPool

Fully Connected

Matching

Distribution
Divergence+ 𝜆

Figure 3. Our model considers both classification loss, as well as data distribution divergence.

3.4. Transferable Joint Feature Constructing

In this study, we hope that the valuable information carried by handcrafted features can be kept,
so we combined them with the TCNN-generated features to form the joint features. Considering
the transferability of handcrafted features, we adopted the classic distribution adaptation method,
TCA [20], to map the handcrafted features into an RKHS and find transferable components by
minimizing the MMD. In the subspace spanned by these transferable components, the characteristics



Appl. Sci. 2019, 9, 2660 7 of 17

of the source and target data are preserved, and the data distributions in different projects are similar
to each other. By using the TCA process, we could obtain the transferable handcrafted features. We
further combined it with TCNN-generated features by Python’s concrete method to obtain transferable
joint features as input to Step 4. A detailed description of the TCA algorithm can be seen in [20].

3.5. Cross-Project Prediction Performing

Through the above steps, each file can be represented by corresponding transferable joint features.
In this paper, we used logistic regression (LR) as the base classifier. We trained the LR classifier with
the data generated by the files and the corresponding labels of the source project. Then, we used the
trained model to predict if the files of the target project were defective.

4. Experimental Setup

In this section, we describe the detailed settings for our evaluation experiments.

4.1. Evaluated Datasets

To verify the validity of the TCNN method, we selected 10 open-source projects as our evaluation
datasets. The source code and corresponding PROMISE data for all 10 projects are public and have been
widely used in SDP research [21,25–27]. In our experiments, we extracted DL-generated features from
the Java source code and adopted the static code metrics and data labels from the PROMISE repository.

Table 2 shows the essential information of selected projects, including project name, project
version, number of instances, and defect rate (the percentage of defective instances). To guarantee the
generality of the evaluation results, the experimental datasets consisted of projects with different sizes
and defect rates (the maximum number of files was 1077, and the minimum number of files was 32;
the minimum defect rate was 6.3%, and the maximum defect rate was 98.8%). Table 3 shows the static
code metrics contained in the PROMISE repository, and for the descriptions, the readers are referred
to [21].

Table 2. The 10 projects used in this paper.

Project Name Project Version # of Instances Defect Rate

Camel 1.6 965 19.5%
Forrest 0.8 32 6.3%

Ivy 2.0 352 11.4%
Log4j 1.2 205 92.2 %

Lucene 2.4 340 59.7%
Poi 3.0 1077 63.6%

Synapse 1.2 256 33.6%
Velocity 1.6.1 229 34.1%

Xalan 2.7 909 98.8%
Xerces 1.4.4 588 74.3%
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Table 3. List of 20 static metrics of PROMISE. The descriptions were given in [21].

Attribute Description

dit
The maximum distance from a given class to the root
of an inheritance tree

noc Number of children of a given class in an inheritance tree

cbo Number of classes that are coupled to a given class

rfc
Number of distinct methods invoked by code in a
given class

lcom
Number of method pairs in a class that do not share
access to any class attributes

lcom3
Another type of the lcom metric proposed by
Henderson–Sellers

npm Number of public methods in a given class

loc Number of lines of code in a given class

dam
The ratio of the number of private/protected attributes
to the total number of attributes in a given class

moa
Number of attributes in a given class that are of
user-defined types

mfa
Number of methods inherited by a given class divided
by the total number of methods that can be accessed by
the member methods of the given class

cam

The ratio of the sum of the number of different parameter
types of every method in a given class to the product of
the number of methods in the given class and the number
of different method parameter types in the whole class

ic Number of parent classes that a given class is coupled to

cbm
Total number of new or overwritten methods that all
inherited methods in a given class are coupled to

amc The average size of methods in a given class

ca
Afferent coupling, which measures the number of classes
that depend on a given class

ce
Efferent coupling, which measures the number of classes
that a given class depends on

max_cc
The maximum McCabe’s cyclomatic complexity (CC)
score of methods in a given class

avg_cc
The arithmetic mean of McCabe’s cyclomatic
complexity (CC) scores of methods in a given class

Regarding the composition of the CPDP tasks, we first selected a project as the target project and
then respectively used the remaining 9 projects as the source project (e.g., Ivy-2.0 data as a training set,
camel-1.6 data as a test set). Thus, 90 test pairs were collected to perform the CPDP.

In fact, the class imbalance problem of software defect data is a typical characteristic in CPDP
tasks [28,29]. As shown in Table 2, no matter which project was used as the source projects, the
training data had a class imbalance problem. If the classifier was trained on a highly imbalanced
dataset, the predictive model tended to support the majority class, and the ability to detect the
minority class was weak. For this reason, it was necessary to handle the class imbalance problem.
Because class imbalance learning is only used as an application in this paper, we adopted a standard
random oversampling to avoid imbalanced data rather than complex approaches in some theoretical
approaches [25,29].
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4.2. Evaluation Metrics

To compare the predictive performance of different models, we used the F-measure as an
evaluation metric [30], which has been widely used in previous CPDP studies. The definition of
the F-measure is as follows.

In this paper, we defined the defective file as a positive instance. In contrast, the clean files were
defined as negative instances. Using a dichotomous classifier to perform CPDP, we may capture four
outcomes of test data: classifying truly defective instances as defective (true positive, TP); classifying
clean instances as defective (false positive, FP); classifying truly defective instances as clean (false
negative, FN); and classifying truly clean instances as clean (true negative, TN). These four outcomes
could construct a confusion matrix (in Table 4) to help us define the F-measure.

Table 4. Confusion matrix.

Truly Positive Truly Negative

Predictive Positive TP FP

Predictive Negative FN TN

Based on the confusion matrix in Table 4, we can define the following two interim
evaluation metrics.

Recall, also known as the probability of detection, is a measurement of the integrity that defines
the probability of the number of TP instances compared with the number of all positive instances:

Recall =
TP

TP + FN

Precision is a measure of exactness that defines the probabilities of the number of TP instances to
the number of predictive positive instances:

Precision =
TP

TP + FP

In fact, due to the trade-off between recall and precision, it is difficult to evaluate the models’
prediction performance effectively by using only one of them. For this reason, we adopted the
F-measure to access the prediction performance, which is the harmonic mean of the precision and recall.
The F-measure is the most commonly-used evaluation metric in previous CPDP studies [10,21,25].

F−measure =
2 · Precision · Recall
Precision + Recall

4.3. Compared Models

To assess the performance of the TCNN model, we explored the following two research questions:
RQ1: Can TCNN perform better than the classic CPDP methods that use only traditional

handcrafted features?
RQ2: How effective is the TCNN approach compared to state-of-the-art SDP methods adopting

DL-learning features?
Thus, we selected two categories of compared methods in this paper, including the models

with only handcrafted or DL-generated features. In summary, we compared our TCNN with LR,
NNFilter [13], TNB [14], TCA [20], TCA+ [10], DBN [9], DPDBN [8], CNN [8], and DPCNN [8].

In our experiments, we adopted LR as the base classifier for all models because LR has been
widely used in the previous defect prediction studies [8,10,21]. We used the implementation of
LogisticRegression in sklearn.linear_model, and we adopted default parameters settings by sklearn.
With regard to implementing DL-generated CPDP models, we followed the same code-parsing process
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to generate integer vectors for neural networks. Considering that the process of random oversampling
involves randomness, we conducted each method 20 times and recorded the average result.

The traditional CPDP models using only the 20 handcrafted features provided by PROMISE
include the following methods:

- LR: Traditional SDP method, which builds an LR classifier only using handcrafted features.
- NNFilter: This method gathers similar instances together to construct a training set that is

homogeneous with the target dataset [13].
- DG: The predict model is built based on the weighted training data whose weight is calculated

by analogy with data gravitation [19].
- TCA: A classic transferable feature learning method [20]. We used the source code provided by

its author.
- TCA+. A variant of TCA [10], which extends TCA with customized normalization rules.

The state-of-the-art SDP models using DL-generated features include the following methods:

- DBN: A standard DBN model to extract semantic features for SDP. Regarding the implementation
of DBN, we adopted the same network architectures and parameters (i.e., 10 hidden layers and
100 nodes in each hidden layer) as in [9].

- CNN: An SDP method that extracts DL-generated features through standard CNN. When
implementing CNN, referring to [8], we set the batch size as 32, the epoch number as 15, the
embedding dimension as 30, the number of hidden nodes as 100, the number of filters as 10, and
the filter length as 5.

- DPDBN: A variant of DBN, which concatenates the DBN-learned features with the
handcrafted features.

- DPCNN: An SDP method that is an improved version of the CNN proposed by [8].

To clearly show the performance differences between methods, we adopted the Scott–Knott
test [31] to compare the performance of different CPDP approaches. The Scott–Knott test divides the
measurement means into statistically distinct groups by hierarchical clustering analysis. The two main
limitations of the traditional Scott–Knott test are: (1) it assumes the data are in a normal distribution;
(2) it may create groups that are trivially different from each other. To avoid the limitations of the
Scott–Knott test, in this paper, we adopted its normality and effect size-aware variant, the Scott–Knott
effect size difference (ESD) test [32,33]. The Scott–Knott ESD test would (1) correct the normal
distribution of the input dataset and (2) merge any two statistically different groups of negligible
effects. A detailed description of the Scott–Knott ESD test can be found in [32]. We can use the sk_esd
function of ScottKnottESD (https://github.com/klainfo/ScottKnottESD) to make the implementation.

5. Results

Table 5 shows the average performance of each examined CPDP model with a given target
project, calculated by the following procedure: (1) Given the target project, we separately evaluated
the performance of a CPDP model trained by one source project. Through applying the nine source
projects, we could obtain nine prediction models for a given target project. (2) We calculated the
average performance of nine models and filled them into the table. The next-to-last row shows the
win/tie/loss counts of TCNN versus other approaches.

Figure 4 presents the corresponding Scott–Knott ESD test results (including 90 pairs of CPDP
tasks formed by 10 datasets). By comprehensive observation, TCNN outperformed the nine reference
methods in our experiments. Following are the answers for two research questions.

https://github.com/klainfo/ScottKnottESD
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Table 5. Comparison results with 10 approaches on 10 target projects. The better F-measures are in bold.
DG, data gravitation; DPCNN, defect prediction through CNN.

Target Project LR NNFilter DG TCA TCA+ DBN CNN DPDBN DPCNN TCNN

Camel 0.314 0.324 0.336 0.336 0.337 0.315 0.322 0.326 0.333 0.331
Forrest 0.183 0.181 0.143 0.129 0.127 0.129 0.145 0.139 0.185 0.216

Ivy 0.272 0.259 0.256 0.266 0.246 0.227 0.255 0.257 0.257 0.303
Log4j 0.631 0.643 0.639 0.681 0.676 0.658 0.647 0.687 0.663 0.702

Lucene 0.585 0.595 0.640 0.625 0.539 0.585 0.604 0.624 0.622 0.658
Poi 0.633 0.625 0.674 0.605 0.598 0.600 0.624 0.651 0.650 0.686

Synapse 0.507 0.507 0.533 0.528 0.542 0.449 0.490 0.510 0.510 0.528
Velocity 0.498 0.486 0.512 0.501 0.304 0.447 0.477 0.480 0.501 0.522

Xalan 0.599 0.611 0.653 0.660 0.667 0.665 0.656 0.683 0.668 0.701
Xerces 0.627 0.621 0.620 0.627 0.583 0.580 0.609 0.604 0.601 0.670

TCNN: W/T/L 10/0/0 10/0/1 8/0/2 8/0/2 8/0/2 10/0/0 10/0/0 10/0/0 9/0/1
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Figure 4. The Scott–Knott effect size difference (ESD) ranking of 10 different methods across the 90 pairs
of cross-project defect prediction (CPDP) tasks. The blue diamond indicates the average F-measure of
our studied methods.

5.1. Answer for RQ1: Can TCNN Perform Better than the Classic CPDP Methods that Use Only Traditional
Handcrafted Features?

In Table 5, the next-to-last row shows that TCNN can win most performance comparisons in
90 combinations of CPDP tasks. The average F-Measure of TCNN was 0.532. Compared to five
classic CPDP methods that use only traditional handcrafted features, TCNN outperformed DG, TCA,
NNFilter, LR, and TCA+ by 6.2%, 7.2%, 9.5%, 9.6%, and 15.1%, respectively.

The following two points can be observed for this research question:
(1) TCNN, which considers concatenating the DL-generated features with the handcrafted features,

could perform better than the CPDP methods that use only traditional handcrafted features.
(2) DG could achieve better performance in terms of average F-measure by comparing with other

conventional CPDP methods. However, as shown in Figure 4, the DG model had a lower performance
limit in 90 pairs of CPDP tasks.
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5.2. Answer for RQ2: How Effective Is the TCNN Approach Compared to State-of-the-Art SDP Methods
Adopting DL-Learning Features?

As Table 5 shows, our approach produced the best results in most performance comparisons. Even
though the performance of TCNN was not always best, the average F-measure of TCNN was 0.532,
which outperformed DPCNN, CNN, DPDBN, and DBN by 6.5%, 6.7%, 10.1%, and 14.2%, respectively.

The following two points can be observed for this research question:
(1) Overall, the methods using CNN-generated features (TCNN, DPCNN, CNN) would yield

better predictive performance than DBN-generated features (DPDBN, DBN) in our 90 pairs of
CPDP tasks.

(2) TCNN performed better than the SDP methods adopting CNN-generated or DBN-generated
features directly.

In summary, the experimental results showed that the proposed TCNN method tended to produce better
CPDP performance than the other nine methods we examined. We believe that the performance of CPDP
can generally be improved by using the TCNN-generated transferable joint features. This improvement will
more effectively help the software quality assurance team find defect-prone modules or files, so the team could
allocate resources more efficiently.

6. Discussion

6.1. Why Does TCNN Work?

The experimental results in Section 5 showed that the TCNN method had better predictive
performance than methods that directly adopted handcrafted features or DL-generated features in our
investigated CPDP tasks. The possible reasons are summarized as follows:

(1) Compared with the CPDP methods based on handcrafted features (e.g., NNFilter, DG, TCA,
TCA+), the TCNN model considered the semantic and structural features of the project source code.
Our method maps the ASTs into an integer vector and feeds them into the TCNN for transferable
features generation. After that, it concatenates DL-generated with the handcrafted features to make
sure the defect knowledge carried in the handcrafted and DL-generated features can be utilized
simultaneously when training the predictor.

(2) Compared with the previous SDP methods that use DL-generated features (e.g., DBN, DPDBN,
CNN, DPCNN), our TCNN model considers the data distribution divergence between the source
and target datasets in the CPDP task. By adding the distribution matching layer in the process of
training the CNN model, the hidden representations of the source and target project-specific layers are
embedded into an RKHS where the different distributions can be matched [34]. The implementation
of this matching process is that we adjusted the loss function calculation during TCNN training by
merging the classification error with the distribution divergence. Finally, TCNN can obtain transferable
DL-generated features for constructing the defect predictor. Although the literature [9] assumes
that DBN-generated features can capture the common characteristics of defects between projects,
we believe that TCNN-generated features could capture not only the common characteristics, but also
the transferable components among different projects.

6.2. Performance under Different TCNN Parameter Settings

Our approach to TCNN involves some tunable parameters (i.e., the CNN parameters, the Gaussian
kernel width σ, and the regularization parameter λ). In our experiments, we used the empirical CNN
parameters of [8]. Herein, we focus on the analysis of the parameters σ and λ that affect the performance
of TCNN.

The kernel width σ is used to adjust the MMD calculation to measure the distribution divergence.
To illustrate the sensitivity of σ, we show the performance of the TCNN with various σ in Figure 5a.
Due to space constraints, we only show the performance changes on six randomly-selected pairs of



Appl. Sci. 2019, 9, 2660 13 of 17

CPDP tasks. From the results shown in Figure 5a, we finally chose five as the σ value in our experiments
for better prediction performance. In our experiments, we selected regularization parameter λ from
(0.1, 1, 10, 100, 103, 104). Similar to the presentation of a σ, we only show several test results of TCNN
on the same six pairs of CPDP tasks. From Figure 5b, we can observe that if we set λ = 100, TCNN
performed better than other selections in most CPDP tasks.
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Figure 5. Performance of TCNN under different parameter settings.

6.3. Time and Memory Overhead of TCNN

In this section, we evaluate the time and memory overhead of TCNN on the six pairs of CPDP
tasks used in Section 6.2. The experimental environment was a Windows 10, 64-bit, Intel Xeon 3.9-GHz
server with 16 GB RAM. We adopted the NVIDIA GTX1070 to accelerate the training process of the
neural network model.

Figure 6 presents the model training time of TCA, TCA+, DBN, CNN, DPDBN, DPCNN, and
TCNN on each CPDP task. We did not include LR, NNFilter, and DG in the figure because their
training time was less than 100 ms. As shown in Figure 6, the training time of TCNN was reasonable,
e.g., on average, it took about 23 seconds to train a model. In summary, TCNN model training time
was longer than that of LR, NNFilter, DG, TCA, TCA+, DBN, and DPDBN and was close to that of
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CNN and DPCNN. Although it took more time to train TCNN, the prediction performance of TCNN
was better than other models. We believe that the training time of TCNN is still acceptable.

0

5

10

15

20

25

30

35

40

45

50

Camel=>Ivy Ivy=>Poi Log4j=>Xalan Synapse=>Forrest Velocity=>Ivy Xerces=>Xalan AVG

Ti
m

e 
(s

)

CPDP Task

TCA TCA+ DBN CNN DPDBN DPCNN TCNN

Figure 6. Comparison of model training time.

In addition, in our experiment, it took at most 1.6 GB of memory and 1.9 GB of video memory
for the TCNN to generate the DL-generated features for both the training data and the test data.
The above executing requirements are relatively easy to achieve, so we believe that our TCNN method
is applicable in practice.

6.4. Threats to Validity

6.4.1. Implementation of Compared Methods

In our experiments, we compared our proposed TCNN with 10 referential methods (https:
//github.com/kevinqiu1990/TCNN). Because the original implementations of NNFilter, DG, TCA+,
DBN, and DP-CNN have not yet been publicly released, we re-implemented our version by using
Python. However, our implementation may not reflect all of the details in the comparison method.
To make a fair comparison, we used a consistent LR implementation and oversampling step. When
re-implementing DL-based models, we followed the same processes (e.g., code-parsing and vector
mapping) and tools (e.g., Pytorch).

6.4.2. Experimental Results Might Not Be Generalizable

We conducted our experiments using 10 open-source projects. They might not be representative
of all software projects. In addition, we only evaluated the TCNN of the project coded by the Java
language. The methods we proposed may produce better or worse results in some commercial software
or in those based on other programming languages (e.g., C# or Python).

6.4.3. The F-Measure Might Not Be the Only Appropriate Measures

In this paper, we chose the F-measure as the evaluation metric to compare the predictive power
of the CPDP approaches. There are other measures (e.g., AUC and G-measure) that can be used

https://github.com/kevinqiu1990/TCNN
https://github.com/kevinqiu1990/TCNN
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for performance evaluation of dichotomous classifiers. In fact, the F-measure as a comprehensive
measurement is a commonly-used evaluation metric in SDP tasks [21,25,26,35–37].

6.4.4. Parameter Selection Does Not Take All Options into Account

In our experiments, we tried to adjust the parameters of the model to get better prediction
performance. However, it is impractical to evaluate all possible combinations of parameters.
We evaluated several combinations of parameters within a specific range based on previous
research experience [8,22]. There may be a more appropriate combination of parameters for better
predictive performance.

7. Conclusions

In this paper, we proposed a novel TCNN approach to perform CPDP that simultaneously
considered the transferability of semantic and handcrafted features. Compared with the traditional
CPDP studies, our TCNN model not only used handcrafted features, but also considered the semantic
and structural features of the project source code. Moreover, based on the previous methods adopting
DL-generated features, TCNN employed the matching layer to bridge the source and target datasets to
mine the transferable semantic-based features by simultaneously minimizing classification error and
distribution divergence between project. The experimental results showed that TCNN outperformed
nine referential methods on ten real-world projects with 90 pairs of CPDP tasks.

Several problems remain to be investigated in future work. Firstly, we will try to apply other
measurements for the calculation of distribution divergence. Secondly, we will perform more
experiments on various SDP datasets to further explore the versatility of our approach.

Author Contributions: Conceptualization, S.Q.; data curation, J.D.; investigation, S.J.; methodology, S.Q., H.X.;
supervision, H.X., L.L.; writing, original draft, S.Q.; writing, review and editing, H.X., J.D., S.J., and L.L.

Funding: This work was supported in part by the National Nature Science Foundation of China (No. 61370103),
Guangzhou Produce & Research Fund (201902020004) , Zhongshan Produce & Research Fund(2018C1009) and the
Fundamental Research Funds for the Central Universities.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Shepperd, M.; Bowes, D.; Hall, T. Researcher bias: The use of machine learning in software defect prediction.
IEEE Trans. Softw. Eng. 2014, 40, 603–616. [CrossRef]

2. Laradji, I.H.; Alshayeb, M.; Ghouti, L. Software defect prediction using ensemble learning on selected
features. Inf. Softw. Technol. 2015, 58, 388–402. [CrossRef]

3. Song, Q.; Guo, Y.; Shepperd, M. A comprehensive investigation of the role of imbalanced learning for
software defect prediction. IEEE Trans. Softw. Eng. 2018. [CrossRef]

4. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

5. Halstead, M.H. Elements of Software Science; Elsevier: New York, NY, USA, 1977; Volume 7.
6. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, 4, 308–320. [CrossRef]
7. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994,

20, 476–493. [CrossRef]
8. Li, J.; He, P.; Zhu, J.; Lyu, M.R. Software defect prediction via convolutional neural network. In Proceedings

of the 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS), Prague, Czech
Republic, 25–29 July 2017; pp. 318–328.

9. Wang, S.; Liu, T.; Nam, J.; Tan, L. Deep semantic feature learning for software defect prediction. IEEE Trans.
Softw. Eng. 2018. [CrossRef]

10. Nam, J.; Pan, S.J.; Kim, S. Transfer defect learning. In Proceedings of the 2013 35th International Conference
on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 382–391.

http://dx.doi.org/10.1109/TSE.2014.2322358
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://dx.doi.org/10.1109/TSE.2018.2836442
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/TSE.2018.2877612


Appl. Sci. 2019, 9, 2660 16 of 17

11. Herbold, S.; Trautsch, A.; Grabowski, J. A comparative study to benchmark cross-project defect prediction
approaches. IEEE Trans. Softw. Eng. 2018, 44, 811–833. [CrossRef]

12. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain
invariance. arXiv 2014, arXiv:1412.3474.

13. Turhan, B.; Menzies, T.; Bener, A.B.; Stefano, J.D. On the relative value of cross-company and within-company
data for defect prediction. Empir. Softw. Eng. 2009, 14, 540–578. [CrossRef]

14. Ma, Y.; Luo, G.; Zeng, X.; Chen, A. Transfer learning for cross-company software defect prediction.
Inf. Softw. Technol. 2012, 54, 248–256. [CrossRef]

15. Caglayan, B.; Kocaguneli, E.; Krall, J.; Peters, F.; Turhan, B. The PROMISE Repository of Empirical Software
Engineering Data; West Virginia University Department of Computer Science: Morgantown, WV, USA, 2012.

16. D’Ambros, M.; Lanza, M.; Robbes, R. An extensive comparison of bug prediction approaches. In Proceedings
of the 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), Cape Town,
South Africa, 2–3 May 2010; pp. 31–41.

17. Zimmermann, T.; Nagappan, N.; Gall, H.; Giger, E.; Murphy, B. Cross-project defect prediction: A large scale
experiment on data vs. domain vs. process. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Amsterdam, The Netherlands, 24–28 August 2009; pp. 91–100.

18. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified
metric set. Inf. Softw. Technol. 2015, 59, 170–190. [CrossRef]

19. Peng, L.; Yang, B.; Chen, Y.; Abraham, A. Data gravitation based classification. Inf. Sci. 2009, 179, 809–819.
[CrossRef]

20. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans.
Neural Netw. 2011, 22, 199–210. [CrossRef] [PubMed]

21. Xia, X.; Lo, D.; Pan, S.J.; Nagappan, N.; Wang, X. Hydra: Massively compositional model for cross-project
defect prediction. IEEE Trans. Softw. Eng. 2016, 42, 977–998. [CrossRef]

22. Wang, S.; Liu, T.; Tan, L. Automatically learning semantic features for defect prediction. In Proceedings
of the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), Austin, TX, USA,
14–22 May 2016; pp. 297–308.

23. Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.P.; Schölkopf, B.; Smola, A.J. Integrating structured
biological data by kernel maximum mean discrepancy. Bioinformatics 2006, 22, e49–e57. [CrossRef]

24. Huang, J.; Gretton, A.; Borgwardt, K.; Schölkopf, B.; Smola, A.J. Correcting sample selection bias by
unlabeled data. In Proceedings of the 19th International Conference on Neural Information Processing
Systems, Vancouver, BC, Canada, 4–7 December 2006; pp. 601–608.

25. Jing, X.Y.; Wu, F.; Dong, X.; Xu, B. An improved SDA based defect prediction framework for both
within-project and cross-project class-imbalance problems. IEEE Trans. Softw. Eng. 2017, 43, 321–339.
[CrossRef]

26. Qiu, S.; Lu, L.; Jiang, S. Multiple-components weights model for cross-project software defect prediction.
IET Softw. 2018, 12, 345–355. [CrossRef]

27. Zhang, X.; Ben, K.; Zeng, J. Cross-entropy: A new metric for software defect prediction. In Proceedings of
the 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS), Lisbon, Portugal,
16–20 July 2018; pp. 111–122.

28. Chen, L.; Fang, B.; Shang, Z.; Tang, Y. Negative samples reduction in cross-company software defects
prediction. Inf. Softw. Technol. 2015, 62, 67–77. [CrossRef]

29. Qiu, S.; Lu, L.; Jiang, S.; Guo, Y. An investigation of imbalanced ensemble learning methods for cross-project
defect prediction. Int. J. Pattern Recognit. Artif. Intell. 2019. [CrossRef]

30. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam,
The Netherlands, 2011.

31. Jelihovschi, E.; Faria, J.C.; Allaman, I.B. The ScottKnott Clustering Algorithm; Universidade Estadual de Santa
Cruz-UESC: Ilheus, Brazil, 2014.

32. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans. Softw. Eng. 2017, 43, 1–18. [CrossRef]

33. Herbold, S. Comments on ScottKnottESD in response to “An empirical comparison of model validation
techniques for defect prediction models”. IEEE Trans. Softw. Eng. 2017, 43, 1091–1094. [CrossRef]

http://dx.doi.org/10.1109/TSE.2017.2724538
http://dx.doi.org/10.1007/s10664-008-9103-7
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://dx.doi.org/10.1016/j.infsof.2014.11.006
http://dx.doi.org/10.1016/j.ins.2008.11.007
http://dx.doi.org/10.1109/TNN.2010.2091281
http://www.ncbi.nlm.nih.gov/pubmed/21095864
http://dx.doi.org/10.1109/TSE.2016.2543218
http://dx.doi.org/10.1093/bioinformatics/btl242
http://dx.doi.org/10.1109/TSE.2016.2597849
http://dx.doi.org/10.1049/iet-sen.2017.0111
http://dx.doi.org/10.1016/j.infsof.2015.01.014
http://dx.doi.org/10.1142/S0218001419590377
http://dx.doi.org/10.1109/TSE.2016.2584050
http://dx.doi.org/10.1109/TSE.2017.2748129


Appl. Sci. 2019, 9, 2660 17 of 17

34. Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning transferable features with deep adaptation networks. arXiv
2015, arXiv:1502.02791.

35. Ryu, D.; Choi, O.; Baik, J. Value-cognitive boosting with a support vector machine for cross-project defect
prediction. Empir. Softw. Eng. 2016, 21, 43–71. [CrossRef]

36. Feng, Z.; Keivanloo, I.; Ying, Z. Data Transformation in Cross-project Defect Prediction. Empir. Softw. Eng.
2017, 22, 3186–3218.

37. Tong, H.; Liu, B.; Wang, S. Software defect prediction using stacked denoising autoencoders and two-stage
ensemble learning. Inf. Softw. Technol. 2018, 96, 94–111. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10664-014-9346-4
http://dx.doi.org/10.1016/j.infsof.2017.11.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work 
	Methodology 
	Overall Framework
	Program Parsing and Vector Mapping
	TCNN Building and DL-Generated Feature Extracting
	Transferable Joint Feature Constructing
	Cross-Project Prediction Performing

	Experimental Setup  
	Evaluated Datasets
	Evaluation Metrics
	Compared Models

	Results 
	Answer for RQ1: Can TCNN Perform Better than the Classic CPDP Methods that Use Only Traditional Handcrafted Features?
	Answer for RQ2: How Effective Is the TCNN Approach Compared to State-of-the-Art SDP Methods Adopting DL-Learning Features?

	Discussion 
	Why Does TCNN Work?
	Performance under Different TCNN Parameter Settings
	Time and Memory Overhead of TCNN
	Threats to Validity
	Implementation of Compared Methods
	Experimental Results Might Not Be Generalizable
	The F-Measure Might Not Be the Only Appropriate Measures
	Parameter Selection Does Not Take All Options into Account


	Conclusions 
	References

