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Abstract: Herein, a novel superhydrophobic functionalized nano-Bi2O3 coating is designed and
fabricated using electrophoretic assembly deposition (EAD) in the optimal suspension of polyethylene
glycol, ethanol, acetylacetone, and surface functionalization. The small size (70 nm, nano-scale) of
Bi2O3 particles and uniform distribution make the target film possessing a promising structure for
realizing hydrophobic functionalization. Moreover, the hydrophobicity and stability results indicate
that the product has a high-water contact angle (CA) of ca. 167◦ and is kept almost stable after
180 days exposure in the natural environment. These findings will provide new insight into a better
design of superhydrophobic functional coatings via this facile method, holding great promise for
future various applications.
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1. Introduction

Bismuth trioxide (Bi2O3), possessing six polymorphic modification forms of α-Bi2O3, β-Bi2O3,
etc., is regarded as a promising semiconductor, which has attracted growing interests because of
its narrower band gap of 2.5–2.8 eV (compared with traditional photocatalyst-TiO2 of >3.0 eV) and
thermal stability, high dielectric permittivity, and refractive index [1–4], resulting in Bi2O3 and its
corresponding films’ wide numerous technological application in fields of the fuel cell layer, catalysis,
sensors, microelectronics, electro-optics, and so on [5–10].

Recently, various methods, such as magnetron sputtering and liquid deposition, have been used
for synthesising Bi2O3, as described in literature [11–14]. For example, Qiu et al. proved that Bi2O3

films consisting of nanowires with an average diameter of ~7 nm were fabricated using the Bi high
temperature evaporation on an Al foil substrate, which wasfollowed by oxidative nucleation and
growth at 350 ◦C [15]. The Bi2O3/TiO2 photocatalytic film coated on floated glass balls was used for
efficient removal of an organic pollutant reported by Zou et al., by using a sol-gel method assisted with a
double-solvent system [16]. Guan et al. designed a novel hetero-structured Bi2O3-TiO2 nanotube array
composite film for photo-electrochemical cathode protection applications [17]. The thin films of bismuth
oxide and yttrium-stabilized Bi2O3 were synthesized by a sol-gel/ink-jet printing method [18] and a
pulsed laser deposition [19], respectively, which is complex in operation. However, the film-formation
of Bi2O3 powders by a facile and low-cost technique is still a challenge.

In addition, the nano-Bi2O3 particles and their films are hydrophilic, leading to the destruction
of structures in the humidity environment or under water conditions. Furthermore, instruction for
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designing the water-resistant Bi2O3 films are rarely reported. Thus, in this study, a novel
superhydrophobic/functionalized Bi2O3 coating has been successfully prepared by a facile and
low-cost technique using the electrophoretic assembly method (EAD) and surface modification,
learning from the ‘lotus effect’ of surfaces capable of separating from water completely [20–22] and
the facile and EAD conveniently film-forming design process based on low-cost equipment [23–26].
Furthermore, the microstructure and hydrophobic properties of the target film are investigated, which
follows in detail.

2. Experimental Section

2.1. Materials and Reagent

Commercially available nano-bismuth trioxide (nano-Bi2O3 (III), CAS No. 1304-76-3) and other
used reagents, including polyethylene glycol, ethanol, acetone, acetylacetone, polyethyleneimine
and perfluorodecyltriethoxysilane were purchased from Aladdin Industrial Inc., Shanghai, China.
The commercially available electrode materials of Ti and Cu sheets were used as received. Deionized
water was used for all steps in this study.

2.2. Methods

To obtain stable suspension for a successful EAD process, 0.15 g nano-Bi2O3 aurantium powders
were added into a 0.1 L mixture of polyethylene glycol, ethanol, and acetylacetone with a volume ratio
of 0.01:0.45:0.45 in a glass beaker, which was moved into a water bath with an ultrasonic machine with
150 W (frequency of 30 kHz) for 0.5 h, before adding a handful of polyethyleneimine as the modifier.
The working and counter electrode was the Ti and Cu sheet, respectively, the distance between which
was 0.01 m. The pre-treatments of the electrode materials followed the steps as described below:
(i) Grinding process by sandpapers, de-oiling process using a mixture of NaOH and Na2SO4 (mole ratio
of 1:1), and cleaning process by deionized water and ethanol or acetone. (ii) The treated electrode
materials were inserted vertically into an obtained stable suspension for EAD under different applied
field strengths from 0 to 30 V/mm at room temperature. The Bi2O3 films obtained after the EAD process
underwent a functional modification process, similar to the surface treament technique reported in
our previous study [24], and finally, they were changed into a novel functional superhydrophobic
nano-Bi2O3 coating.

2.3. Characterization

The microscopic images of samples were analyzed by a field emission scanning electron microscope
(FESEM, JSM-7800F, Japan). The canon camera (EOS 5D Mark IV, Japan) with lens (EF 24–70 mm f/4L
IS USM) was used to investigate the macroscopic structures of samples and explore the hydrophobic
immersion experiments of the products. The contact angle (CA) and water repellent stability of
functional superhydrophobic nano-Bi2O3 films were characterized by an optical CA admeasuring
apparatus (HARKE-SPCA, China).

3. Results and Discussion

3.1. Microstructure and Surface Morphology

It is universally acknowledged that a successful EAD mainly depends on a well-dispersed and
stable suspension [27–29]. In this study, different kinds of suspensions were used to fabricate the
functional superhydrophobic nano-Bi2O3 films, while controlling other fixed conditions, and the results
in Table S1 in the Supplementary Materials show the combination of polyethylene glycol, ethanol,
acetylacetone, and polyethyleneimine being the optimal suspension, for which the assembly efficiency
of target films turned out be the highest.
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To explore the surface morphologies of superhydrophobic nano-Bi2O3 films, Figure 1 clearly
displays the FESEM images with various magnifications of samples. As shown in Figure 1a, the target
films consisted of a great deal of Bi2O3 particles with a relatively even distribution. After careful
observation, there were lots of tiny crevices and bulges on the films, which largely contributed to
realizing the design of the hydrophobic rough structures that was regarded as the key factor for preparing
promising super-/hyrophobic materials, inspired by natural plants, for example, the lotus [30–32].
Moreover, Figure 1b shows the higher magnification of target functional films, where the particles
were still in nano scale (ca. 70 nm) after the EAD process and other post-treatments, and the particle
size distribution of nano-Bi2O3 is shown in Figure S1 in Supplementary Materials. In addition, lots of
gaps existed among the nano-Bi2O3 particles, indicating the great superiority of the proposed EAD
process under optimal suspension.
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Figure 1. The typical FESEM images with low (a) and high (b) resolution ratios of obtained functional
superhydrophobic nano-Bi2O3 films.

3.2. EAD Dynamics

Forming film efficiently is important, but realizing the controllability is even more essential. In this
study, the EAD dynamics of nano-Bi2O3 particles in the optimal suspension were studied in detail.
Figure 2 shows the relationship of the assembly efficiency (mg/cm2) of functional superhydrophobic
nano-Bi2O3 films and the EAD, or assembly time (min). The assembly efficiency of the target film
increased nearly linearly with the EAD time, increasing from 0 to 8 min, and the rising tendency of the
assembly efficiency decreased sharply as the EAD time continued to rise. It is worth mentioning that
the relative weight gain of a product was not obvious after 18 min because of the gradual decrease of
the concentration of particles.
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Figure 2. The assembly efficiency as a function of assembly time during the electrophoretic assembly
deposition (EAD) process.

In addition, the effect of different applied field strengths on the assembly efficiency of the product
is also analyzed in Figure 3. Interestingly, when the field strength was relatively low (<15 V/mm),
there also existed a similar linear correlation equation between the assembly efficiency and the field
strength. The assembly efficiency increased at a much lower rate as the field strength exceeded 15 V/mm,
which was caused by several reasons, including the more serious severe disturbance of suspension,
the gradual increase of the resistance of electrodes, and the sedimentations of part particles [33].
These results provided a theoretical reference for a controllable assembly of nanoparticles by an optimal
EAD process.
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3.3. Hydrophobic Studies

Firstly, the obtained functional novel nano-Bi2O3 film from scattered powder, was smooth and
uniform, as shown in the Figure 4, where the color stays the same (yellow). The immersion test of
product was then conducted to study its hydrophobicity. When the edge of target film slowly contacted
the water, the surface of water was squeezed and the contacted part of water was pushed away,
forming the interesting annular water lines (Figure 4) due to the strong water-repellency. After the
immersion process, the samples under the water changed to a silvery surface, rather different from the
other part of the product, which was caused by the light-reflections phenomenon of the air cushion
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layer on the surface of target functional films consisting of an abundance of captured air bubbles [34],
further indicating the outstanding hydrophobicity. In addition, the CA of the product was ca. 168◦

(see in the embedded image in Figure 5).
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3.4. Stability Study

To confirm the stability of the target functional nano-Bi2O3 films, the extra-long exposure
experiments were conducted as follows. All samples were divided into seven groups (I–0 day,
II–30 days, III–60 days, IV–90 days, V–120 days, VI–150 days, and VII–180 days), each going through a
different exposure time. Figure 5 shows the relationship betweeen the CA of C with the fresh samples
in group I. When the exposure time continued increasing, the CA of samples gradually decreased with
an infinitesimal range, even for group VII after 180 days of exposure. The difference in value of CA
between samples in group I and VII was only ca. 2◦, which indicated that the product after a half-year
exposure test still possessed great superhydrophobicity, furthermore demonstrating the outstanding
stability of functional nano-Bi2O3 films with wide application in lots of domains.

4. Conclusions

In brief, the functional superhydrophobic nano-Bi2O3 film with high CA of 168◦ and even
distribution has been synthesized via a facile EAD and surface functionalization process at a mild
condition. The target films turned out to be in nanoscale by the FESEM technique. In addition,
the product showed outstanding superhydrophobic stability and kept a promising CA of ca. 166◦,
even after 180 days exposure. Thus, this work provides a new perspective for the fabrication of
superhydrophobic oxide coatings with a wide potential application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/13/2653/s1,
Figure S1: The particle size distribution of nano-Bi2O3; Table S1: Assembly efficiency comparison of different
suspension agents.
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