iriried applied
L sciences

Article
Addressing Text-Dependent Speaker Verification
Using Singing Speech

Yan Shi *, Juanjuan Zhou ', Yanhua Long ''*, Yijie Li 2 and Hongwei Mao “*

1 SHNU-Unisound Joint Laboratory of Natural Human-Computer Interaction, Shanghai Normal University,

Shanghai 200234, China

Beijing Unisound Information Technology Co., Ltd., Beijing 100028, China

*  Correspondence: yanhua@shnu.edu.cn (Y.L.); maohw2007@shnu.edu.cn (H.M.)
1t These authors contributed equally to this work.

check for
Received: 9 May 2019; Accepted: 26 June 2019; Published: 28 June 2019 updates

Abstract: The automatic speaker verification (ASV) has achieved significant progress in recent years.
However, it is still very challenging to generalize the ASV technologies to new, unknown and
spoofing conditions. Most previous studies focused on extracting the speaker information from
natural speech. This paper attempts to address the speaker verification from another perspective.
The speaker identity information was exploited from singing speech. We first designed and released
a new corpus for speaker verification based on singing and normal reading speech. Then, the speaker
discrimination was compared and analyzed between natural and singing speech in different feature
spaces. Furthermore, the conventional Gaussian mixture model, the dynamic time warping and the
state-of-the-art deep neural network were investigated. They were used to build text-dependent
ASV systems with different training-test conditions. Experimental results show that the voiceprint
information in the singing speech was more distinguishable than the one in the normal speech.
More than relative 20% reduction of equal error rate was obtained on both the gender-dependent and
independent 1 s-1 s evaluation tasks.
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1. Introduction

Automatic speaker verification (ASV) is the verification of a speaker’s identify based on his/her
speech signals [1]. It is an important biometric technology and can be widely used in access
control security authentication, personalized services, etc. Performances of ASV systems have been
significantly improved by recent advances in speech technology. The state-of-the-art ASV systems are
robust to session and channel variations [2-5]. However, they are vulnerable to spoofing attacks, such
as spoofed speech produced using either text-to-speech or voice conversion technologies [6,7]. It is
still very challenging to use the current technologies for real ASV applications.

To improve the robustness of ASV systems under real applications, most previous works
focused on exploring new speaker modeling algorithms, discriminative biometric patterns, or finding
countermeasures to eliminate the acoustic mismatches between training and testing or spoofing speech,
such as the self-attentive speaker embeddings in [8] for a better speaker identity representation, the
end-to-end speaker modeling framework in [9], the light convolution neural network [10] and attentive
filtering network modeling architectures in [11] for detecting spoofing utterances, etc. [12,13].

In the literature, most of these previous works extracted the speaker information from natural
speech, either the read speech or spontaneous or contextual speech [1]. We only found very few
works focus on exploiting robust speaker information from other prospectives, such as speaker
recognition in [14-16], where the humming was investigated to extract the speaker identity information.
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Specifically, in [14,15], various acoustical features such as the linear prediction cepstral coefficients,
the conventional Mel-frequency cepstral coefficients (MFCCs) and perceptually linear prediction
coefficients were evaluated for humming speech. In [16], the variable length Teager energy based
mel rrequency cepstral coefficients was proposed to identify speakers from their hum. Moreover, the
speaker-dependent characteristics were extracted from the nasals for forensic speaker recognition [17].
In [18], the humming, singing and speech were compared and evaluated as biometric signal.
They found that the humming sounds are better for capturing speaker-specific characteristics than
speech and singing. In [19], GMM mean supervector was used to improve performance of speaker
clustering with speech from both reading and singing. The authors of [20,21] proposed the timbre
and vibrato-motivated acoustic features for singer identification. All of these previous works provide
a good reference for us to study speaker recognition from a new perspective. However, we have
not found any previous works that examine and compare the speaker verification performances
between using the natural Mandarin reading speech and singing speech. For example, the authors
of [14-16,18] only designed text-independent speaker verification tasks; their speech corpus and
songs were all of Hindi languages and only a second-order polynomial classifier was used in their
speaker classification. In [14,16], only humming speech was examined for human verification and
identification, no comparison results was presented, such as the performance comparison between the
humming and the natural reading speech.

In this paper, we also focus on the speaker verification using the singing speech. However, the big
difference between this work and the above-mentioned previous works is that we focus on examining
and comparing the effectiveness of using normal Mandarin reading speech and their corresponding
singing speech for short-time text-dependent speaker verification. Different features and three types of
speaker modeling approaches were also investigated, including the conventional and state-of-the-art
deep neural network based techniques. Our motivation is to explore using the singing speech as
an input to ASV system, because we want to see whether the singing speech is more effective for
voiceprint information protection in real-world ASV applications, such as personalized accessing of
WeChat, QQ accounts, etc.

Firstly, we designed a new corpus for short-time text-dependent ASV experiments. We released it
on the Zenodo website (https://zenodo.org/record /3241566) and put our implementation code in the
Github repository (https://github.com/Moonmore/Speaker-Verification) for public research. Based
on this corpus, we performed the text-dependent (TD) ASV comparison experiments using either the
natural speech or the singing speech, or both of them. Then, we focused on the TD ASV experiments to
exploit the effectiveness of natural and singing speech for speaker verification. We first examined the
speaker discrimination between natural and singing speech in both the Normalized Cross Correlation
Function (NCCF) coefficients [22] and 2-D Mel Frequency Cepstral Coefficients (MFCC) feature spaces.
Then, the conventional Gaussian Mixture Model (GMM), Dynamic Time Warping (DTW) and the
state-of-the-art deep neural network were investigated for speaker modeling. Preliminary results show
that the voiceprint information in the singing speech was more distinguishable than the one in the
natural reading speech for the short-time gender-dependent as well as independent ASV tasks.

2. Corpus

Since there is no publicly released Mandarin corpus that meets our motivation, we designed a
new corpus for our research. It includes both the normal reading and singing speech, thus we named
this corpus as “RSS”. A detailed description of RSS is shown in Table 1. It consists of 20 speakers,
including 10 male and 10 female undergraduate students. This study was our preliminary work
on exploring and comparing the Mandarin singing speech and normal reading speech for speaker
verification. Our motivation was to examine the effectiveness of different speaking styles for speaker
verification. Therefore, to eliminate the interference from complicate recording setups, we only selected
the undergraduate students with age ranges from 22 to 24 as our target speakers.
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We selected 10 lyrics segments that are familiar to everyone as the text for audio recording.
Around 5-15 utterances were included in each lyrics segments. Three music styles of these lyrics were
selected: pop music, classical music and country music. These music genres are popular to most of
the students in our university. During speech recording, the speaker used a common laptop built-in
microphone to sing and read the given lyrics in a quiet lab environment. We used “Audition” as our
speech recording and editing software. To create reasonable comparative experiments between normal
and singing speech, for each speaker and each lyrics text, we recorded it twice for reading speech
and twice for singing speech in two days. Each lyrics segment covered around 10-30 s speech. Each
recording was formatted as 16 kHz, 16 bit WAV file. We chose the specific wav file format to record
the audio, because this format is more generally used for human-machine interaction applications.
Moreover, as 16 kHz WAV format is also normally used in automatic speech recognition applications,
it would be better to keep the same speech input setup to make things compatible in real-world
applications. All of the recordings are in Mandarin.

Table 1. RSS corpus description.

Item Details

Speaker 20 undergraduate students (10 male, 10 female)
Language Mandarin

Format 16,000 Hz, 16 bit, 1 channel

Text 10 lyrics of pop, classical and country songs
Biometric signal reading speech and corresponding singing speech
Microphone common laptop built-in microphone

Recording software Audition

Acoustic environment  quiet lab environment

Table 2 gives the details of the ASV tasks we designed based on the “RSS” corpus. In most
application scenarios, the enrollment and test data per speaker were normally around 1-3 s. Therefore,
we should cut our long recordings into 1 s and 3 s short segments. Taking the 1 s-1 s-GD task with
reading speech as example, for each of the 20 target speakers, he/she had 10 distinct lyrics that cover
10-30 s reading speech, and each lyric was recorded twice. To construct our ASV tasks, we first cut all
these long speech segments into many small segments according to the completeness of the sentence
text (lyric). For all of the 10-30 s audio files with the same lyric, we segmented them according to the
same lyric integrity. Then, we picked out all of the short segments with length around 1 s. Finally, we
chose the hold-out cross-validation method to design our experiments. Because each speaker had two
recordings with the same lyrics, we randomly selected one of the two short segments with the same
lyric text as the 1 s training (enrollment) segment of target speaker and the other as test. There was
no overlap between the speech of speaker training and test. This test segment was used to test all
of the other target speaker models. Therefore, from all of these selected 1 s segments, we obtained
600 segments as the target speaker enrollment speech, 300 for males and 300 for females. There were
some enrollment segments belong to the same speaker, but they were treated as separate speakers to
have their own speaker models in our experiments. This is because, to make the observations in our
experiments more general, we should try to increase the number of the target enrollment speakers as
much as possible.

To construct the gender-dependent test trials, such as for one speaker of 10 females with one lyric,
we then had 30 enrollment segments (1 s per each) to train 30 separate target speaker models, and 30
segments for test. Considering the 10 lyrics, we generated 30 x 10 x 10 = 3000 trials, 300 of which
were target trials (test and training segments belong to the same speaker), others were non-target
trials (test speech belong to imposter). For the 3 s-3 s tasks, we processed the data in a similar way to
construct the speaker model training set and test trials. Audio files of singing were processed in the
same way as the ones of reading speech to construct the exactly the same experimental setup, except
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for the input segments were singing. More details about RSS data and experimental configuration files,
please refer to the Zenodo website and Github repository mentioned in the Introduction.

Table 2. Text-dependent short-time ASV task description.

Task #Target Speakers  #Test Segments #Target Trials #Non-Target Trials
1s-1s-GD 600 600 300 male, 300 female 2700 male, 2700 female
1s-1s-GI 600 600 600 11,400
3s5-3s-GD 300 300 150 male, 150 female 1350 male, 1350 female
35-3s-GI 300 300 300 5700

To see whether the behavior of speaker discrimination between two speaking styles is
gender-dependent or not, we designed both GD and GI ASV tasks according to the above steps.
We hope that the performance difference between male and female may motivate researchers to
propose new gender-dependent features or methods to improve the final ASV systems. In Table 2,
“GD” and “Gl” refer to gender-dependent and gender-independent, respectively. “1 s-1 s” refers to the
duration of speaker enrollment and test speech are both 1's, and “3 s-3 s” means a similar case. In this
study, all experiments were performed on these eight ASV tasks. Furthermore, we released our corpus
publicly for research purpose only. The free download website can be found in the footnote of the
Introduction. For a better comparison, two independent ASV tasks were constructed for experiments.
They had the same trials configurations as shown in Table 2, but one for singing speech, the other for
normal reading speech.

3. Speaker Identity Discrimination in Different Feature Space

The theoretical principle of speaker verification is that each person’s voice has its unique
characteristics. The unique property is determined primarily by two factors, the size of the acoustic
cavity and the manner in which the vocal organ is manipulated [23]. In speaker verification, these
properties are included in the acoustic feature space. In this section, we focus on exploring the speaker
identity discrimination in two feature spaces, the pitch and the MFCC feature spaces. In these spaces,
we examined the feature discrimination between normal speaking (reading) and singing speech of the
same speaker, and the speaker discrimination under the same speech style between different speakers.

3.1. Pitch Discrimination

Pitch is one of the most important features for describing the excitation source property in speech
signal processing [24]. We used the Normalized Cross Correlation Function (NCCF) coefficients [22]
extracted by using the Kaldi pitch tracker [25] to represent the pitch information for our ASV.
The NCCEF is not the normal pitch value; it is a pitch estimation method that is very similar to
the autocorrelation function, but it better follows the rapid changes in pitch and the amplitude of
speech signal. In comparison with the normal autocorrelation function, the peaks corresponding to
pitch period in the NCCF are more prominent and less affected by the rapid variations in the signal
amplitude. In [22], the effectiveness of NCCFs has been proved on speech recognition tasks. Figure
1 shows the NCCF contour of the same female speaker’s reading and singing speech with the same
text. Figure 2 shows the NCCF contour of reading and singing speech between two different female
speakers, given with the same text.
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Figure 1. NCCF contour of the same speaker’s reading and singing speech with the same text.

In Figure 1, it is clear that the NCCF contour of reading speech deviates far from the one of singing
speech, with the same speaker and the same text. By comparing the NCCF trajectories in Figure 2,
we can see that the difference of pitch information between two different speakers from singing speech
is larger than the one from reading speech, even under the text-dependent task.
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Figure 2. NCCF pitch contour of reading (left part) and singing (right part) speech between two

females with the same text.

3.2. MFCC Discrimination

MEFCC is a conventional frequency-domain auditory perception cepstral coefficient method.
MFCCs have been widely used in both the speech and speaker recognition applications [1]. We first
extracted the 20-dimensional (c0-c19) MFCC features using the Kaldi Toolkit [25]. Then, to visualize
the MFCC discrimination between different speakers more clear, we applied the Principal Component
Analysis (PCA) algorithm to reduce the 20-dimensional MFCCs to a two-dimensional feature space.
Finally, we performed the feature analysis in this low-dimensional space. Similar to the above NCCF
information contour, Figure 3 demonstrates the two-dimensional PCA feature distribution of MFCCs
of both the reading and singing speech between two different female speakers, given the same text.

In Figure 3, we can easily observe that the overlap of orange dots and blue circles in the left
subfigure is less than that in the right subfigure. This indicates that the speaker discrimination in
MFCC feature space of singing speech is larger than the discrimination in reading speech feature space.
By comparing the same color parts of the left and right subfigures, it can be seen that, even for the same
speaker with the same text, there is also large difference between singing and reading speech in the
MEFCC feature space. Therefore, we guess that it may be better for us to use the singing speech instead
of normal reading speech to characterize a speaker’s identity. Actually, even if we see discriminate
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information in the feature space, we cannot guarantee that the speaker model would be able to exploit
the discriminations very well. Therefore, we provide detail validation experiments in next sections to
see what would happen.
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Figure 3. MFCC PCA feature distribution of reading (left) and singing (right) speech between two
females with the same text.

4. Speaker Verification Systems

This section describes the features and three types of speaker verification systems developed for
this study: the GMM-based, DTW-based and the state-of-the-art deep neural network based systems.

Features: As shown in Section 3, we extracted 20-dimensional MFCC, then applied PCA to reduce
them to two dimensions for a better visualization. However, to preserve more detail information in the
features, we did not use the reduced two-dimensional feature to train our speaker verification systems.
All of the features used for GMM-based, DTW-based and deep neural network based ASV systems
were 61-dimensional: the 20-dimensional MFCCs, their delta and delta-delta dynamic features [26]
and the one-dimensional NCCF feature. All of these features were extracted using a 25 ms hamming
window with a 10 ms frame shift. An energy-based voice activity detection (VAD) was applied to
remove the silence.

GMM-based system: We used the conventional GMM to model the speaker identity for each
enrollment speaker. Assuming a d-dimensional input feature for each speech segment, the GMM with
M mixtures is:

M
p(x|A) =) wig(x|ui, £i) 1)
i=1
where A = {w;, u;, Z;} is the GMM model, and g(x|u;, X;) represents a d-variate Gaussian probability
density function, with mean vector y;, covariance matrix ¥; and mixture weights w; with Zf\i Jwi =1
During the speaker enrollment, one GMM model was built for each speaker using her/his enrollment
speech segment. In the experiments, we took the GMM-based system as our baseline for performance
comparison. The GMM mixture number was set to 32 and only diagonal covariance was used. In fact,
we tried many different mixtures in our experiments, from 8 to 1024, and the 32 mixtures GMM
obtained the best and most stable results. Given a set of acoustic features of each target speaker, the
parameters of the target speaker GMM model was estimated using the maximum likelihood (ML)
criterion with the popular expectation-maximization algorithm. More details of the GMM model
training can be found in [1].
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During the testing, given the d-dimensional feature vectors X = (x1, x2, ..., xr) of test utterance
with T frames, we computed the log-likelihood score on each target speaker model as:

AX) = —logp X[A) = Zlogzwlg x| i i) &)

These log-likelihood scores were then used to compare with a threshold to give the final speaker
verification decision.

DTW-based system: DTW is a dynamic programming technique to compute the distance between
two sequences. It has been taken as a sequence-matching algorithm and it has been widely used to
tackle the text-dependent speaker verification [1,27]. It attempts to match the enrollment and test
templates of feature vectors. In [28], it has been shown that a DTW-based ASV system can outperform
model-based systems (relevance MAP and i-vector) in content-mismatch condition. In this study,
the DTW algorithm was investigated for short-duration ASV systems.

X-vector based system: With the rapid development of deep neural network technology
in speaker recognition, many types of DNN embeddings have been proposed, such as the
DNN-Ivector [29], the D-vector [5], J-vector [30], C-vector [31], S-vector [32], etc. All of these vectors
were derived from DNN models to map a variable-length speech utterance to a fixed-dimensional
space for speaker modeling. Given these types of vectors, a simple cosine distance measure or a
probabilistic linear discriminant analysis (PLDA) [33] was then normally applied to these vectors as
the final decision function for speaker verification.

In this work, the state-of-the-art deep neural network based ASV system was the X-vector based
system. The X-vector is a type of deep neural network (DNN) embedding that has been recently
proposed to map variable-length utterances to fixed-dimensional embeddings [3,4]. It has been proved
to be very effective and the X-vector based system is the state-of-the-art dominant technique for
both text-independent and text-dependent speaker verification. We used the same embedding DNN
architecture as in [4]. To build an X-vector based ASV system, we needed to train an X-vector extractor
first, and then, given each speech segment, we extracted an X-vector from the well-trained extractor to
represent the speaker identity. During the testing, the simple cosine distance between the X-vector of
each test speech and the one of target speaker enrollment speech was computed as the final verification
decision score. Normally, to improve the robustness and generalization ability of these X-vectors, a
PLDA backend [4,33] was normally applied to these X-vectors.

Figure 4 shows the detail architecture of the X-vector extractor model. The first five layers of the
network worked at the frame level, with a time-delay architecture [34]. Suppose ¢ is the current time
step. At the input, we spliced together frames at {t —2,t —1,t,t + 1, + 2}. The next two layers splice
dtogether the output of the previous layer at times {f —2,t,t 42} and {t — 3, ¢, + 3}, respectively.
The next two layers also operate dat the frame-level, but without any added temporal context. In total,
the frame-level portion of the network had a temporal context of t — 8 to t + 8 frames. Layers varied in
size, from 512 to 1536, depending on the splicing context used. The statistics pooling layer received the
output of the final frame-level layer as input, aggregated over the input segment, and computed its
mean and standard deviation. These segment-level statistics were concatenated together and passed to
two additional hidden layers with dimension 512 and 300 (either of which could be used to compute
embeddings; in this study, the X-vector b was taken as our X-vectors) and finally the softmax output
layer. The X-vector extractor network was trained to classify training speakers using a multi-class
cross entropy objective function. Please refer to the work of Snyder [3] to obtain more details of the
extractor training.
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Figure 4. Diagram of the X-vector extractor.

As shown in Figure 4, the X-vector extractor is also a DNN model [4]; it can be challenging to
collect substantial quantities of labeled singing data for training a good X-vector extractor. Our RSS
corpus is not enough. Moreover, to avoid the overfitting of X-vector extractor on the specific ASV
task, the speaker overlap among X-vector extractor training data, the target speaker training and
testing data is normally not allowed. Therefore, as all of the speakers in RSS were taken as the target
speakers in our ASV systems, we could not use the RSS to train or pre-train the X-vector extractor
model. Researchers normally used in-domain large-scale datasets with similar acoustic characteristics
as the target speaker training and test data to train the extractor. However, to obtain a preliminary
performance using X-vector system for our task, we chose to use the out-of-domain data for the
extractor network training. We used the open-source speech corpus “AISHELL-2" [35] to train our
X-vector extractor. It has 1000 h of clean read-speech data with 1991 speakers. Then, we extracted
one X-vector for each 1 s and 3 s segments in our RSS corpus using this extractor. We computed the
log-likelihood ratio between X-vectors of target speaker and testing speaker as the decision score,
using a probabilistic linear discriminant analysis (PLDA-based) [33] backend. The PLDA was trained
using 178 h of “AISHELL-1" corpus with 400 speakers [36].

5. Experimental Results

In this section, we present experimental results for the short-duration gender-independent as
well as gender-dependent ASV tasks: the 1 s-1 s-GD and 1 s-1 s-GI tasks as well as the 3 s-3 s-GD and
3 5-3 s-GlI tasks. The performances are reported in terms of equal error rate (EER) [1], a verification
error measure that gives the accuracy at decision threshold for which the probabilities of false rejection
(miss) and false acceptance (false alarm) are equal. The probability of false rejection is the ratio of
the number of false rejection (target speaker is misclassified as non-target speaker) divided by the
total number of target test trials. The probability of false acceptance is the ratio of the number of
false acceptance (non-target speaker is misclassified as target speaker) divided by the total number of
non-target test trials.

In Table 3, we examine the difference between Mandarin singing and normal reading speech for
ASV 1 s-1 s task using three different systems, the conventional GMM-based, DTW-based and the
state-of-the-art DNN X-vector based systems. From preliminary results in Table 3, it is clear that the
GMM-based and DTW-based systems achieved almost the same overall performances. Moreover, we
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found that the GMM and DTW based systems obtained big EER difference between using singing
and reading speech, both for the gender-independent trials and the female gender-dependent trials.
These preliminary results show that the voiceprint information extracted from the singing speech was
more discriminative than the one extracted from reading speech, especially for the female speaker
discrimination. By comparing EERs obtained from singing and reading speech on gender-dependent
tasks, we obtained a relative 23.2% EER reduction for female trials. For gender-independent task,
a relative 26.1% EER reduction was obtained for the overall test trials.

Table 3. EER% comparison on 1 s-1 s text-dependent ASV tasks, using different systems.

System Task Gender Reading Singing
Male 1.0 1.0
1s-1s-GD Female 43 3.3
GMM-based All 2.5 22
1s-1s-GI All 2.3 1.7
Male 1.0 1.0
1s-1s-GD  Female 43 3.3
DTW-based All 25 2.2
1s-1s-GI All 2.3 1.8
Male 1.7 1.7
1s-1s-GD Female 0.0 0.0
X-vector based All 0.5 05
1s-1s-GI All 0.8 0.8

In addition, compared with GMM-based and DTW-based systems, the state-of-the-art X-vector
based system achieved much better overall results on the “GD” and “GI” tasks. However, we can see
that the X-vector based system obtained the exact same results for both the ASV tasks using reading
and singing speech. From the X-vector based systems, we did not see any performance difference
between using these two different speaking styles. The main reason is that both the model training of
X-vector extractor and PLDA backend need a large amount of labeled data. In this study, they were
trained using the out-of-domain “AISHELL” corpus with only reading style speech because the RSS
corpus is very limited. As mentioned in the X-vector based system description in Section 4, the RSS
corpus cannot be used for X-vector extractor training in general. The acoustic properties learned by
the extractor and PLDA deviated far from the singing speech; they were biased to the reading speech.
The biased models make the speaker discrimination of singing incapable of being reflected. We will
re-validate the X-vector based systems in our future works, when enough singing speech samples are
available to train an unbiased deep X-vector extractor.

In fact, we used the X-vector based system in this study to only show preliminary results for
speaker verification based on singing speech, even the training data of X-vector extractor was biased to
the reading-speech. Therefore, it is unfair to compare the X-vector based system with the conventional
GMM-based and DTW-based systems, because the amount of data we used for X-vector based system
was much higher than the amount we used for the GMM-based and DTW-based system (only using
the target speaker enrollment speech for model training), and this is the main reason for the better
performance on some conditions in Table 3.

In our experiments on 3 s-3 s tasks, it is interesting to observe that all of the GMM-based,
DTW-based and X-vector based systems obtained zero EERs on both the 3 s-3 s-GD and 3 s-3 s-GI ASV
tasks. That is, all of the test trials were correctly detected. This indicates that, when the enrollment
speech duration reaches 3 s, the speaker identity information can be accurately captured for our
text-dependent ASV task. This may also due to the quiet speech recording environment and the
limited number of speakers in our tasks (only 20 speakers).
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From the extraordinary results on 3 s-3 s tasks, we may think that, in a real-world system with
limited speakers, when the enrollment speech duration is long enough, e.g., 3 s, the speaker identity
information can be accurately captured, even we use very simple classifiers such as GMM and DTW.
However, in most real-world applications, the background noise or speech recording and transmission
channel mismatch between training and testing will degrade the ASV system performance significantly.
There are many research works focused on the speech enhancement and channel compensation
issues in ASV [1,37]. However, our motivation is to see the difference between singing and normal
reading speech in ASV, thus we recorded the RSS corpus under a very quiet office environment to
eliminate other interference such as background noise, etc. It is normal for us to obtain zero EER on
a text-dependent ASV task under our speech recording setups. Therefore, the extraordinary results
on our 3 s-3 s tasks does not indicate that we can obtain exactly the same good results under most
real-world ASV applications, except for under the same data recording and setups with our RSS corpus.

In X-vector based systems, the other interesting thing we found was that the NCCF feature
brought no performance gains; we obtained the same EERs on both 1 s-1 s and 3 s-3 s tasks from the
60-dimensional MFCCs and the same 60-dimensional MFCCs plus one-dimensional NCCF feature.
This observation may also be affected by the fact that the X-vector extractor was trained from
out-of-domain corpus. Anyway, all of these observations will be further validated in our future
works when many singing and reading speech samples are recorded.

6. Conclusions

This study attempted to investigate the short-time text-dependent ASV between the singing
and normal reading speech. A new corpus was released to the public for pure research. Detail
comparison and analysis between MFCC and NCCF feature were presented. Preliminary experiments
were performed on both 1 s-1 s and 3 s-3 s speaker verification conditions, either for gender-dependent
or gender-independent tasks. We found that the speaker identity information extracted from the
singing speech was more distinguishable than the one extracted from reading speech. Furthermore,
it is worth noting that, in our current corpus, all of the speakers are very familiar with the singing
text and original songs, thus the melody of these original songs may guide the speaker to sing with
a similar singing style. This similar singing style may also reduce the discriminative information
between different speakers. The data amount of our current RSS corpus is limited because creating
a high-quality speech database for thousands of hours takes a very long time and a huge amount of
money. Because until now there is no publicly released corpus designed for our purpose, we chose
to put our preliminary works in this study first. We hope that creating and releasing the RSS would
promote the research work in this field. Since, in this study, the performance improvements were
only observed on the limited RSS dataset, we cannot guarantee their generalization and significance.
Therefore, in our future works, we will focus on recording a larger corpus on reading, singing and
humming speech using speakers’ personalized password texts. They may sing and hum using their
own styles. All observations obtained from this study will be examined in our future larger database.
New features related to the singing and humming speech will also be considered.
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