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Featured Application: The inverse heat conduction problems are often encountered in many
engineering fields. In practice, the temperature can be measured only on a portion of the problem
boundary. As a result, the information of the remaining boundary is unknown. In this study, we
develop the multiple-source meshless method to solve the inverse heat conduction problems. The
proposed method can be applied on problems in the doubly-connected domain with remarkably
high accuracy, even though the over-specified boundary data are assigned a portion that is less
than 1/10 of the overall domain boundary.

Abstract: In this article, a newly developed multiple-source meshless method (MSMM) capable
of solving inverse heat conduction problems in two dimensions is presented. Evolved from the
collocation Trefftz method (CTM), the MSMM approximates the solution by using many source points
through the addition theorem such that the ill-posedness is greatly reduced. The MSMM has the same
superiorities as the CTM, such as the boundary discretization only, and is advantageous for solving
inverse problems. Several numerical examples are conducted to validate the accuracy of solving
inverse heat conduction problems using boundary conditions with different levels of noise. Moreover,
the domain decomposition method is adopted for problems in the doubly-connected domain. The
results demonstrate that the proposed method may recover the unknown data with remarkably high
accuracy, even though the over-specified boundary data are assigned a portion that is less than 1/10
of the overall domain boundary.

Keywords: meshless method; inverse problem; heat conduction problem; domain decomposition
method; collocation Trefftz method

1. Introduction

The inverse heat conduction problem is the process of computing the unknown temperatures by
using over-specified data. For the inverse problem, both Dirichlet and Neumann boundary conditions
are over-specified on portions of the boundary and no information on the remaining domain boundary
is given. Since the over-specified data are usually adopted from field measurement data, noise from
measurement uncertainties is an important factor of the inverse problem. The inverse problem has
been comprehensively studied in many fields, including Cauchy problems [1,2], heat conduction
analyses [3,4], boundary optimization problems [5], crack identification problems [6], and wave
propagation problems [7]. For example, Qian, Fu, and Li [8] adopted the method of fundamental
solutions (MFS) in conjunction with two different regularization methods for solving the Cauchy
problem governed by Laplace equation. In addition, Gu et al. [9] used the generalized finite difference
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method (GFDM) to recover the heat source for steady-state heat conduction problems. For the inverse
problem, the boundary condition is only given for portions of the domain boundary, and the given
boundary data often include different levels of noise in which the problem is usually a severely ill-posed
problem. To deal with inverse problems, several numerical techniques have been proposed to improve
the ill-conditioning matrix. In 2005, Yeih et al. [10] utilized the MFS in cooperation with the exponentially
convergent scalar homotopy algorithm (ECSHA) to treat the ill-posed phenomenon for the inverse
Cauchy problem. Bourgeois [11] presented the mixed formulation of quasi-reversibility to solve the
Cauchy problem for the Laplace governing equation. In order to use this technique, the numerical
results can be carried out easily without using the iterative method. Later, Andrieux, Baranger,
and Abda introduced [12] an approach based on the minimization of an energy error functional
for temperature and heat flux data recovering. The Tikhonov regularization technique [13,14] is
one of the commonly used methods to mitigate the ill-posed phenomenon. Moreover, the L-curve
method [15,16] is often found to obtain the regularization parameter. In the past decades, mesh-based
numerical methods have been commonly used to solve the inverse problem, such as the finite difference
method [17,18] and the boundary element method [19,20]. However, the development of new numerical
methods has still attracted interests. The meshless approach may be one of the most competitive
alternatives recently.

Among the meshless methods, such as the collocation Trefftz method (CTM) [21,22], the MFS [23],
boundary knot method [24], element-free Galerkin method [25], radial basis function collocation
method [26], multi-scale polynomial expansion method [27], and boundary particle method [28], the
boundary-type meshless method is perhaps the most simple and accurate method. The CTM and
the MFS are based on the Trefftz method, in which the CTM adopts T-complete functions and the
MFS includes the fundamental solution as the basis functions. Since the T-complete functions and the
fundamental solution are solutions of the governing equation, the boundary points may only need to be
placed on the domain boundary. The CTM and MFS are therefore referred to boundary-type meshless
methods, which usually suffer from the numerical instability due to the ill-posed phenomenon of the
meshless method. To improve the applicability of the CTM and MFS, Ku et al. [29,30] propose the
multiple source meshless method (MSMM). The newly developed MSMM is modified from the CTM
and MFS and combines the benefits of both methods. The MSMM resolves the problem of finding
proper locations of source points in the MFS and reduces the ill-posed problem from higher order
Trefftz terms in the CTM. Consequently, the MSMM can be a promising method for solving inverse
heat conduction problems.

In this study, a newly developed MSMM capable of solving inverse heat conduction problems in
two dimensions is presented. Based on the CTM, the MSMM approximates the solution by using many
source points through the addition theorem. Moreover, the ill-posed phenomenon is considerably
more moderated when the MSMM is used compared with when the CTM is used. The MSMM has
the same advantages as the CTM such as using only boundary discretization, and is advantageous
for solving inverse problems. Several numerical examples are presented to validate the accuracy
of solving inverse heat conduction problems. To evaluate the capability of the proposed method,
boundary conditions with different levels of noise are assigned. Moreover, the domain decomposition
method (DDM) is adopted for problems in a doubly-connected domain. The remainder of this paper is
outlined as follows: We introduce the mathematical formulation of the two-dimensional inverse heat
conduction problem in Section 2. In Section 3, the detailed numerical implementation of the MSMM is
described. Section 4 presents the validation examples. A specific discussion of this article is presented
in Section 5. Finally, concluding remarks are provided in Section 6.

2. Inverse Heat Conduction Problem

In this study, an inverse heat conduction problem governed by a second-order partial differential
equation in two-dimensions is considered. The inverse heat conduction problem is generally ill-posed
and numerically unstable. As depicted in Figure 1, both Dirichlet and Neumann boundary conditions
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are imposed on the boundary ∂Ω1, and there is no information on the remaining boundary ∂Ω2. The
flowchart of the research for the inverse heat conduction problem in two-dimensions is depicted in
Figure 2. It is well known that the inverse heat conduction problem of the heat equation is as follows:

∆T = 0 in Ω (1)

where T denotes the temperature and ∆ represents the Laplacian operator. The Dirichlet, Neumann,
and mixed-type boundary conditions are expressed in Equations (2)–(4), respectively:

T(ρ,θ) = f (θ), 0 ≤ θ ≤ γπ, (2)

Tn(ρ,θ) = g(θ), 0 ≤ θ ≤ γπ (3)

αT(ρ,θ) + βTn(ρ,θ) = u(θ), 0 ≤ θ ≤ γπ (4)

where α and β are constants; γ ≤ 2; f (θ), g(θ), and u(θ) denote unknown functions; and n represents
the outward normal direction. Different noise levels are assigned to the boundary condition by using
the following equation:

T = T
(
1 +

s
100
× rand

)
(5)

where T denotes noisy data, s represents the noise level, and rand denotes a random number.

Figure 1. Illustration of the inverse heat conduction problem in two dimensions.

Figure 2. The flowchart of the research.
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3. Formulation of the Multiple Source Meshless Method

We may express the heat equation in the dimensionless form as follows:

∂2T
∂ρ2 +

1
ρ
∂2T
∂ρ2 +

1
ρ2
∂2T
∂θ2 = 0 (6)

where ρ = ρ̂/R0. The radial coordinate is denoted by ρ and the angular coordinate is denoted by θ.
Figure 3 displays the point distributions for the CTM, MFS, and MSMM in the simply-, doubly-, and
multiply-connected regions. By using the additional theorem, approximation solutions can be obtained
through the linear superposition principle of the particular solutions by arranging multiple sources
within the domain, as shown in Figure 4. Then, the unknown coefficients ajk and bjk are determined
using the boundary values as follows:

T(ρ,θ) ≈
∑NP

j=1

∑Nq

k=1
[ajk(ρ/R0)

kcoskθ+ bjk

(
ρ/R0)

ksinkθ
]
, (7)

∂T(ρ,θ)
∂n

≈

∑Np

j=1

∑Nq

k=1
[ajk

∂(
(
ρ/R0)

kcoskθ
)

∂n
+ bjk

∂(
(
ρ/R0)

ksinkθ
)

∂n
], (8)

where ajk and bjk denote unknown coefficients, Np denotes the source point number, and Nq denotes
the number of Trefftz terms. The characteristic length R0 is adopted from [31] as:

R0 = ξ×max(ρ), (9)

where ξ denotes a constant that is a user-defined parameter and max(ρ) represents the maximum
distance between the boundary and source points of the problem. By substituting Equations (7) and (8)
into Equations (2) and (3), we obtain the Dirichlet and Neumann boundary conditions as follows:

T(ρ,θ) ≈
∑Np

j=1

∑Nq

k=1

[
a jkCk + b jkDk

]
, (10)

∂T(ρ,θ)
∂n

≈

∑Np

j=1

∑Nq

k=1

[
a jkEk + b jkFk

]
, (11)

where Ck := (
ρ

R0
)

k
coskθ, Dk := (

ρ
R0
)

k
sinkθ, Ek :=

∂((
ρ

R0
)kcoskθ)

∂n , and Fk :=
∂((

ρ
R0

)ksinkθ)

∂n .
By using Equations (10) and (11), we obtain a linear equation system as follows:

Aα = b. (12)

Then, Equation (12) can be rewritten as follows:

A =



DI
1,k=1 DII

1,k=1 . . . DI
1,k=Nq DII

1,k=Nq
DI

2,k=1 DII
2,k=1 . . . DI

2,k=Nq DII
2,k=Nq

DI
3,k=1 DII

3,k=1 . . . DI
3,k=Nq DII

3,k=Nq
...

... . . .
...

...
DI

j,k=1 DII
j,k=1 . . . DI

j,k=Nq DII
j,k=Nq

NI
1,k=1 NII

1,k=1 . . . NI
1,k=Nq NII

1,k=Nq
NI

2,k=1 NII
2,k=1 . . . NI

2,k=Nq NII
2,k=Nq

NI
3,k=1 NII

3,k=1 . . . NI
3,k=Nq NII

3,k=Nq
...

... . . .
...

...
NI

j,k=1 NII
j,k=1 . . . NI

j,k=Nq NII
j,k=Nq



, α =



α0

α1

α2

α3
...
...
...

αNq−2

αNq−1

αNq



, b =



g1

g2

g3
...
gi
f1
f2
f3
...
f j



, (13)

where DI
j,k := (ρj/R0)

k cos (kθj); DII
j,k := (ρj/R0)

k sin (kθj);
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NI
j,k :=

[(k(1/R0)
kρk−1

j cos(kθ j)cosθ j) + (k(1/R0)
kρk−1

j sin(kθ j)sinθ j)]nx

+[(k(1/R0)
kρk−1

j cos(kθ j)sinθ j) − (k(1/R0)
kρk−1

j sin (kθ j
)
cosθ j)]ny

; and

NII
j,k :=

[(k(1/R0)
kρk−1

j sin(kθ j)cosθ j) − (k(1/R0)
kρk−1

j cos(kθ j)sinθ j)]nx

+[(k
(
1/R0)

kρk−1
j sin

(
kθ j

)
sinθ j

)
+

(
k
(
1/R0)

kρk−1
j cos

(
kθ j

)
cosθ j

)]
ny

.

Here, A denotes the coefficient matrix, α denotes the unknown coefficients and is given as
α = [a0, . . . , Nq]

T, and b denotes the function value from the boundary conditions. The DDM [32] is
adopted for problems in the doubly-connected domain. An epitrochoid-shaped doubly-connected
domain is depicted in Figure 5. We split the domain into Ω1 and Ω2. The sub-boundaries include Γ1,
Γ2, . . . , and Γ8. Ω1 comprises Γ1, Γ2, Γ3, and Γ4, and Ω2 comprises Γ5, Γ6, Γ7, and Γ8. The interface
must satisfy the following conditions:

T|Γ1 = T|Γ5 ,
∂T
∂n

∣∣∣∣∣
Γ1

=
∂T
∂n

∣∣∣∣∣
Γ5

, T|Γ3 = T|Γ7 ,
∂T
∂n

∣∣∣∣∣
Γ3

=
∂T
∂n

∣∣∣∣∣
Γ7

. (14)

Figure 3. Illustration of the collocation points for the collocation Trefftz method, method of fundamental
solutions, and multiple source meshless method. (a) Collocation scheme for the CTM, (b) Collocation
scheme for the MFS, (c) Collocation scheme for the MSMM.

From this equation, Equation (14) is rewritten as follows:

∂T(x)
∂n

=
∂T(x)
∂x

nx +
∂T(x)
∂y

ny (15)
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where nx and ny represent the outward normal direction in the x and y direction, respectively. The
final expression for determining the unknown coefficients αD can be expressed as follows:

ADαD = bD (16)

AD =


AΩ1 0Ω2

AI |Γ1,Γ3 AI |Γ5,Γ7

0Ω1 AΩ2

, αD =

[
αΩ1

αΩ2

]
, bD =


bΩ1

bI

bΩ2

 (17)

where AΩ1 and AΩ2 denote the coefficient matrix of Ω1 and Ω2, respectively. AI |Γ1,Γ3 and AI |Γ5,Γ7

represent the matrices for the boundary Γ1, Γ3, Γ5, and Γ7 at the interface. 0Ω1 and 0Ω2 represent a zero
matrix, αΩ1 and αΩ2 are the vectors of unknown coefficients, bI = [0] represents the boundary values
imposed on the collocation points at the interface, and 0 denotes zero vectors. By solving the linear
equation system of the form presented in Equation (16), unknown coefficients, αΩ1 and αΩ2 for Ω1 and
Ω2, respectively, can then be determined.

Figure 4. Illustration of the addition theorem for the multiple source meshless method.
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Figure 5. Illustration of the domain decomposition method (DDM) for a doubly-connected domain.

4. Validation of the Proposed Approach

4.1. Example 1

This example is used to validate the two-dimensional inverse heat conduction problem in a simply
connected domain that is bounded by an amoeba-shaped section, as depicted in Figure 6. We verify
the accuracy of the proposed method, and the numerical results of the proposed method are compared
with those of the MFS. The domain boundary is described as follows:

Γ =
{
(x, y)

∣∣∣x = ρcosθ, y = ρsinθ
}
, ρ = e(sinθsin2θ)2

+ e(cosθcos2θ)2
, 0 ≤ θ ≤ 2π (18)

where the radial coordinate is denoted by ρ and the angular coordinate is denoted by θ. The analytical
solution is given by:

T = excosy + exsiny. (19)

In this study, we assign the boundary data to the domain boundary in the range of 0 ≤ θ ≤ 1.5π,
and there is no information on the remaining boundary. The boundary conditions including Γ1 and Γ2

are displayed in Figure 6. At Γ1, the over-specified Dirichlet and Neumann boundary conditions are
given on the boundary collocation points by using the analytical solution, as presented in Equation (19).

Figure 6. Illustration of the collocation points and boundary conditions.
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In this example, the parameter Nq represents the number of terms for the non-singular basis
functions and is set as 10. We first investigated the accuracy of the proposed method by selecting the
terms of the Trefftz order through different Nq values, as depicted in Figure 7. The results demonstrate
that the accuracy of the proposed method can reach the order of 10−7 when Nq = 20. Furthermore,
the results of the maximum absolute error (MAE) versus the source point number are presented in
Figure 8. By using Nq = 20, we can obtain an excellent accuracy with an MAE of 10−7 while locating
more than 50 source points on the domain. In this example, we arrange 58 points inside the domain to
approximate the temperature field. The contour of the temperature is shown in Figure 9. The computed
temperature along line AB is revealed to be almost identical to the exact solution, as depicted in
Figure 10. Moreover, the MFS is adopted to solve the same problem and is compared with the proposed
method. The results demonstrate that the MAE of the MFS in example 1 is approximately 10−3.

Figure 7. Nq versus the maximum absolute error.

Figure 8. Source point number versus the MAE.
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Figure 9. Comparison of the numerical solution with the exact solution.

Figure 10. Comparison of the temperature distribution along the selected line AB.

4.2. Example 2

We investigate a two-dimensional inverse heat conduction problem in a star-shaped simply
connected domain, as depicted in Figure 11. The two-dimensional object boundary is described by the
following equation:

Γ =
{
(x, y)

∣∣∣x = ρcosθ, y = ρsinθ
}
, ρ = 1 + cos2(4θ), 0 ≤ θ ≤ 2π, (20)

where the radial coordinate is denoted by ρ and the angular coordinate is denoted by θ. The analytical
solution is given by:

T = x2
− y2. (21)

The parameter Nq represents the number of terms in the non-singular basis functions and is set as
10. Figure 11 displays the distribution of the collocation points on the domain boundary. The Dirichlet
and Neumann boundary conditions are given for a portion of the domain boundary by designating
the exact solution as expressed in Equation (21). The MFS is also adopted to solve the same problem.
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Figure 11. Boundary collocation points.

In this example, we define a parameter ζ, which presents the boundary data coverage. If ζ = 2π,
then the boundary conditions are given for the whole domain boundary. This causes the problem to
become a direct problem. By contrast, for the inverse problem, the boundary conditions are given only
for a portion of the domain boundary if ζ < 2π.

Figure 12 presents the accuracy of the computed results of ζ versus those of the MAE. The results
reveal that the accuracy of the MSMM is superior to that of the MFS. We collocate 200 inner points
within the physical boundary to obtain the temperature field of the problem, as shown in Figure 13.
The numerical results reveal that the proposed method can recover the unknown data with a high
level of accuracy, although the over-specified data are provided a portion that is less than 1/10 of the
overall boundary.

Figure 12. ζ versus the MAE.
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Figure 13. Comparison of the temperature fields of the multiple source meshless method.
(a,c,e) Over-specified boundary conditions are given on the 2/20, 9/20, and 15/20 portion of the
overall boundary, (b) results comparison with boundary data of θ values in the range of 0 ≤ θ ≤ 0.2π,
(d) results comparison with boundary data of θ values in the range of 0 ≤ θ ≤ 0.9π, and (f) results
comparison with boundary data of θ values in the range of 0 ≤ θ ≤ 1.5π
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4.3. Example 3

In this example, we investigate a two-dimensional inverse heat conduction problem in a
peanut-shaped simply connected domain, as depicted in Figure 14. To evaluate the accuracy of
the MSMM, we compare the computed results of the proposed method and those of the MFS used
with the ECSHA [10]. The two-dimensional object boundary is described by the following equation:

Γ =
{
(x, y)

∣∣∣x = ρcosθ, y = ρsinθ
}
, ρ =

√
cos(2θ) +

√
1.1− sin2(2θ), 0 ≤ θ ≤ 2π (22)

where the radial coordinate is denoted by ρ and the angular coordinate is denoted by θ, respectively.
The analytical solution is given by:

T = excosy. (23)

In this study, the parameter Nq denotes the number of terms of the non-singular basis functions
and is set as 10. Figure 14 shows the distribution of the collocation points on the domain boundary.
In total, 100 boundary and source points are uniformly placed on the domain boundary. Two scenarios
are considered in this example. Figure 15a depicts the temperature distribution of the exact solution.
For the first scenario, the boundary data are imposed on the θ values in the range of 0 ≤ θ ≤ 3/2π
with noise levels of s = 0 and s = 5. We collocate 200 inner points within the domain boundary.
The temperature distributions are illustrated in Figure 15c,e. The MFS has been used to obtain the
numerical results, as depicted in Figure 15b,d. For the second scenario, the boundary data are imposed
on the θ values in the range of 0 ≤ θ ≤ π with noise levels of s = 0 and s = 5. We collocate 200 points
inside the domain to obtain the temperature field of the problem, as shown in Figure 15g,i. The MFS
has been also used to obtain the numerical results, as depicted in Figure 15f,h. The MAE by assigning
different levels of noise for example 3 is depicted in Table 1. To show the accuracy of the MSMM, we
consider that the boundary conditions are polluted by random noise where the noise level is s = 5. It
is found that the numerical solution of the temperature field can be approximated in a stable way, and
the accuracy of the numerical solution decreases with the increasing noise level. The computed results
demonstrate that the accuracy of the proposed method can reach to the order of 10−2 while s = 5. The
accuracy level of the MSMM is discovered to be higher than that of the MFS used with the ECSHA
when s = 5.

Figure 14. Boundary collocation points.

Table 1. The MAE by assigning different levels of noise for example 3.

Boundary Data Noise Level Maximum Absolute Error

0 ≤ θ ≤ 3/2π s = 0 8.43× 10−6

0 ≤ θ ≤ 3/2π s = 5 7.12× 10−2

0 ≤ θ ≤ π s = 0 3.32× 10−4

0 ≤ θ ≤ π s = 5 8.66× 10−1



Appl. Sci. 2019, 9, 2629 13 of 21

Figure 15. Comparison of the temperature fields of the proposed method and the MFS. (a) Analytical
solution, (b,c) results with boundary data of θ values in the range of 0 ≤ θ ≤ 3/2π with a noise level of
s = 0, (d,e) the results with boundary data of θ values in the range of 0 ≤ θ ≤ 3/2π with a noise level
of s = 5, (f,g) the results with boundary data of θ values in the range of 0 ≤ θ ≤ π with a noise level of
s = 0, and (h,i) the results with boundary data of θ values in the range of 0 ≤ θ ≤ π with a noise level
of s = 5.

4.4. Example 4

In this example, we investigate a two-dimensional inverse heat conduction problem in a rectangular
simply connected domain, as depicted in Figure 16. To evaluate the accuracy of the MSMM, we compare
the computed results of this method with those of the weighted reproducing kernel collocation method
(weighted RKCM) [33]. The two-dimensional object boundary is described by the following equation:

Γ =
{
(x, y)

∣∣∣0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
, (24)
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where the radial coordinate is denoted by ρ and the angular coordinate is denoted by θ. The analytical
solution is given by:

T = −x3
− y3 + 3xy2 + 3x2y. (25)

Nq represents the number of terms in the non-singular basis functions and is set as be 10. We give
the boundary data on the Γ2, Γ3, and Γ4, and there is no information on the Γ1. Figure 16 shows the
distribution of the collocation points arranged in the domain. In this example, 400 collocation points
are placed. The boundary data are imposed on Γ2, Γ3, and Γ4 with noise levels of s = 0, s = 1, and s = 2.
We collocate 200 inner points to obtain the temperature field of the problem, as shown in Figure 17.
Figure 18 illustrates a comparison of the absolute error of the proposed method and the weighted
RKCM. To evaluate the stability of the MSMM, different noise levels of s = 0, s = 1, and s = 2 were
considered in the numerical model. The MAE by assigning different levels of noise for example 4 is
depicted in Table 2. It can be seen that the absolute error is relatively small, and the accuracy of the
numerical solution decreases with the increasing noise level. The computed results demonstrate that
the accuracy of the proposed method can reach to the order of 10−3 while s = 2 is considered. From
Figure 19, we discover that the results of the proposed method for Γ1 are almost identical with the
exact solution.

Figure 16. Boundary collocation points.

Figure 17. Comparison between the numerical solution and the exact solution.
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Figure 18. Absolute error of example 4. (a) Weighted RKCM, (b) Proposed approach.

Table 2. The MAE by assigning different levels of noise for example 4.

Noise Level This Study

s = 0 3.96× 10−6

s = 1 4.10× 10−3

s = 2 8.90× 10−3
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Figure 19. Comparing of the numerical solutions of the proposed method and the exact solution
along Γ1.

4.5. Example 5

We investigate a two-dimensional inverse heat conduction problem in a doubly-connected domain,
as depicted in Figure 20. An annular region has an outer radius and inner radius of 3 m and 1 m,
respectively. To evaluate the accuracy of the MSMM, we compare the computed results of the
method with those of the GFDM [34]. The two-dimensional object boundary is described by the
following equation:

Γ1 =
{
(x, y)

∣∣∣x = ρ1cosθ1, y = ρ1sinθ1
}
, ρ1 = 3 m (26)

Γ2 =
{
(x, y)

∣∣∣x = ρ2cosθ2, y = ρ2sinθ2
}
, ρ2 = 1 m (27)

where the radial coordinate is denoted by ρi and the angular coordinate is denoted by θi. The exact
solution is given by:

T = −
1
2

x + 2y +
1
4

(
x2
− y2

)
, (28)

Nq is the Trefftz order of the basis functions and is set as 15. For solving this example, as depicted
in Figure 20, the boundary data are imposed on the inner boundaries Γ3 and Γ7. Moreover, there
is no information on the outer boundaries Γ1 and Γ5. Figure 21 shows the collocation points on the
physical domain. The DDM [32] is adopted to solve this problem. At the interface, continuity in flux
and temperature must be achieved. We split the problem into two simply connected sub-domains,
as depicted in Figure 21. For each sub-domain, 300 collocation points are collocated on the domain
uniformly. The sub-domain Ω1 includes Γ1, Γ2, Γ3, and Γ4 and the sub-domain Ω2 includes Γ5, Γ6, Γ7,
and Γ8. At the interface, Γ2, Γ4, Γ6, and Γ8 should achieve continuity in temperature and flux conditions.
Therefore, the over-specified boundary conditions are given as follows:

T|Γ2 = T|Γ6 ,
∂T
∂n

∣∣∣∣∣
Γ2

=
∂T
∂n

∣∣∣∣∣
Γ6

, T|Γ4 = T|Γ8 ,
∂T
∂n

∣∣∣∣∣
Γ4

=
∂T
∂n

∣∣∣∣∣
Γ8

. (29)

To evaluate the stability of the MSMM, different noise levels of s = 0 and s = 3 are considered in
the numerical model. To examine the accuracy, we collocate 200 inner points to obtain the temperature
field in each sub-domain. The GFDM is also adopted to solve the same problem. The MAE by assigning
different levels of noise for example 5 is depicted in Table 3. It can be seen that the absolute error is
relatively small, and should be noted that the accuracy of the numerical solution decreases with the
increasing noise level. The computed results demonstrate that the accuracy of the proposed method
can reach to the order of 10−1 while s = 3 is considered. Moreover, the numerical results demonstrate
that the accuracy of the MSMM is superior to that of the GFDM, as depicted in Figure 22.
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Figure 20. Configuration of sub-boundaries.

Figure 21. Boundary and source points.

Table 3. The MAE by assigning different levels of noise for example 5.

Noise Level The GFDM This Study

s = 0 7.77× 10−12 2.79× 10−11

s = 3 5.08× 10−1 3.37× 10−1



Appl. Sci. 2019, 9, 2629 18 of 21

Figure 22. Comparison between the temperature fields of the proposed method and the generalized
finite difference method. (a,b) the computed results without the noise and the exact solution and
(c,d) the computed results with a noise level of s = 3 and the exact solution.

5. Discussion

Inverse problems are remarkably challenging because of their ill-posed phenomenon. Although
mesh-based numerical approaches combined with numerical techniques, such as the Tikhonov’s
regularization technique and the L-curve method, have been widely used to mitigate the ill-posed
phenomenon of inverse problems, shortcomings in terms of stability and accuracy still exist. In this
study, a newly developed MSMM that is capable of solving inverse heat conduction problems in
two dimensions is presented. To the best of the authors’ knowledge, the pioneering work using the
proposed MSMM to solve the inverse heat conduction problems has not been reported in previous
studies yet. The contributions and limitations of the proposed MSMM are discussed below.
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This study first adopts the MSMM to solve the inverse heat conduction problem. The MSMM
is a highly accurate numerical method because specific solutions are adopted. Non-singular basis
functions are derived from the general solutions of the governing equation and provide a highly
accurate numerical solution. The method is especially advantageous for solving inverse problems
because it can mitigate the ill-posed phenomenon and obtain results with higher accuracy. Moreover,
regularization techniques are not required for solving the inverse problems. The MSMM maintains
the same superiorities of the CTM, such as the boundary discretization only, and is advantageous for
solving inverse problems.

However, limitations still exist. For example, the MSMM approximates the solution using
many source points by the addition theorem, it can only be applied for linear governing equations.
Five examples are carried out in this study. Result comparisons with previous published data are also
conducted. The results from Examples 1–3 demonstrate that the MSMM may obtain better accuracy
than the MFS. In addition, the results from Examples 4 and 5 depict that the MSMM is more accurate
than the weighted RKCM and the GFDM. Finally, the results from all examples show that the proposed
method may recover the unknown data with very high accuracy.

6. Conclusions

In this study, we present a newly developed MSMM for solving the two-dimensional inverse
heat conduction problems. Several numerical examples are provided to validate the accuracy of the
method. To the best of the author’s knowledge, this may be the first study to adopt a new type of a
meshless method such as the MSMM to solve the inverse heat conduction problem. The conclusions
are summarized as follows.

1. The MSMM boasts the same advantages of the CTM such as using only boundary discretization
only and demonstrating efficacy for solving inverse problems. The proposed method does not
require mesh generation, numerical quadrature, or any regularization techniques for solving
inverse problems. Moreover, we successfully adopt the DDM for solving the inverse heat
conduction problem bounded by a doubly-connected domain.

2. Numerical examples are presented using the proposed method. The results are compared with
those of other meshless approaches, such as the MFS in conjunction with the ECSHA, the weighted
RKCM, and the GFDM. The comparison of results demonstrates that the proposed method is
superior to other meshless approaches, especially in terms of accuracy.

3. Finally, the results demonstrate that the proposed method may recover unknown data with
remarkably high accuracy, although the over-specified boundary data are assigned a portion that
is less than 1/10 of the overall domain boundary.
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