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Abstract: Dielectric electro-active polymer (DEAP) materials, also called artificial muscle, are a kind
of EAP smart materials with extraordinary strains up to 30% at a high driving voltage. However, the
asymmetric rate-dependent hysteresis is a barrier for trajectory tracking control of DEAP actuators.
To overcome the barrier, in this paper, a Hammerstein model is established for the asymmetric
rate-dependent hysteresis of a DEAP actuator first, in which a modified Prandtl-Ishlinskii (MPI)
model is used to represent the static hysteresis nonlinear part, and an autoregressive with exogenous
inputs (ARX) model is used to represent the linear dynamic part. Applying Levenberg-Marquardt
(LM) algorithm identifies the parameters of the Hammerstein model. Then, based on the MPI model,
an inverse hysteresis compensator is obtained to compensate the hysteresis behavior. Finally, a
compound controller consisting of the hysteresis compensator and a novel discrete-time terminal
sliding mode controller (DTSMC) without state observer is proposed to achieve the high-precision
trajectory tracking control. Stability analysis of the closed-loop system is verified by using Lyapunov
stability theorem. Experimental results based on a DEAP actuator show that the proposed controller
has better tracking control performance compared with a conventional discrete-time sliding mode
controller (DSMC).

Keywords: dielectric electro-active polymer actuator; modified Prandtl-Ishlinskii model;
autoregressive with exogenous inputs model; discrete-time terminal sliding mode controller

1. Introduction

Dielectric electro-active polymer (DEAP) materials are a promising actuation technology due to
the merits of lightweight, large strain, high energy density, low-noise, and fast response [1,2]. DEAP
materials, as a kind of soft electroactive material, are composed of a polymer film sandwiched between
two silver metal soft electrodes layers [3]. The working principle of DEAP materials is shown in
Figure 1. It can be simply divided into three steps [3]: (1) a large driving voltage is applied to the silver
metal soft electrodes layers to produce a high electric field; (2) the silver metal soft electrodes layers
can be regarded as a flat capacitor, a Maxwell stress will be produced by electrostatic forces; (3) the
polymer film is extruded under the Maxwell stress to result in actuation. Based on this basic working
principle, DEAP materials have been widely applied in high-precision trajectory tracking control as
actuators and achieved great potential for applications in bioinspired soft robots filed, including an arm
wrestling robot [4], a flying robot [5], and a swimming robot [6]. However, like other smart materials
such as shape memory alloys (SMA), piezoelectrics and magnetostrictives, the inherent asymmetric
rate-dependent hysteresis nonlinearity is ubiquitous in DEAP actuators [7], which causes tracking
inaccuracy, leads to a decrease in the performance of the closed-loop system, or may even result in
oscillations. Therefore, the asymmetric rate-dependent hysteresis modeling and tracking control of
such DEAP actuators have been important issues.
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Figure 1. The working principle of dielectric electro-active polymer (DEAP) materials. (a) Power cut:
Initial state of DEAP materials. (b) Power supply: Actuation direction of DEAP materials.

The asymmetric rate-dependent hysteresis models of the smart materials can be roughly classified
into three categories. The first category is physics-based hysteresis models. For instance, Ref. [8]
presented a dynamic Jiles–Atherton model to describe the asymmetric rate-dependent hysteresis
of giant magnetostrictive actuators (GMAs). The second category is phenomenological hysteresis
models. For example, Ref. [9] proposed an MPI model to characterize the asymmetric rate-dependent
hysteresis of dielectric elastomer actuators (DEAs), where dynamical envelope functions were used to
describe the rate-dependent hysteresis, and polynomial operators were introduced to characterize the
asymmetric . Ref. [10] proposed an MPI model to describe the asymmetric rate-dependent hysteresis
of magnetostrictive actuators, in which a rate-dependent PI model was utilized to describe the
rate-dependent hysteresis, and dead-zone operators were introduced to characterize the asymmetric.
The third category is the intelligent methods-based hysteresis models. Ref. [11] developed a nonlinear
ARX recurrent neural network hysteresis model to characterize the asymmetric rate-dependent
hysteresis of SMA actuators. Refs. [7,12] developed a Preisach-type dynamic nonlinear ARX fuzzy
hysteresis model to describe the asymmetric rate-dependent hysteresis of DEAP actuators. It should
be pointed out that the unmodeled hysteresis nonlinearity, residual dynamics, parameter uncertainties
and external disturbances will reduce the trajectory tracking accuracy. Therefore, it is necessary to
design a robust controller to deal with the nonlinear disturbances.

Various control strategies have been developed for trajectory tracking control of DEAP actuators
such as PID control [7,13], internal model control [14] and adaptive sliding mode control (SMC) [15].
Among those control strategies, SMC scheme has been widely used to control the hysteresis
nonlinearity systems, because SMC scheme can guarantee the global robustness of the systems, and
can simply and effectively cope with parameters variation and external disturbances [16]. However,
the conventional SMC scheme can only make the system states converge to the equilibrium point
asymptotically with infinite settling time. To overcome the shortcoming, terminal sliding mode
controller (TSMC) scheme was proposed [17], in which a nonlinear switching surface was employed
to achieve finite time convergence [18]. In the literature, Ref. [19] developed a TSMC scheme for
precision tracking control and finite time convergence of a piezoelectric-driven micropositioning
system. Ref. [20] proposed an adaptive-gain fast nonsingular TSMC scheme for a piezo positing
stage system which can quickly converge in finite time and reduce chattering. The aforementioned
SMC and TSMC schemes are all applied in continuous-time domain; however, with the wide use of
computers in control systems, the DSMC theory [21] has attracted considerable attention in recent
years [22–24]. It must be pointed out that the continuous-time SMC cannot directly convert into its
discrete counterpart through simple equivalence. DSMC and DTSMC schemes have been successfully
applied to other smart actuators. For instance, Ref. [25] proposed a novel DSMC scheme for precision
tracking control of a piezoelectric actuator. In addition, for making the system state converge to
the equilibrium point asymptotically within finite steps, Refs. [26,27] proposed DTSMC schemes
for precision tracking control of piezoelectric actuators, and the stability of the control systems and
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the effectiveness of the proposed control schemes were demonstrated through experimental studies.
However, to the knowledge of the author, DTSMC scheme has not been applied for precision trajectory
tracking of DEAP actuators in the literature.

This paper focuses on the asymmetric rate-dependent hysteresis modeling and trajectory tracking
control of a DEAP actuator under different input frequencies. A Hammerstein model with hysteresis
nonlinearity is established to describe the asymmetric rate-dependent hysteresis of the DEAP actuator.
To estimate the parameters of the model, LM algorithm [28,29] is utilized. Based on the MPI model, an
inverse hysteresis compensator is obtained to suppress the asymmetric hysteresis. In order to achieve
precision tracking control and robustness of the closed-loop system, a DTSMC with a new discrete-time
terminal sliding function is proposed. The main contributions of this paper are summarized as follows:

(1) A Hammerstein model with hysteresis nonlinearity is established to account the asymmetric
rate-dependent hysteresis of the DEAP actuator and the lumped nonlinear disturbance term is well
formulated. It provides with a detailed model for the closed-loop system.

(2) A DTSMC scheme based on a new discrete-time terminal sliding function is first proposed for
the DEAP actuator. The proposed control scheme not only improves the trajectory tracking control
accuracy and error convergence but also suppresses the chattering phenomenon. In addition, the
proposed control scheme does not require a state observer.

(3) Compared with other DTSMC schemes, a terminal-sliding-mode-type switching control
law is defined in the proposed DTSMC scheme, which improves the robustness feature of the
closed-loop system in the presence of unmodeled hysteresis nonlinearity, residual dynamics, parameter
uncertainties and external disturbances.

(4) Finite steps convergence and stability of the closed-loop system are theoretically verified and
an experimental investigation is conducted to validate the effectiveness of the proposed control scheme
to the DEAP actuator. Then, a comparison between the proposed control scheme and the DSMC
scheme is undertaken.

The remainder of the paper is organized as follows. In Section 2, the analytical formulation of
the Hammerstein model and the inverse MPI model are established first, and then the parameters
of the Hammerstein model are identified by LM algorithm. In Section 3, a compound controller is
proposed, and the system stability is proved. Experimental results of the proposed controller to the
DEAP actuator are presented in Section 4. Conclusions are given in Section 5.

2. Hammerstein Model for DEAP Actuator

In this section, in order to characterize asymmetric hysteresis loops of the DEAP actuator, a
Hammerstein model is established, as shown in Figure 2. It consists of two parts: nonlinear static
part and linear dynamic part. The nonlinear static part is represented by an MPI model to describe
the asymmetric hysteresis, and the linear dynamic part is represented by an ARX model to describe
the rate-dependent hysteresis. In the Figure 2, v(k) and y(k) represent the input and output of the
DEAP actuator, respectively, u(k) is the corresponding unmeasurable internal variable, and d0(k) is
the external disturbance.

MPI Model ARX Model

Figure 2. Hammerstein model for DEAP actuator.

2.1. MPI Model

In this subsection, an MPI model is established to characterize the asymmetric hysteresis of the
DEAP actuator. The MPI model is formulated as the cascade of the PI model and the dead-zone (DZ)
model [30], in which the PI model is a weighted superposition of play operators, and the DZ model is
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a weighted superposition of dead-zone operators. The play operator and the dead-zone operator are
shown in Figures 3 and 4, respectively.

Figure 3. The play operator.

Figure 4. The one side dead-zone operator.

The play operator is expressed as [31]

Prhi (k) = max
{

min
{

v(k) + rhi, Prhi (k− 1)
}

, v(k)− rhi
}

(1)

while the initial condition is defined as follows:

Prhi (0) = max
{

min
{

v(0) + rhi, Prhi0

}
, v(0)− rhi

}
(2)

The output of the PI model can be formulated as

W(k) = qv(k) + [ϑ1, ϑ2, . . . , ϑn] ·
[
Prh1(k), Prh2(k), . . . , Prhn(k)

]T

= qv(k) + ϑT ·Hrh [v(k), Prh0 ]
(3)

where q is a given positive constant; v and W represent the input and output of the PI model,
respectively; ϑ = [ϑ1, ϑ2, . . . , ϑn]T is the vector of weights; rh = [rh1, . . . , rhn]

T is the vector of thresholds
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with 0 < rh1 < . . . < rhn < +∞; Hrh denotes the vector of play operators; Prh0 = [Pr10, Pr20, . . . , Prn0] is
the vector of initial states; n is the number of play operators.

The formulation of the dead-zone operator is expressed as

Srd [W](k) =


max {W(k)− rd, 0} , rd > 0
W(k), rd = 0
min {W(k)− rd, 0} , rd < 0

(4)

The output of the DZ model can be formulated as

Z(k) = [θ0, θ1, θ2, . . . , θm] ·
[
Srd0 [W](k), Srd1 [W](k), Srd2 [W](k), . . . , Srdm [W](k)

]T

= θT · Srd [W(k)]
(5)

where W and Z denote the input and output of the DZ model, respectively; θ = [θ0, θ1, θ2, . . . , θm]T is
the vector of weights; rd = [rd0, rd1, rd2, . . . , rdn]

T is the vector of thresholds with 0 = rd0 < rd1 < . . . <
rdm < +∞; m is the number of dead-zone operators.

Substituting Equations (3) into (5), the mathematical formulation of the MPI model can be
derived as

u(k) = [θ0, θ1, θ2, . . . , θm] · [Srd0 [W](k), Srd1 [W](k), Srd2 [W](k), . . . , Srdm [W](k)]T

= θT · Srd

[
qv(k) + ϑT ·Hrh [v(k), Prh0 ]

]
(k)

(6)

The form of the inverse MPI model is the same as the MPI model. From Equation (6), the inverse
MPI model can be expressed as [31]

u−1[W](k) = q′v(k) + ϑ′TP′r′h

[
θ′T · S′r′d [W], P′r′h0

]
(k) (7)

where q′ is a positive constant; P′r′h
is the vector of inverse play operators; P′r′h0

is the intinal state;

ϑ′ = [ϑ′1, ϑ′2, . . . , ϑ′n]
T and r′h = [r′h1, r′h2, . . . , r′hn]

T denote the weighting vector and the threshold
vector of inverse play operators, respectively; S′r′d

is the vector of inverse dead-zone operators; θ′ =

[θ′0, θ′1, . . . , θ′m]
T and r′d = [r′d0, r′d1, . . . , r′dm]

T denote the weighting vector and the threshold vector of
inverse dead-zone operators, respectively.

Here 

q′ =
1
q

,

ϑ′i = −
ϑi

(q + ∑i
j=1 ϑj)(q + ∑i−1

j=1 ϑj)
, i = 1, 2, . . . , n

r′hi = qrhi +
i−1

∑
j=1

ϑj(rhi − rhj), i = 1, 2, . . . , n

P′r′i0
= (q +

i

∑
j=1

ϑjPri0) +
n

∑
j=i+1

ϑjPrj0 , i = 1, 2, . . . , n

(8)

and
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θ′0 =
1
θ0

,

θ′l = −
θl

(θ0 + ∑l
k=1 θk)(θ0 + ∑l−1

k=1 θk)
, l = 1, 2, . . . , m

r′dl =
l

∑
k=0

θk(rhl − rhk), l = 0, 1, 2, . . . , m

(9)

The parameters of the inverse MPI model can be obtained by using Equations (8) and (9).

2.2. ARX Model

In this subsection, a linear dynamic ARX model is established to characterize the rate-dependent
hysteresis of the DEAP actuator, which can be defined as

A(z)y(k) = B(z)u(k) + d0(k) (10)

where A(z) := 1 + a1z−1 + a2z−1 + . . . + ana z−na and B(z) := b1z−1 + b2z−1 + . . . + bnb z−nb are
polynomials in the unit backward shift operator z−1[z−1y(k) = y(k− 1)] with the known orders na

and nb; y(k) is the system output sequence; u(k) is the input of the ARX model and also the output of
the MPI model; d0(k) is the external disturbance.

Define the parameter vectors ζa := [a1, a2, . . . , ana ]
T ∈ <na , ζb := [b1, b2, . . . , bnb ]

T ∈ <nb and
ζ := [ζa, ζb]

T ∈ <na+nb . Define the information vectors ϕa := [−y(k − 1),−y(k − 2), . . . ,−y(k −
na)]T ∈ <na , ϕb := [u(k− 1), u(k− 2), . . . , u(k− nb)]

T ∈ <nb and φ := [ϕa, ϕb]
T ∈ <na+nb .

Equation (10) can be turned into

y(k) = −
na

∑
i=1

aiy(k− i) +
nb

∑
i=1

biu(k− i) + d0(k)

= ϕT
a ζa + ϕT

b ζb + d0(k)

= φTζ + d0(k)

(11)

2.3. Parameters Identification

The goal of this subsection is to obtain the parameters values of the MPI model and the ARX
model. Specific identification steps are as follows:

Step (1): The asymmetric hysteresis characterization of the DEAP actuator is modeled by using
the MPI model. A low frequency input signal v of 0.1 Hz is given to the DEAP actuator, and N pairs
of discrete input and output sequences (v, y) are measured. Then, based on the input data v and the
output data y, LM algorithm is employed to identify the MPI model parameters.

Step (2): After the MPI model is determined, a hybrid frequency input signal in range of 0.1
to 0.5 Hz is given to the DEAP actuator, and the discrete input and output sequences (v, y) are
measured. Based on the identified MPI model and v, the intermediate unmeasurable variable u can be
obtained. Then, based on the intermediate variable u and the output data y, the parameters of the ARX
model are identified by LM algorithm.

The accuracy of the identified model can be expressed by root-mean-square error (RMSE) and
mean absolute error (MAE), which are defined as follows:

RMSE =

√√√√ N

∑
i=1

(y(i)− ŷ(i))2 /N (12)

MAE =
1
N

N

∑
i=1

(|y(i)− ŷ(i)|) (13)
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where y(i) is the output of the DEAP actuator, ŷ(i) is the output of the Hammerstein model, and N
is the amount of experimental data. The identified parameters of the PI model, DZ model and ARX
model are given in Tables 1–3, respectively. Figure 5 shows the asymmetric rate-dependent hysteresis
loops of the DEAP actuator in the range of 0.1 to 0.5 Hz. It illustrates that the width of the hysteresis
loops will gradually increase with increasing frequency of the input signal [7,12].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Input voltage (V)

0

1

2

3

4

5

6

O
ut

pu
t d

is
pl

ac
em

en
t (

m
m

)

0.1Hz
0.2Hz
0.3Hz
0.4Hz
0.5Hz

Figure 5. The rate-dependent hysteresis loops of the DEAP actuator.

Table 1. The identified weighting vectors of the Prandtl-Ishlinskii (PI) model.

Index n 1 2 3 4 5 6 7 8

ϑn −1.3188 1.9548 −0.9392 0.8491 1.3619 0.3145 0.2648 0.2226
rhn 0.0007 0.0058 0.0196 0.0466 0.0909 0.1571 0.2495 0.3724

Index n 9 10 11 12 13 14 15

ϑn 0.0456 0.2584 1.5619 −0.2742 −0.3569 −0.3978 −0.4230
rhn 0.5303 0.7274 0.9682 1.2570 1.5982 1.9961 2.4551

Table 2. The identified weighting vectors of the dead-zone (DZ) model.

Index m 1 2 3 4 5 6 7 8

θm −17.5517 −15.7191 −7.8020 13.5245 58.4796 −30.1681 −0.9978 0.4027
rdm 0.0001 0.0013 0.0064 0.0201 0.0491 0.1019 0.1888 0.3220

Index m 9 10 11 12 13 14 15

θm −0.0577 0.1685 0.2633 0.1806 0.2844 0.2620 0.5739
rdm 0.5158 0.7862 1.1510 1.6302 2.2453 3.0201 3.9799

Table 3. The identified parameters of the autoregressive with exogenous inputs (ARX) model.

a1 a2 b1 b2

−1.9560 0.9545 −0.3095 0.3086

2.4. Model Validation

To validate the Hammerstein model for the DEAP actuator, input signals at a frequency of 0.1 Hz,
0.2 Hz, 0.3 Hz, 0.4 Hz, 0.5 Hz, and a hybrid frequency in range of 0.1 to 0.5 Hz are applied to the
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DEAP actuator, respectively. Figure 6 shows the input-output relationship between the Hammerstein
model and the DEAP actuator under different input frequencies. Table 4 shows the modeling errors.
It can be seen that the maximal RMSE and maximal MAE are 0.0271 mm and 0.0182 mm, respectively.
Therefore, the identified parameters of the Hammerstein model are correct, and the Hammerstein
model is effective in characterizing asymmetric rate-dependent hysteresis of the DEAP actuator.
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Figure 6. The hysteresis loops of the Hammerstein model under different frequencies. (a) 0.1 Hz.
(b) 0.2 Hz. (c) 0.3 Hz. (d) 0.4 Hz. (e) 0.5 Hz. (f) 0.1/0.2/0.3/0.4/0.5 Hz. Red dotted line: output of the
Hammerstein model. Blue solid line: output of the DEAP actuator.

Table 4. The modeling errors of the Hammerstein model under different frequencies.

Frequency/Hz 0.1 0.2 0.3 0.4 0.5 0.1/0.2/0.3/0.4/0.5

RMSE (mm) 0.0052 0.0098 0.0145 0.0190 0.0231 0.0271
MAE (mm) 0.0040 0.0076 0.0113 0.0149 0.0182 0.0083

3. Compound Controller Design

In this section, a compound controller is developed for the high-precision trajectory tracking
control of the DEAP actuator, as shown in Figure 7. It consists of a feedforward hysteresis compensator
and a feedback controller. The inverse MPI model is used to be the hysteresis compensator to offset
the hysteresis behavior. A novel DTSMC is proposed to be the feedback controller to improve
the trajectory tracking precision and maintain the system stability in the presence of unmodeled
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hysteresis nonlinearity, inverse compensation errors, residual dynamics, parameter uncertainties and
external disturbances.

Compound Controller

Discrete-Time 

Terminal 

Sliding Surface

Equivalent 

Control Law

Switching 

Control Law

MPI 

Hysteresis 

Compensator +

+

DTSMC 

ARX 

Model

MPI 

Model

Nonlinear 

Disturbance 

Term

d(k)

DEAP Actuator

+

-

+

Reference

Signal

Figure 7. The structure of the compound controller.

3.1. Design of the Novel DTSMC

In this subsection, the nonlinear disturbance term d(k) is considered, which describes the lumped
effect of unmodeled hysteresis nonlinearity, inverse compensation errors, residual dynamics, parameter
uncertainties and external disturbances. In order to design the proposed controller, Equation (11) is
rewritten as follows:

y(k) = −
na

∑
i=1

aiy(k− i) +
nb

∑
i=1

biu(k− i) + d(k) (14)

Assumption 1. The nonlinear disturbance term d(k) is assumed to be unknown but bounded, which can be
expressed as follows:

|d(k)| ≤ δ0 (15)

where δ0 is a known positive constant.

Assumption 2. The change rate of the nonlinear disturbance term d(k) is assumed to be unknown but bounded,
which can be expressed as follows:

|d(k)− d(k− 1)|
T

≤ δ (16)

where T is the sampling period, k ∈ N, and δ is a known positive constant.

As reported in [32], the nonlinear disturbance term d(k) possesses the following property.

Property 1. d(k) = O(T), d(k)− d(k− 1) = O(T2), and d(k)− 2d(k− 1) + d(k− 1) = O(T3).

In order to complete the controller design and its stability analysis, a controllable canonical
representation can be obtained according to the discrete-time plant model (14){

X(k + 1) = AX(k) + Ru(k) + BU(k) + D(k)
y(k) = CX(k)

(17)

in which
U(k) =

[
u(k− nb + 1), u(k− nb), · · · , u(k− 1)

]T ∈ <(nb−1)×1,

X(k) =
[
x(k− na + 1), · · · , x(k− 1), x(k)

]T ∈ <na×1,
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A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−ana −ana−1 · · · −a1

 ∈ <na×na , B =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

bnb bnb−1 · · · b2

 ∈ <na×(nb−1),

C = [0, · · · , 0, 1] ∈ <1×na , R = [0, · · · , 0, b1]
T ∈ <na×1, D(k) =

[
0, · · · , 0, d(k)

]T ∈ <na×1.

The control objective is to make the system output y(k) track a desired displacement in the
presence of the nonlinear disturbance D(k). To achieve this objective, a novel DTSMC is presented in
this subsection. First, the nonlinear disturbance D(k) is estimated. Then, the DTSMC is designed based
on a new discrete-time terminal sliding function and a terminal-sliding-model-type reaching law.

Remark 1. In order to obtain the nonlinear disturbance term D(k), the technique of perturbation estimation [33]
is employed under the Assumption 1, the nonlinear disturbance term is estimated by its one-step delayed value,
which can be expressed as

D̂(k) = D(k− 1) = X(k)−AX(k− 1)−Ru(k− 1)− BU(k− 1) (18)

The state-space model (17) can be rewritten as follows:{
X(k + 1) = AX(k) + Ru(k) + BU(k) + D̂(k)− D̃(k)
y(k) = CX(k)

(19)

where D̃(k) = D̂(k)−D(k) is the nonlinear disturbance estimation error, it can be further expressed as

D̃(k) = A
[
X(k)− X(k− 1)

]
+ R

[
u(k)− u(k− 1)

]
+ B

[
U(k)−U(k− 1)

]
−
[
X(k + 1)− X(k)

]
(20)

Define
e(k) = y(k)− y∗(k) (21)

as the trajectory tracking error of the DEAP actuator, where y∗(k) is the desired displacement, y(k)
is the actual displacement. Based on the trajectory tracking error, a discrete-time terminal sliding
function is proposed as

s(k) = κ1e(k) + κ2de(k− 1)cα (22)

where κ1 > 0 and κ2 > 0 are positive constants. The notation de(k− 1)cα , |e(k− 1)|αsgn(e(k− 1)), α

denotes a ratio of two odd integers p and q, where 0 < p < q. The design of 0 < α < 1 will produce a
steeper slope of the sliding surface when the system states are close to the origin, and it results in a
faster convergence speed [34].

In this work, the DTSMC is designed based on equivalent control, the following reaching law
is used

∆s(k) = s(k + 1)− s(k) = 0 (23)

The discrete-time terminal sliding function (22) can be deduced as follows:

s(k) = κ1e(k + 1) + κ2 de(k)cα (24)

s(k) = κ1
[
y(k + 1)− y∗(k + 1)

]
+ κ2 de(k)cα (25)
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s(k) = κ1
[
C(AX(k) + Ru(k) + BU(k) + D(k))− y∗(k + 1)

]
+ κ2 de(k)cα (26)

Based on the nominal model, the equivalent control input ueq(k) can be derived as follows:

ueq(k) = (CR)−1
[
y∗(k + 1) + κ−1

1 s(k)− κ−1
1 κ2de(k)cα −CAX(k)−CBU(k)−CD̂(k)

]
(27)

It must be pointed out that the equivalent control law ueq(k) is derived based on the assumptions
that the initial state is on the sliding surface and the estimation error D̃(k) = 0. However, in practice,
the above assumptions are almost non-existent. Therefore, in order to deal with the problem, defining
a terminal-sliding-model-type switching control law as

usw(k) = −(CR)−1
[
ξ1s(k) + ξ2ds(k)cβ

]
(28)

where ξ1 > 0, ξ2 > 0, ds(k)cβ , |s(k)|βsgn(s(k)) with 0 < β < 1.
Combining the equivalent control law (27) and the switching control law (28) can obtain the

overall control law

ud(k) = ueq(k) + usw(k) =(CR)−1
[
y∗(k + 1) + κ−1

1 s(k)− κ−1
1 κ2de(k)cα −CAX(k)

−CBU(k)−CD̂(k)− ξ1s(k)− ξ2ds(k)cβ
] (29)

Substituting Equations (29) into (21) yields

e(k + 1) = C
[
D(k)− D̂(k)

]
+ κ−1

1 s(k)− κ−1
1 κ2de(k)cα − ξ1s(k)− ξ2ds(k)cβ (30)

Based on the proposed overall control law (29), the expression of s(k + 1) becomes

s(k + 1) = κ1e(k + 1) + κ2de(k)cα

= s(k)− κ1ξ1s(k)− κ1ξ2ds(k)cβ + κ1C
[
D(k)− D̂(k)

] (31)

Remark 2. In order to alleviate the chattering phenomenon which may be induced by the sgn(·), we employ the
smoother saturation function sat(·) to replace the sgn(·)in this work,

sat(s(k)) =

{
sgn(s(k)), i f |s(k)| > σ

s(k)/σ, i f |s(k)| ≤ σ
(32)

where the parameter σ ensures the band width 2σ of the sliding mode function s(k). In practice, the trial-and-error
method is usually employed to obtain the parameter σ and make a compromise between the chattering phenomenon
and the tracking accuracy.

Remark 3. The switching control law usw(k) can drive the sliding mode dynamics into the DTSM domain
with the band width of 2σ and enhance the robustness feature in the presence of the estimation error D̃(k) and
other perturbations. In addition, D̃(k) and other perturbations can be tolerated by selecting suitable control
gains ξ1 and ξ2.

Remark 4. The proposed DTSM control law ud(k) can accelerate the convergence rate of tracking error by
adding the non-linear term de(k − 1)cα to the discrete-time terminal sliding function s(k). In addition, it
can be observed from Equation (29) that the designed DTSMC only needs the system output information
y(k)(i.e., y(k) = CX(k)), that is to say, the state observer is not needed.
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3.2. Stability Analysis

In order to analyze the stability of the closed-loop system with the proposed DTSMC, the following
assumption condition about the discrete-time terminal sliding surface is required.

Assumption 3. There is a positive constant ε such that |κ1Cδ| ≤ ε = O(T2) and k ∈ N.

During the stability analysis, the following proposition is needed.

Proposition 1. ε ≤ κ1ξ2Φβ ≤ Φ(1− κ1ξ1).

The proof of the proposition can be seen in the Appendix A.

Theorem 1. Considering the state-space model (17) along with the discrete-time terminal sliding surface (22)
and Assumption 3, if we employ the DTSM control law (29), the following sliding mode dynamics can
be guaranteed.

(1) The discrete-time sliding mode dynamics from any initial state will enter the region ∆ within K∗

steps, where

∆ =

{
s(k) : |s(k)| ≤ σ = ψ(β) ·max

{( ε

κ1ξ2

) 1
β ,
( κ1ξ2

1− κ1ξ1

) 1
1−β

}}
(33)

K∗ = bk∗c+ 1, k∗ =
s2(0)− σ2

µ2 , µ = κ1ξ1σ + [ψβ(β)− 1]ε,

ψ(β) = 1 + β
β

1−β − β
1

1−β , Φ = max
{( ε

κ1ξ2

) 1
β ,
( κ1ξ2

1− κ1ξ1

) 1
1−β

}
.

where the operator b·c gives the nearest integer that is less than or equal to the original value.
For any 0 < β < 1 and 0 ≤ Φ ≤ 1, the following relationships are met [35]:

1 < ψ(β) < 2, ψ(β)Φ− [ψ(β)Φ]β + ψ(β) ≥ 1 (34)

(2) Once the sliding mode dynamics enter the region ∆, it will never escape in the subsequent time.

Proof of Theorem 1. (1) Define a discrete-time Lyapunov function V(k) = s2(k), it can be obtained that

∆V(k) =V(k + 1)−V(k)

=s2(k + 1)− s2(k)

=− [s(k)− s(k + 1)][s(k) + s(k + 1)]

=−
[
κ1ξ1s(k) + κ1ξ2ds(k)cβ − κ1C

[
D(k)− D̂(k)

]]
×
[
2s(k)− κ1ξ1s(k)− κ1ξ2ds(k)cβ + κ1C

[
D(k)− D̂(k)

]]
(35)

In this work, we consider the following two cases if s(k) /∈ σ.
Case 1: Consider s(k) > σ = ψ(β) ·Φ > 0, we can obtain that

s(k)− s(k + 1) = κ1ξ1s(k) + κ1ξ2ds(k)cβ − κ1C
[
D(k)− D̂(k)

]
≥ κ1ξ1s(k) + κ1ξ2ψβ(β)Φβ − κ1C

[
D(k)− D̂(k)

] (36)

By Proposition 1 and Assumption 3 , Equation (36) can be deduced as

s(k)− s(k + 1) ≥ κ1ξ1s(k) + κ1ξ2ψβ(β)Φβ −
∣∣κ1C

[
D(k)− D̂(k)

]∣∣
≥ κ1ξ1σ +

[
ψβ(β)− 1

]
ε := µ

(37)
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Referring to s(k) > 0, the one-step forward sliding function s(k + 1) > 0, it can be obtained that

s(k) > κ1ξ1s(k) + κ1ξ2ds(k)cβ − κ1C
[
D(k)− D̂(k)

]
(38)

then

s(k) + s(k + 1) = 2s(k)− κ1ξ1s(k)− κ1ξ2ds(k)cβ + κ1C
[
D(k)− D̂(k)

]
≥ κ1ξ1s(k) + κ1ξ2ψβ(β)Φβ − κ1C

[
D(k)− D̂(k)

]
≥ µ

(39)

Based on the Equations (39) and (37) , Equation (35) can be further calculation as

∆V(k) =− [s(k)− s(k + 1)][s(k) + s(k + 1)]

=−
[
κ1ξ1s(k) + κ1ξ2ds(k)cβ − κ1C

[
D(k)− D̂(k)

]]
×
[
2s(k)− κ1ξ1s(k)− κ1ξ2ds(k)cβ + κ1C

[
D(k)− D̂(k)

]]
≤− µ2

(40)

Hence, if s(k) > 0, ∆V(k) ≤ −µ2 holds.
Case 2: Consider s(k) < −σ = −ψ(β) ·Φ < 0 with Assumption 3 and Proposition 1, the proof

procedure of ∆V(k) ≤ −µ2 is similar to that of the Case 1.
According to the analysis results of Case 1 and Case 2 when s(k) /∈ σ, it can be derived from

Equation (40) that s2(k) ≤ s2(0)− kµ2. We can directly solve s2(0)− kµ2 = σ2 to obtain the solution k∗

defined in Equation (33). Hence, existing K∗ = bk∗c+ 1 ∈ N results in |s(K∗)| ≤ σ.
(2) Next, we will divide two cases to prove that once s(k) ∈ ∆ the sliding mode state s(k + 1) ∈ ∆.

Define 0 ≤ ς ≤ 1, we can obtain |s(k)| = ςσ = ςψ(β)Φ.
By Equation (31), it can be obtained that

s(k + 1) = s(k)− κ1ξ1s(k)− κ1ξ2ds(k)cβ + κ1C
[
D(k)− D̂(k)

]
= (1− κ1ξ1)s(k)− κ1ξ2|s(k)|βsgn(s(k)) + κ1C

[
D(k)− D̂(k)

] (41)

Case 1: The proof of −σ ≤ s(k + 1) ≤ σ with s(k) ≥ 0.
When s(k) ≥ 0, Equation (41) becomes

s(k + 1) = (1− κ1ξ1)ςψ(β)Φ− κ1ξ2[ςψ(β)Φ]βsgn(ςψ(β)Φ) + κ1C
[
D(k)− D̂(k)

]
(42)

If 0 ≤ s(k) < 1, by Proposition 1 and Assumption 3, it can be derived from Equation (42) as

s(k + 1) ≤ (1− κ1ξ1)ςψ(β)Φ− [ςψ(β)]βε + ε

≤ (1− κ1ξ1)ςψ(β)Φ +
[
1− [ςψ(β)]β

]
(1− κ1ξ1)Φ

≤ (1− κ1ξ1)Φ
[
ςψ(β)− [ςψ(β)]β + 1

]
≤ (1− κ1ξ1)Φ

< ψ(β)Φ = σ

(43)

Otherwise, when s(k) ≥ 1, utilizing Proposition 1 and Assumption 3, Equation (42) can be
deduced as

s(k + 1) ≤ (1− κ1ξ1)ςψ(β)Φ +
[
1− [ςψ(β)]β

]
ε

≤ (1− κ1ξ1)ςψ(β)Φ

≤ ςψ(β)Φ ≤ σ

(44)

Next, the proof of −σ ≤ s(k + 1) with s(k) ≥ 0.
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Similarly, if 0 ≤ s(k) < 1 , by Proposition 1 and Assumption 3, it can be derived from
Equation (42) as

s(k + 1) ≥ (1− κ1ξ1)ςψ(β)Φ− κ1ξ2[ςψ(β)Φ]βsgn(ςψ(β)Φ)− ε

≥ (1− κ1ξ1)ςψ(β)Φ− κ1ξ2[ςψ(β)Φ]β − ε

≥ (1− κ1ξ1)Φ
[
ςψ(β)− [ςψ(β)]β − 1

]
≥ −(1− κ1ξ1)ψ(β)Φ ≥ −σ

(45)

Otherwise, when s(k) ≥ 1, utilizing Proposition 1 and Assumption 3, Equation (42) can be
deduced as

s(k + 1) ≥ (1− κ1ξ1)ςψ(β)Φ− κ1ξ2[ςψ(β)Φ]βsgn(ςψ(β)Φ)− ε

≥ (1− κ1ξ1)ςψ(β)Φ− κ1ξ2[ςψ(β)Φ]β − ε

≥ −ε ≥ −(1− κ1ξ1)Φ > −σ

(46)

Until now, we have proved that −σ ≤ s(k + 1) ≤ σ with s(k) ≥ 0.
Case 2: The proof of −σ ≤ s(k + 1) ≤ σ with s(k) < 0.
When s(k) < 0, Equation (41) becomes

s(k + 1) = −(1− κ1ξ1)ςψ(β)Φ + κ1ξ2[ςψ(β)Φ]βsgn(ςψ(β)Φ) + κ1C
[
D(k)− D̂(k)

]
(47)

If −1 < s(k) < 0, by Proposition 1 and Assumption 3, it can be derived from Equation (47) as

s(k + 1) ≤ −(1− κ1ξ1)ςψ(β)Φ + [ςψ(β)]β(1− κ1ξ1)Φ + ε

≤ −(1− κ1ξ1)ςψ(β)Φ + [ςψ(β)]β(1− κ1ξ1)Φ + (1− κ1ξ1)Φ

≤ (1− κ1ξ1)Φψ(β)

≤ ψ(β)Φ = σ

(48)

Otherwise, when s(k) ≤ −1, utilizing Proposition 1 and Assumption 3, Equation (47) can be
deduced as

s(k + 1) ≤ −(1− κ1ξ1)Φ
[
ςψ(β) + [ςψ(β)]β

]
+ ε

≤ ε ≤ (1− κ1ξ1)Φ ≤ ψ(β)Φ = σ
(49)

Next, the proof of −σ ≤ s(k + 1) with s(k) < 0.
Similarly, if −1 < s(k) < 0, by Proposition 1 and Assumption 3, it can be derived from

Equation (47) as

s(k + 1) ≥ −ςψ(β)Φ + κ1ξ1ςψ(β)Φ + κ1ξ2[ςψ(β)Φ]β − ε

≥ −ςψ(β)Φ + κ1ξ1ςψ(β)Φ + ε[ςψ(β)]β − ε

≥ −(1− κ1ξ1)ςψ(β)Φ +
[
[ςψ(β)]β − 1

]
ε

≥ −ε
[
ςψ(β)− [ςψ(β)]β + 1

]
≥ −(1− κ1ξ1)Φ > −σ

(50)

Otherwise, when s(k) ≤ −1, utilizing Proposition 1 and Assumption 3, Equation (47) can be
deduced as
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s(k + 1) ≥ −(1− κ1ξ1)Φ
[
ςψ(β)− [ςψ(β)]β + 1

]
≥ −(1− κ1ξ1)ψ(β)Φ

≥ −ψ(β)Φ = −σ

(51)

To this end, we have completed the proof of −σ ≤ s(k + 1) ≤ σ with s(k) ∈ ∆. That is to say, the
sliding mode state s(k) will enter the region ∆ within K∗ steps and stay in the DTSM domain thereafter
by using the proposed DTSM control law.

4. Experimental Results and Discussion

4.1. Experimental Setup

In order to verify the effectiveness of the proposed DTSMC, the controller is deployed on the DEAP
actuator for the high-precision trajectory tracking control. The block diagram and the experimental
platform of the DEAP actuator are shown in Figures 8 and 9, respectively. The actuator is manufactured
by Danfoss PolyPower A/S Inc. Because DEAP materials are flexible materials, the DEAP actuator
needs to be suspended vertically in the experimental platform to generate a certain pre-tension force.
Considering the real time executions and the simplicity of the controllers development, a personal
computer running Windows 10 operating system and Matlab 2017a software is employed. A high
resolution split LVDT displacement sensor is utilized to measure the output displacement of the DEAP
actuator. Considering the driving voltage of DEAP materials is 0–2500 V, a high voltage source S15-3P
is employed. For realizing the data interaction between MATLAB 2017a and the DEAP actuator, a
data acquisition card PCI-1710 is used. In this work, the sampling time T is set to 0.01 s, and a white
Gaussian noise is added to the controller as the external disturbance.

PCIE Data Bus

DEAP 

Actutator

S15-3P High-Voltage Power 

Supply

Control 

Signal

Displacement 

Signal
LVDT

 Sensor

PCI-1710 Data 

Acquisition Card
PC

Figure 8. Block diagram of the DEAP actuator.
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DEAP Actuator

LVDT 

Sensor

PCI-1710 

Data Acquisition Card

S15-3P 

High Voltage 

Power Supply

PCIE 

Data Bus

PC

DC Power 

Supply

Figure 9. Experimental platform of the DEAP actuator.

4.2. Experimental Results

In this subsection, the proposed DTSMC is tested for the high-precision trajectory tracking control
of the DEAP actuator. First, we select the optimal control parameters of the proposed controller. If α is
fixed, a lager κ2 can guarantee a better performance. In addition, if choosing β = 1/2 which implies
1/β = 1/(1− β) = 2 and σ = O(T2), we can obtain the smallest boundary of the final sliding mode
motion. Disturbances can be well suppressed with the increasing of ξ1 and ξ2; however, the chattering
phenomenon will be also increased in the control signal. Through trial and error, the selected optimal
control parameters are presented in Table 5.

This work employs the real experimental data to verify the effectiveness of the proposed controller.
For comparison, the conventional DSMC with the hysteresis compensator is employed. The control
parameters of the DSMC are the same as those of the proposed controller, which are presented in
Table 5.

During experimental studies, different frequencies’ input signals are generated by S15-3P and
applied to drive the DEAP actuator. The corresponding tracking results of the DEAP actuator are
shown in Figures 10–15.

The desired displacement has a frequency of 0.1 Hz, the tracking results of the DSMC and the
proposed DTSMC are depicted in Figure 10. The RMSE of the DSMC is 0.0565 mm, and the MAE is
0.0207 mm. In contrast, for the proposed DTSMC, the RMSE is 0.0536 mm, and the MAE is 0.0122 mm.
Compared with the DSMC, the proposed DTSMC reduces the RMSE and MAE by 5% and 41%.
In addition, from Figure 10c,d, one can see that the hysteresis phenomenon has been substantially
compensated by the DTSMC, and the DSMC can also basically compensate the hysteresis phenomenon
at a low frequency of 0.1 Hz.
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Figure 10. The tracking results under 0.1 Hz input signal. (a) Displacement output. (b) Tracking error.
(c) Desired displacement versus actual displacement of the DSMC. (d) Desired displacement versus
actual displacement of the DTSMC.

Table 5. The control parameters of different controllers.

Controller κ1 κ2 α ξ1 ξ2 β σ

DSMC 3.50 - 7/11 0.25 0.50 1/2 0.01
DTSMC 3.50 0.55 7/11 0.25 0.50 1/2 0.01

In Figure 11, the desired displacement has a frequency of 0.2 Hz. The RMSE of the DSMC is
0.0942 mm, and the MAE is 0.0504 mm. In contrast, for the proposed DTSMC, the RMSE is 0.0612 mm,
and the MAE is 0.0215 mm. Compared with the DSMC, the proposed DTSMC reduces the RMSE and
MAE by 35% and 57%. In addition, compared with the desired displacement of 0.1 Hz, the proposed
DTSMC increases the RMSE and MAE by 12% and 43%. However, the DSMC increases the RMSE and
MAE by 40% and 59%, which are all obviously larger than those of the proposed DTSMC. Furthermore,
from the Figures 12–14, it can be seen that the hysteresis compensations of the proposed DTSMC
gradually exceeds those of the DSMC with increasing frequency of the input signal. For more detail
trajectory tracking-error results, see the computational results in Table 6. In addition, the overshoots of
the DSMC at the turning points are significantly larger than those of the proposed DTSMC. Therefore,
it can be concluded that the proposed DTSMC can improve the tracking control accuracy of the DEAP
actuator with increasing frequency to 0.5 Hz.
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Figure 11. The tracking results under 0.2 Hz input signal. (a) Displacement output. (b) Tracking error.
(c) Desired displacement versus actual displacement of the DSMC. (d) Desired displacement versus
actual displacement of the DTSMC.
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Figure 12. The tracking results under 0.3 Hz input signal. (a) Displacement output. (b) Tracking error.
(c) Desired displacement versus actual displacement of the DSMC. (d) Desired displacement versus
actual displacement of the DTSMC.
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Figure 13. The tracking results under 0.4 Hz input signal. (a) Displacement output. (b) Tracking error.
(c) Desired displacement versus actual displacement of the DSMC. (d) Desired displacement versus
actual displacement of the DTSMC.
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Figure 14. The tracking results under 0.5 Hz input signal. (a) Displacement output. (b) Tracking error.
(c) Desired displacement versus actual displacement of the DSMC. (d) Desired displacement versus
actual displacement of the DTSMC.

In order to further demonstrate the effectiveness of the proposed DTSMC, a hybrid frequency
input signal in range of 0.1 to 0.5 Hz is used to be the desired displacement, the tracking results of the
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two controllers are shown in Figure 15. Table 6 gives the computational results of two indices. It can
be seen that the RMSE and MAE of the proposed DTSMC is 0.0500 mm and 0.0242 mm, respectively.
In contrast, the RMSE and MAE of the DSMC is 0.1536 mm and 0.0990 mm, respectively. As compared
with the DSMC, the proposed DTSMC considerably reduces the RMSE and MAE by 67% and 76%.
From Figure 15c,d, one can see that the hysteresis compensation of the proposed DTSMC is more
obvious than that of the DSMC. Therefore, the proposed DTSMC has better performance than the
DSMC in following a hybrid frequency input signal.
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Figure 15. The tracking results under the hybrid frequency input signal. (a) Displacement output.
(b) Tracking error. (c) Desired displacement versus actual displacement of the DSMC. (d) Desired
displacement versus actual displacement of the DTSMC.

Table 6. The tracking-error results of the DSMC and DTSMC controllers at different frequencies.

Frequency/Hz 0.1 0.2 0.3 0.4 0.5 0.1/0.2/0.3/0.4/0.5

RMSE (mm) DSMC 0.0565 0.0942 0.1054 0.1514 0.2226 0.1536
DTSMC 0.0536 0.0612 0.0750 0.0761 0.0847 0.0500

MAE (mm) DSMC 0.0207 0.0504 0.0788 0.1255 0.1834 0.0990
DTSMC 0.0122 0.0215 0.0314 0.0389 0.0456 0.0242

4.3. Discussion

In this paper, we propose a compound controller for the high-precision trajectory tracking control
of the DEAP actuator. It consists of a feedforward hysteresis compensator (i.e., the inverse MPI model)
and a feedback controller (i.e., the novel DTSMC). In order to achieve the high-precision trajectory
tracking control, the inverse MPI model is first applied to compensate the hysteresis of the DEAP
actuator, and then the proposed DTSMC is employed to overcome the estimation error D̃(k) and
other perturbations. From Figure 10 and Table 6, it can be seen that the DSMC and the proposed
DTSMC can achieve good tracking control when the input signal frequency is 0.1 Hz, that is to say, the
hysteresis characteristic is well compensated, and the estimation error D̃(k) and other perturbations
are well overcome. From Figures 11–15, and Table 6, one can see that, whether the input signal is a
high frequency or a hybrid frequency, the proposed DTSMC can always achieve excellent tracking
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control performances. In contrast, the tracking errors of the DSMC will be significantly increased with
increasing input signal frequency, and it has large overshoots at the turning points. To summarize, the
proposed DTSMC is effective for the high-precision trajectory tracking control of the DEAP actuator.
It provides faster error convergence, more precise trajectory tracking control, less chattering and
better robustness than the DSMC. However, it should be pointed out that the nonlinear disturbance
term upper bound and its change rate need to be known in the design process of the DTSMC, which
are difficult to achieve in practice. In future work, we will try to apply the adaptive technology to
completely compensate the uncertainty of unknown upper bound. Another possible research topic
of this work may be the design of an adaptive discrete-time terminal sliding mode control without
a inverse hysteresis compensator to simplify the design process of the controller and optimize the
controller performance.

5. Conclusions

The inherit asymmetric rate-dependent hysteresis characterization in the DEAP actuator is
a barrier to achieving high-precision trajectory tracking control. In this paper, we establish a
Hammerstein model to characterize the asymmetric rate-dependent hysteresis and employ LM
algorithm to identify the parameters of the MPI model and the ARX model. In order to suppress the
asymmetric hysteresis behavior, the inverse MPI model is used to be the hysteresis feedforward
compensator. Furthermore, to overcome the challenge of the estimation error D̃(k) and other
perturbations, based on the hysteresis feedforward compensator, a novel DTSMC is proposed for
the high-precision tracking control of the DEAP actuator, and the system stability is analyzed.
A conventional DSMC with the hysteresis compensator is implemented for comparison.

The above two control schemes are tested under different frequencies’ input signals, including
0.1 Hz, 0.2 Hz, 0.3 Hz, 0.4 Hz, 0.5 Hz and a hybrid frequency. Noting that, in the DSMC and DTSMC
schemes, the switching control may make the chattering occur. To eliminate the chattering, we employ
the smoother saturation function to replace the signum function in this work. When the input signal
frequency is increased, or the input signal is a hybrid frequency, compared with the DSMC with
hysteresis compensator, experimental results show that the proposed DTSMC with the hysteresis
compensator can improve the tracking accuracy, robustness, and error convergence of the DEAP
actuator. The hysteresis compensation effect of the proposed control scheme is significantly higher
than that of the DSMC scheme.
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Appendix A

The proof of the Proposition 1:

If σ = ψ(β)
(

ε
κ1ξ2

) 1
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(
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) 1
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) 1
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Hence, based on the above formulas, we can obtain that ε ≤ κ1ξ2Φβ ≤ Φ(1− κ1ξ1).
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