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Abstract: This paper proposes a robust strategy to select the load identification features, which is
based on particle resampling to promote the performance for the successive load identification. Firstly,
the sliding window incorporated with the bilateral cumulative sum control chart (CUSUM) method is
utilized to obtain the load event. Then, the minimum inner-class variance, using the time-serial data,
is introduced to judge the happened time as precise as possible, thus marking the changing point
of the state of load for the following feature extraction. Due to the fluctuating data of current and
voltage sampled by the monitoring device, the particle resampling method, containing the importance
principle, is applied to find the steady and effectiveness point, ensuring that the obtained features
have the desired fit with its actual features. The fitness measurement is then carried out by using
the 2-D fuzzy theory. Finally, the proposed method was tested on the real household measurements
in the labs. The result demonstrates an improvement in obtaining the desired load features when
applied to the real household for the following load identification.
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1. Introduction

Recently, non-intrusive load monitoring (NILM) has gained major attention in the research field
of smart grid [1], which aims to separate household energy consumption data collected from a single
point of measurement into appliance-level consumption data. Since this technology was invented by
George W. Hart et al. [2] in the early 1980s, non-intrusive load monitoring has been considered as a
low-cost alternative to attaching individual monitors on each appliance, in contrast to the intrusive
load monitoring method. In addition, it can provide information, such as energy usage, the state of the
device, and so on. Up to now, the technology of NILM is becoming the state-of-the-art in the field of
smart grid, which is built on signal processing, pattern recognition, and such deep learning algorithms
for recognizing the power consumed in a household.

In general, the existing NILM methods can be divided into two main categories: event-based and
non-event based [3]. The event-based approaches attempt to detect the changes of the state according
to the significant change in power and then the features are obtained according to the changes in states.
The recognition of appliances is then carried out by using a method, like the matching method and
the clustering method, which is modeled by the real appliance recorded in the database. Non-event
based NILM approaches are related to the machine learning from the big data collected by the single
appliance or mixture of appliances during their working. However, the fundamental principle of load
identification is dependent on the extraction of a stable and reliable load feature.

Load feature, also named load signature, is often represented during the appliance’s work,
including the start, running, and the stop state. Generally speaking, the feature of the start state
and the stop state is the most remarkable during the extraction of the load feature. In the literature,
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the feature extraction stage can judge the algorithm type of the appliance, such as the transient
state features-based algorithms and the steady state features-based algorithms [4–6]. Chang and
Lian [7] adopted the wavelet transform coefficients (WTCs) to get the turn-on/off transient signal
identification of load events. Similarly, a multi-resolution S-transform-based transient feature extraction
scheme was proposed and presented in [8]. However, transient state features were obtained only if
the sampling frequency exceeded 1000 Hz [9]. Taking into account the implementation, the steady
state features-based algorithms seem to be more economical than the transient state features-based
algorithms. Dinesh and Perera proposed a feature extraction method in [10] by using a modified mean
shift algorithm at a low sampling rate. In [11], Leen’s team shared a modified version of the chi-square
goodness-of-fit test for event detection and getting the load features. Moreover, there are also many
other methods based on stable load characteristics [12].

Those works above, however, almost all focused on the local information of the load during
its turning on or off. The features extracted by the existing methods might not reach satisfactory
predictive performance for load identification. Hence, in this paper, a particle resampling algorithm is
proposed to select the desired load identification features, and then using the fuzzy theory, the method
is tested with real data. The results showed that the proposed method that employed the steady state
of load signatures, such as active power and reactive power, can identify the load accurately during
load disaggregation.

The rest of the paper is organized as follows: Section 2 provides the proposed method, Section 3
describes the NILM platform in this work and the experimental results, and, finally, Section 4 concludes
the paper.

2. Materials and Methods

This section mainly describes the materials and methods used for selecting the desired features
and their evaluation. Generally speaking, the load identification method structure mainly consisted
of the following three parts: (1) event detection, (2) feature extraction, and (3) fuzzy evaluation and
identification. In this work, we mainly focused on feature extraction, and the whole framework is
illustrated in Figure 1. In the event detection, the bilateral cumulative cum control chart (CUSUM)
algorithm, combined with minimum inner-class variance rule method, was used to ensure that the
load events and the change points were detected accurately. According to these change points,
the resampling method was introduced to avoid the influence by the fluctuations of the voltage and
current. Besides, the extracted features were validated by using the fuzzy evaluation, and, thus, can be
applied to load identification. And then, the work is described as follows.
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Figure 1. The method structure.
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2.1. Event Detection Algorithm

Load event, which is defined as changes in load characteristics caused by switching on/off or state
changes of individual devices [13], is the first and significant step in the load identification. In practical
applications, the reliability and accuracy of event detection could be affected by the unpredicted
switching and the interference of voltage and current fluctuations. In this paper, a non-parametric
cumulative sum control chart (CUSUM) event detection algorithm was used for load detection.
This method accumulates the sample data as well as the small deviation of the process. Since the
accumulated value is significantly higher, a load event occurs. In addition, the method can be extended
to the algorithm bilateral CUSUM due to the fact that the load events about turning on and turning off

usually happened in pairs.
Let the time series of extracting load data be X = {x (k)}, k = 1, 2, . . . The statistic function in

nonparametric bilateral CUSUM algorithm is defined as:
f+0 = 0
f+k = max

(
0, f+k−1 + xk − (µ0 + θ)

)
f−0 = 0
f−k = max

(
0, f+k−1 − xk + (µ0 − θ)

) , (1)

where µ0 is the average value before the occurrence of the load event, θ is random noise introduced
from outside, and fk+ and fk− are the random variable with 0 being the mean (i.e., random fluctuations
around zero). When the load is turning on, xk will increase and fk+ will have an increasing trend.
On the contrary, the load when turned off will make fk− decrease. So the load event can be detected
when the change exceeds the threshold h. Usually, the threshold h is set according to the lowest power
value of the load.

To make the Equation (1) more understandable, Figure 2 gives a detailed description of the
CUSUM. The load is a continuous change on the time axis, i.e., the mean µ0 in the Equation (1) is
changed with time. The sliding window model was then constructed to constrain the accumulated sum
to ensure the load event was acquired accurately. So the W1 window and W2 window were modeled in
this paper. The W1 window was used to calculate the mean value µ0 of the sampling sequence. The W2
window was considered as the basis for judging whether a load event has occurred. From Equation (1),
the value of fk+ in window W2 gradually accumulates when the value of xi increases. So when fk+

exceeds a certain threshold h, the load occurs. On the contrary, the value of fk+ in window W2 fluctuates
within a small range if no load event is detected. In this case, the W1 and W2 windows slide to the new
sampling point and continue to detect.
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Figure 2. Two-sided cumulative sum control chart (CUSUM) algorithm sliding window model. 
Figure 2. Two-sided cumulative sum control chart (CUSUM) algorithm sliding window model.



Appl. Sci. 2019, 9, 2622 4 of 16

Considering that the threshold h is a global parameter, it is usually determined by the minimum load
characteristic value. Therefore, to reduce the influence of the manually set threshold h, the minimum
inner-class variance rule can be taken as the change point detection method. In the load event detection
window, the active power data samples are classified into two categories: class C0 {x1, x2, . . . , xk} and
class C1 {xk+1, xk+2, . . . , xV}, where V is the sample length in the window, let:

m(C0) =
1
k

k∑
i=1

xi and (2)

m(C1) =
1

V − k

V∑
i=k+1

xi. (3)

When the objective function

min
k

k∑
i=1

(xi−m(C0))
2 +

V∑
i=k+1

(xi −m(C1))
2, (4)

reaches the minimum and |m(C1) − m(C0)| is greater than the set active power change value, the time of
the change point could be found.

2.2. Identification Feature Extraction and Resampling

Since the change point was found by the above method, the feature of the load could be obtained by
using the load characteristics of the changes [14]. Usually, the load event is determined based on physical
changes in current, voltage, and other power information. Therefore, the load characteristics of these
changes can be considered as the characteristics of the switching of the electrical device. For example,
Figure 3 illustrates three types of load, named resistive load, capacitive load, and inductive load, which
have different current phases for their capacitive reactance and opposite impedance performances.
We can figure out the active power P by the voltage U, current I, and their phase difference ϕ that:

P = UIcosϕ. (5)

Similarly, the reactive power Q can be described as:

Q = UIsinϕ. (6)

Active power and reactive power can be calculated by Equations (5) and (6), and they can
distinguish between the different types of loads according to their values. Moreover, active power and
reactive power can be captured by low-frequency meters. In this paper, active power P and reactive
power Q were adopted as the features.
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In order to clearly illustrate the extraction of the load features, including the active and reactive
characteristics, let P(t) denote the active power variation with time t for an example. Usually, it is
statistically stable. However, once the load changes the status, the P(t) may undergo large changes at
that time. So, the difference of P can represent the change of the status of the device, thus the value of
P(t) can be disaggregated. Here, we denote the ∆P = P(t + ∆t) − P(t) as the difference of P, and the P(t)
satisfies the condition as follows:

min

∣∣∣∣∣∣P(t) − m∑
i=1

ai(t)Pi

∣∣∣∣∣∣
min
∆t=T

∣∣∣∣∣∣P(t + ∆t) −
m∑

i=1
ai(t + ∆t)Pi

∣∣∣∣∣∣
, (7)

where P(t) is the active power at time t; m is the total number of load in the database; ai is the mark of
the state of load, where ai = 1 indicates the running state and ai = 0 means turned off; and T is the
time interval.

Similarly, the reactive characteristic (or called the difference of Q) ∆Q = Q(t + ∆t) − Q(t) at time t
satisfies the condition as follows:

min

∣∣∣∣∣∣Q(t) −
m∑

i=1
ai(t)Qi

∣∣∣∣∣∣
min
∆t=T

∣∣∣∣∣∣Q(t + ∆t) −
m∑

i=1
ai(t + ∆t)Qi

∣∣∣∣∣∣
. (8)

From Equations (7) and (8), it can be observed that the extraction of load characteristics from
power load switching is related to the time of change point, i.e., the time interval T.

Although the change point is found according to the rules of the minimum inner-class variance,
the voltage and current fluctuations make it difficult to determine this time interval T. Usually, the
different time T can obtain the different P and Q features. In some papers [15–17], the time T is selected
as the point after the change point. For some situations, the changes in P and Q may mismatch the
load during load identification. So, in this paper, the importance resampling method was proposed to
avoid the uncertainty of time interval T and the influence of power load information fluctuation.

The resampling algorithm is often used to solve the sequential importance sampling algorithm [18].
At present, there are many kinds of resampling algorithms [19,20]. In this paper, the importance
resampling algorithm is adopted.

To further explain, Figure 4 describes the process of resampling. It can be seen that this method
regards the characteristics at each time as a particle and resamples the importance of each particle
according to the distribution of particles before and after the change point. The specific process is
as follows:

Step 0: Assuming that the load is put into operation, the change point time t is obtained. Let k = 0,
which randomly gets N particles after the current time t and before the next change point, and initializes
each particle xi with equal weight ω̃k(xi), i = 1, . . . , N.

Step 1: Importance sampling is used to distribute the weight of each particle. For each particle
i = 1, . . . , N, estimate the weight of importance ωk according to the degree of center deviation:

ωk(xi) = 1/
∑
y∈Ω

‖xi − y‖2 , (9)

where Ω is the particle set. And we normalize Ω to get new weight ω̃k(xi).
Step 2: We discard those particles with smaller weights and substitute sampling near the particles

with larger weights.
Step 3: Set k→ k + 1 and repeat the process of Step 1 and Step 2 to minimize the variation of

variance in particle set Ω.
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Step 4: We differentiate the current load characteristics in the particle set from the previously
recorded load characteristics to extract the load variation characteristics.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 
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2.3. Fuzzy Evaluation Method

It is necessary to propose an evaluation method based on fuzzy membership after the identification
features obtained by using the resampling method. The concept of the fuzzy set was first introduced
in [21]. Fuzzy theory is a kind of transaction that copes with the concept of uncertainty through
membership degree [22]. So, it can evaluate the relationship between load identification features and
real load characteristics in the database. Considering the use of P and Q features as identification
features, the 2-dimension fuzzy set are used in this paper.

Suppose that there are n loads, A1, A2, A3, . . . , An, with two evaluation factors, active power
(f 1) and reactive power (f 2). Consider m linguistic hedges Ψ. Note that it is possible to consider
an objective application between the finite chain L and the ordinal scale Ψ, which keeps the order.
Thus, each normal convex fuzzy subset defined on the ordinal scale Ψ can be considered as a discrete
fuzzy number with the support L, L = {1, 2, . . . , m}. Then the following data can be set for the load
Ai (i = 1, 2, . . . , n):

Ai =

(
Ai1
Ai2

)
=

(
xi11 xi12 · · · xi1m
xi21 xi22 · · · xi2m

)
, (10)

where Ai1 and Ai2 are two discrete fuzzy numbers of the metric feature, m is the evaluation coefficient
level, and xijk is the evaluation factor of the object Ai (i = 1, 2, . . . , n).

Then, the mean value can be worked out as µ(Ai j) =
m∑

k=1
xi jk · k/

m∑
k=1

xi jk . Let elements in K be

the number (or numbers) that is (or are) closest to the mean value µ(Aij) in L = {1, 2, . . . , m}, i.e.,

K =
{
k ∈ L :

∣∣∣k− µ(Ai j)
∣∣∣ ≤ 0.5

}
. It is obvious that the number of the elements of K can only be one or

two. Then the following method can be given to construct one-dimensional discrete fuzzy number
uAi j : R→ [0, 1] for any i = 1, 2, . . . , n and any j = 1, 2.

As K only has one element (denoted by k0), uAi j can be defined as:

uAi j(x) =


1−

1−uAij

(
li j

)
k0−li j

(k0 − x), x ∈
[
li j, k0

]
∩ L

1 +
1−uAij (li j)

k0−li j
(x− k0), x ∈

(
k0, li j

]
∩ L

0 otherwise

. (11)
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As K has two elements (denoted by k0 and k0 + 1), uAi j can be defined as:

uAi j(x) =



1−
1−uAij

(
li j

)
k0−li j

(k0 − x), x ∈
[
li j, k0

]
∩ L

1, x = k0, k0 + 1

1 +
1−uAij (li j)

k0+1−li j
(x− k0 − 1), x ∈

(
k0 + 1, li j

]
∩ L

0, otherwise

, (12)

where li j = min
{
k
∣∣∣∣xi jk , 0, k = 1, 2, · · ·m

}
, li j = max

{
k
∣∣∣∣xi jk , 0, k = 1, 2, · · ·m

}
, uAi j(li j) = xi jli j /

m∑
k=1

xi jk ,

uAi j(li j) = xi jli j
/

m∑
k=1

xi jk , and i = 1, 2, . . . , n, j = 1, 2. We stipulate that
(
1− uAi j

(
li j

))
/
(
k0 − li j

)
= 0 as

k0 = li j,
(
1− uAi j(li j)

)
/
(
k0 − li j

)
= 0 as k0 = li j, and

(
1− uAi j(li j)

)
/
(
k0 + 1− li j

)
= 0 as k0 = li j − 1 in

Equations (10) and (11).
Then, we can construct the two-dimensional unite discrete fuzzy number uAi j of uAi j and uAi j to

express device Ai according to uAi(X) = uAi(x1, x2) = min
{
uAi1(x1), uAi2(x2)

}
for any X = (x1, x2) ∈ R2

(i = 1, 2, . . . , n). Next, the centroid can be calculated based on the resulting matrix:

C = (c1, c2) =
m∑

i=1

u(Xi)Xi/
m∑

i=1

u(Xi) . (13)

In order to obtain the final evaluation value, it is necessary to combine the ratios of the two criteria
of the centroid p = (p1, p2), where p1 and p2 describe the importance of the features of the centroid
counterpart. Considering that the combination of the centroid and weight is more conducive to the
comprehensive evaluation of the possibility of the category, the metric can be established as follows:

v = p1c1 + p2c2. (14)

Finally, through comparing the v values of different objects, the actual object, which has the
highest evaluation value, is found. Therefore, if the obtained load identification features had the largest
evaluation value, the actual object was determined.

3. Experiments and Results

This section describes the experimental procedure and discusses the obtained results for
demonstrating the efficiency of our method. Electrical characteristics, such as current and voltage,
of the home were obtained through the monitoring device that was installed at the power inlet of the
experimental resident user.

3.1. Laboratory Validation

The experiments used five devices, including a rice cooker, microwave oven, induction cooker, air
conditioner, and kettle. Firstly, the individual device underwent the state of turning on and turning
off several times, as seen in Figure 5 for an example. Then, the active power and reactive power
were obtained through data statistical analysis, as shown in Table 1. Finally, these load features were
recorded in the MySQL database. Meanwhile, the threshold was h = 350, the minimum change load
active power was 100 watts, and the event detection window length was 20 sample points for the load
event detection in this example.
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Table 1. Household load power information. P: the active power; Q: the reactive power.

Devices P/W Q/Var Mean of P/W Mean of Q/Var

Induction cooker 1556.8–1622.1 54.5–63.5 1586.1 54.8
Kettle 1397.6–1429.4 −20.4–−2 1405.2 −8.6

Rice cooker 584.3–600.3 −8.5–1.9 594.6 −2.8
Air conditioner 435.9–516.9 −192.8–−145.1 467.3 −173.3

Microwave oven 1170.5–1223.6 −272.9–−196.2 1207.9 −221.6
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Figure 5. Active and reactive power diagrams of different devices: (a) induction cooker, (b) kettle,
(c) rice cooker, (d) air conditioner, and (e) microwave oven.

Figure 6 shows the above load during its state of turning on and/or turning off in the actual test.
The order sequence is air conditioner on, induction cooker on, kettle on, microwave oven on, rice cooker
on, then kettle off, induction cooker off, microwave oven off, rice cooker off, and air conditioner off,
respectively, as shown in Table 2. Table 3 shows the timing of the change point obtained by the original
CUSUM load event detection [23]. It can be seen that there was a certain multi-detection phenomenon
due to the increase slowly of active power after turning on the air conditioner. Nevertheless, our
method could detect this type of load and could get better result accuracy, as shown in Table 4. So the
resulting change points is approximated by the real-time change points.
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Table 2. The description of the load event for the test.

Order Sequence Event Description

A Air conditioner on
B Induction cooker on
C Kettle on
D Microwave oven on
E Rice cooker on
F Kettle off
G Induction cooker off
H Microwave oven off
I Rice cooker off
J Air conditioner off

Table 3. Load event change point obtained by the original CUSUM method.

Devices On Change Points Devices Off Change Points

Air conditioner 93, 98, 105 Air conditioner 773, 778
Induction cooker 178 Induction cooker 552

Kettle 248, 253 Kettle 402, 409
Microwave oven 308, 313 Microwave oven 608

Rice cooker 333, 343, 353, 362 Rice cooker 647

Further, Table 4 shows the difference of P and Q in the case of the time interval T = 1, using the
change point detected by our method. It was found that the obtained load identification features had
a certain distance from the corresponding actual load characteristic information shown in Table 1.
In particular, the active power with slow increases, such as the air conditioner, greatly differed from the
actual characteristic values, which may fail to identify the load. In addition, these loads have different
load characteristics between on and off, such as electric kettles and induction cookers. In this paper,
the particle resampling algorithm was used to extract features. By retaining the particles with larger
weights, some off-center particles were discarded and the best load characteristics could then be found.
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Table 4. Differences on the load switching point.

Devices State Change Point Difference of P/W Difference of Q/var

Air conditioner
on 103 26.1 −8.4
off 774 −500.07 146.66

Induction cooker
on 178 1562 51.2
off 552 −1635 −86.51

Kettle
on 250 1566 −14.1
off 406 −1211 18.5

Microwave oven
on 310 755 −291.86
off 608 −1279 66.9

Rice cooker
on 362 523 −2.7
off 647 −614.6 16.43

Taking the air conditioning load switching on and off as an example, Figure 7 shows the whole
process of particle resampling. It can be seen that, in Figure 7a,b, there are a few particles far away
from the center point obtained by the whole particles and that the distribution is not uniform. So, these
particles can be replaced by the resampling method, as seen in Figure 7c,d. These particles almost
converge to a state after resampling. In order to describe the state clearly, Table 5 illustrates the
fluctuation range of active power and reactive power. After resampling, the fluctuation range is lower
than before resampling. So, the load feature can be obtained properly. Here, we used the difference of
the center of resampling particles after the device was switched on and the center of the resampling
particles before the device was switched on as the load feature. Finally, the obtained active power was
462.17 W and the reactive power was −150.55 Var. Referring to Table 1, it can be found that the value
of the obtained active power and reactive power was in the range of air conditioning, rather than the
range of other devices. So we can easily identify this device.
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Figure 7. Cont.
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Figure 7. Air-conditioning resampling process: (a) particles before resampling (before change point);
(b) particles before resampling (after change point); (c) particles after one resampling (before change
point); (d) particles after one resampling (after change point); (e) particles after resampling (before
change point); and (f) particles after resampling (after change point).

Table 5. Air conditioning load switching and resampling results.

Scenes Before Device
Turning on P/W

After Device
Turning on P/W

Before Device
Turning on Q/Var

After Device
Turning on Q/Var

Before resampling 48.1–68.9 374.3–558.3 147.1–247.6 76.5–141.2
After one resampling 52.8–68.9 505.1–558.3 227.8–247.6 76.5–109.2

After resampling 60.5–71.6 513.8–540.5 226.5–246.0 80.7–89.8

In addition, Table 6 shows the obtained P and Q features using our method. It can be seen that the
value of P and Q had a better correlation with the load features in Table 1. Notably, the obtained value
did not change the sign if the status of the load was turning off.

Table 6. Load characteristic information after resampling.

Turn on P/W Q/Var Turn off P/W Q/Var

Event A 461.2 −150.6 Event F −1325.5 −29.8
Event B 1622.2 46.7 Event G −1568.6 −54.92
Event C 1410.0 −25.3 Event H −1242.2 119.9
Event D 975.4 −283.6 Event I −609.6 1.3
Event E 687.7 33.5 Event J −556.0 156.77



Appl. Sci. 2019, 9, 2622 12 of 16

In order to verify the effectiveness of the above-obtained features, here, an induction cooker,
a kettle, an air conditioner, a rice cooker, and a microwave oven are represented by A1, A2, A3, A4,
and A5. In addition, nine levels of fuzzy language are used for active and reactive features:

Ψ= {EB, VB, B, MB, F, MG, G, VG, EG}, (15)

respectively, denoted as extremely bad, very bad, bad, more or less bad, fair, more or less good, good,
very good, and extremely good, and they are linked to the finite chain L = {1, 2, . . . , 9}. According to
the previous two-dimensional fuzzy membership evaluation method, the results of the final evaluation
are shown in Table 7. It is not difficult to see that the load characteristics obtained after the load event
detection could basically match the actual switched electrical equipment.

Table 7. The value of 2-D fuzzy membership about each event.

Event Induction Cooker Kettle Rice Cooker Air Conditioner Microwave Oven

A 3 4 6 8.69 4.43
B 8.17 6.06 3.78 3.01 4.30
C 5.48 8.24 5.50 4 5.5
D 5 5.5 5.22 5.5 7.57
E 5.70 4.64 6.92 4.85 3.5
F 5.57 7.46 5.42 4.13 5.63
G 8.72 6.02 3.59 3 4.10
H 4.89 6.5 4.5 5.34 7
I 4.18 6.16 8.95 5.82 3.68
J 3.5 4 6.54 8.25 5

3.2. Validated on REDD

The reference energy disaggregation dataset (REDD) is a freely available data presented by
J. Z. Kolter and M. Johnson [24]. The REDD contains detailed power usage information from several
homes, which provides circuit-level data, rather than plug-level data. Here, we used it for demonstrating
the performance of the event detection and feature extraction.

3.2.1. Event Detection

This part presents the performance of the proposed bilateral CUSUM event detection method and
makes a comparison with the original CUSUM method over the REDD. In this work, the confusion
matrix-based metrics are taken as the evaluation metric [25]. So, the detection events were divided
into four categories: true positive (TP), true negative (TN), false positive (PF), and false negative (FN).
Only TP, FP, and FN are considered in event detection performance evaluation because TN is usually
infinite. On the basis of the confusion matrix, the evaluation can be carried out by using the following
measurements, as seen in Table 8.

Table 8. The measurements to evaluate event detection.

Symbols Math Equation Description

TPR TPR = TP
TP+FN ∈ [0, 1]

True positive rate: This is the ratio that is correctly judged to be
positive in all samples that are actually positive.

FPR FPR = FP
FP+TN ∈ [0, 1]

False positive rate: The ratio that is erroneously judged to be positive
in all samples that are actually negative.

Acc Acc = TP+TN
TP+TN+FP+FN

Accuracy: The ratio of the number of correct decisions to the total
output of the system is used to measure the frequency of correct

decisions made by the system.

Score Score = TP
TP+FP+FN

Score: This definition is meaningless in event detection as there is no
available TN count. To solve this problem, Dixon [26] proposed the

definition of score.
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Taking data from House3 in the REDD as an example, Table 9 illustrates the main metrics using
the bilateral CUSUM, original CUSUM, and BIC (Bayesian information criterion) detector [27]. This is
a day-of-event detection statistics. From the results, it can be seen that the bilateral CUSUM had
the highest Score. The original CUSUM event detection method had the highest true positive rate
(TPR), but it often had multiple FPs. The BIC detector had the lowest TPR and Score. By comparison,
the bilateral CUSUM method performed better than the other two methods.

Table 9. The performance of different event detection algorithms on the reference energy disaggregation
dataset (REDD).

Algorithm TP FP FN TPR FPR Acc Score

Bilateral CUSUM 115 1 5 95.83% -- -- 95.04%
Original CUSUM 118 35 2 98.33% -- -- 76.13%

BIC detector 108 39 12 90% -- -- 67.92%

3.2.2. Feature Extraction on REDD

The data in the REDD in House 3 contained 10 appliances: lighting2/4/5, refrigerator, furnace,
washer1/2, microwave, bathroom_gfi, and kitchen outlets2. The characteristics of a single electrical
equipment were obtained from the statistics of the information from a single channel. This paper
mainly focuses on active and reactive power information. In order to demonstrate the effectiveness of
the feature extraction method, the resampling and average value method [27] were compared. Figures 8
and 9 illustrate the two-dimensional discrete fuzzy number. It can be seen that the particles obtained
by the resampling method had higher overall accuracy in hypothesis and identification. Although the
particles selected by the average value method and resampling method had a good performance on
furnace, washer1, lighting4, and lighting5, the particles selected by the average value method made
mistakes in identifying bathroom_gfi and kitchen_outlets2 as these devices having similar features.
This demonstrates that our method has advantages in terms of feature extraction.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 

 

Figure 8. Features performance on REDD based on the average value method. 

 

Figure 9. Features performance on REDD based on the resampling method. 

Figure 8. Features performance on REDD based on the average value method.



Appl. Sci. 2019, 9, 2622 14 of 16

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 16 

 

Figure 8. Features performance on REDD based on the average value method. 

 

Figure 9. Features performance on REDD based on the resampling method. 
Figure 9. Features performance on REDD based on the resampling method.

4. Conclusions and Future Works

In this paper, a load identification features selection method was proposed and validated by using
the laboratory dataset and REDD. The experiment showed that our method has the ability to extract
the desired features, which may accurately match the features of the device recorded in the database.
In the experiment, the performance of load event detection was also carried out. A bilateral CUSUM
combined with the minimum inner-class variance approach that we proposed also promoted the
detection effectiveness, especially for the climbing character of a load event. Besides, the resampling
method incorporated in our method was used to find the stable characteristics of the load event, thus
obtaining the desired features. Through the 2-D fuzzy membership measurement, it was found that
the feature extracted by the resampling method is closer to that of the actual device, and can be applied
to load identification. However, this resampling method requires a relatively stable switching period
of the device. In practice, the device being turned on or off is random, thus the obtained features may
fail to match the features of devices in the database.

In the future, the limitations mentioned above should be carefully considered. For example, some
devices have a short duration after state switching, and the corresponding steady-state time is also
very short. In this case, the method combining the transient features may work better. Moreover,
different algorithms, based on different features, may be valid for certain types of devices. Therefore, it
is necessary and feasible to integrate the proposed method with other complementary NILM models.
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