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Featured Application: The cooperative path planning problem of multi-UAV is becoming more
and more important. The proposed path-planning algorithm presented in this paper can be used
in some formation rendezvous applications, such as formation reconnaissance and attack.

Abstract: This paper studies the problem of generating cooperative feasible paths for formation
rendezvous of unmanned aerial vehicles (UAVs). Cooperative path-planning for multi-UAV formation
rendezvous is mostly a complicated multi-objective optimization problem with many coupled
constraints. In order to satisfy the kinematic constraints, i.e., the maximum curvature constraint and
the requirement of continuous curvature of the UAV path, the Pythagorean hodograph (PH) curve is
adopted as the parameterized path because of its curvature continuity and rational intrinsic properties.
Inspired by the co-evolutionary theory, a distributed cooperative particle swarm optimization
(DCPSO) algorithm with an elite keeping strategy is proposed to generate a flyable and safe path for
each UAV. This proposed algorithm can meet the kinematic constraints of UAVs and the cooperation
requirements among UAVs. Meanwhile, the optimal or sub-optimal paths can be obtained. Finally,
numerical simulations in 2-D and 3-D environments are conducted to demonstrate the feasibility and
stability of the proposed algorithm. Simulation results show that the paths generated by the proposed
DCPSO can not only meet the kinematic constraints of UAVs and safety requirements, but also
achieve the simultaneous arrival and collision avoidance between UAVs for formation rendezvous.
Compared with the cooperative co-evolutionary genetic algorithm (CCGA), the proposed DCPSO
has better stability and a higher searching success rate.

Keywords: unmanned aerial vehicle (UAV); path-planning; formation rendezvous; Pythagorean
hodograph (PH); distributed algorithms; cooperative particle swarm optimization (CPSO); cooperative
co-evolutionary algorithm (CCGA)

1. Introduction

Unmanned aerial vehicles (UAVs) are widely used in both civilian and military fields,
including search and rescue [1], environmental monitoring [2], surveillance and attacks [3], and
so on. Based on the multi-agent theory and applications [4–6], a group of UAVs flying in a formation [7]
rather than a single UAV can obtain higher combating effectiveness, deliver greater coverage, and will
have wider applications in the future.

Regarding the multi-agent formation problem, some important studies exist. Olfati-Saber described
a theoretical framework for the design and analysis of the distributed flocking algorithm for the
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multi-agent self-organizing flocking problem, two constraint-free algorithms, and one constrained
algorithm considering the obstacles proposed. For generating regular polygon formation of
a multi-robot, each robot is represented as an electric charge. The formation can be realized based on
the attractive forces of a virtual center and the repulsive forces between different robots; the collision
avoidance with obstacles can be achieved based on the potential field theory [8,9]. Nguyen et al. [10]
propose a distributed formation control algorithm to form different formation shapes for multiple
rectangular agents. An artificial potential function is used and a repulsive function is used to avoid
collision. To make the UAVs reach a predetermined rendezvous state simultaneously, path-planning
for multi-UAV formation rendezvous becomes one of the key technologies in UAV formation flying.

Recently, many researchers have been looking into the problem of cooperative path-planning of
multiple UAVs [11–13]. To solve the problem of multi-UAV rendezvous, the velocity control method is
used [14,15]. Manathara et al. [14] use the consensus algorithm based on the estimated time of arrival,
where velocity control and a wandering maneuver are applied to avoid collisions with other UAVs.
Unfortunately, this method requires a large amount of communication. Regarding the cooperative
timing problem among multiple UAVs, the path and velocity of each UAV are determined by the
coordination functions and coordination variable; however, this may lead to velocity saturation [16].
Some other researchers use the trajectory control method [17–19] to realize multi-UAV rendezvous,
which assumes that each UAV flies at a constant and equal velocity. For multiple UAVs performing
many-to-one tasks, two wandering maneuvers [18] based on Dubins curve are proposed to achieve
simultaneous arrival. A simple method based on basic geometry [19] is proposed to generate paths
of equal length in a remote-sensing problem, where each UAV first calculates the Dubins longest
path. Because a Dubins curve consists of arcs of the minimal turning radius and straight lines,
the discontinuous curvature of Dubins curve leads to a large tracking error for UAV. A three-step
method is proposed [20] to generated feasible UAV paths to achieve simultaneous arrival; the connection
of the arc and line in Dubins path is replaced with the clothoid arc. The method consists of (i) generating
flyable paths using Dubins path with clothoid arcs, (ii) satisfying the collision avoidance constraint,
and (iii) generating paths of equal length. However, this method requires a large amount of computation
because of the iteration strategy.

According to the existing literature on cooperative path-planning of UAVs, the commonly used
paths are as follows: Dubins paths [14,21], clothoid paths [20,22], B-spline paths [18,23], and Pythagorean
hodograph (PH) paths [16,24]. The Dubins path is the shortest path, but it has discontinuous curvature;
the other three paths have continuous curvature. Regarding the clothoid path, there is no closed-form
solution and iteration is required for a solution. For the B-spline path, the curvature at any point on
the curve has no closed-form solution and it is difficult to meet the maximum-curvature constraint of
UAVs. The PH path is parameterized by polynomials as a function of the path length and provides
closed-form polynomials for path length and curvature. In addition, the position and direction at the
initial and final locations are directly considered as boundary conditions, trading off the path length
and its curvature to meet the maximum-curvature constraint. In order to take full advantage of the PH
path, the PH curve is adopted from other literature as the parameterized path of the UAV in this paper.

In this paper, the focus is on generating a group of cooperative paths for UAVs arriving at the rendezvous
point simultaneously and forming a desired formation configuration. A distributed cooperative particle
swarm optimization (DCPSO) algorithm with a cooperation mechanism is proposed, which also serves as
the contributions of the paper. The PH paths of all UAVs are optimized cooperatively by using the DCPSO
algorithm. Using a distributed cooperation mechanism, the particles in each sub-swarm are modified so
that the kinematic constraints of UAVs, the collision avoidance, and the simultaneous arrival of the UAV
formation are achieved. Meanwhile, the optimal or sub-optimal paths are obtained.

The rest of this study is organized as follows. The multi-UAV formation rendezvous problem
formulation is presented in Section 2. Section 3 describes the distributed cooperative particle swarm
optimization algorithm for multiple UAVs. Simulation results are shown in Section 4. The summary
and conclusions are given in Section 5.
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2. Problem Formulation

2.1. Formation Rendezvous of Multi-UAVs

Given the problem of formation rendezvous for N UAVs, suppose the starting pose (position
and direction) at initial location of UAV i is given as psi = (xsi, ysi, zsi,χsi,γsi) and the formation pose
pf = (xf, yf, zf,χf,γf) at the rendezvous point is also known beforehand, where (x, y, z) is the location
of UAV or formation and (χ,γ) are the horizontal and vertical angles, respectively. The formation
configuration at the rendezvous point is defined with the virtual structure approach [25] by a series of
relative coordinates

{
(xfi, yfi, zfi)

∣∣∣i = 1, . . . , N
}

in the moving frame pfXfYfZf, which is attached to the
formation center as shown in Figure 1. Therefore, the desired pose pdi = (xdi, ydi, zdi,χdi,γdi) of UAV i
around the rendezvous point can be calculated with coordinate transformation. Path-planning for
multi-UAV formation rendezvous involves producing a group of paths ri(q) connecting psi and pdi.
Mathematically, this can be represented as:

psi = (xsi, ysi, zsi,χsi,γsi)
∐

ri(q)
→ pdi = (xdi, ydi, zdi,χdi,γdi), i = 1, . . . , N (1)

where ri(q) is the resulting path of UAV i, q is defined as a path parameter, and
∐

represents the constraints,
including the kinematic constraints of UAVs, safety requirements, simultaneous arrival with other UAVs,
and so on. In view of this, all UAVs should have the same speed when formation is achieved at the
rendezvous point before entering into the next stage of formation keeping. We assume that all UAVs have
the same constant speed during the formation rendezvous for simplicity. Hence, simultaneous arrival can
be achieved by generating a group of paths with equal or approximately equal length.

As mentioned, the total cost of all the generated paths should achieve the minimum or second
minimum, as well as satisfying a variety of constraints. There are some commonly used criteria for
evaluating a UAV path, including fuel consumption, path smoothness, radar threats, and other safety
costs, i.e., terrain avoidance, obstacle avoidance, and no-fly zone avoidance. In view of the limited
flexibility of a single PH path, the rendezvous environment is supposed to be much simpler than the
combat environment, with only a few obstacles and no-fly zones.

Figure 1 shows the schematic of cooperative path planning for a 4-UAV formation rendezvous in
the top view. A diamond configuration is defined at the rendezvous point, where OgXgYgZg is the
inertial frame. No-fly zones are represented by rectangles and obstacles are represented by circles in
the 2-D plane and cylinders in the 3-D environment.
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Figure 1. Cooperative path-planning for unmanned aerial vehicle (UAV) formation rendezvous. 
Figure 1. Cooperative path-planning for unmanned aerial vehicle (UAV) formation rendezvous.
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2.2. Pythagorean Hodograph Path

The Pythagorean hodograph (PH) curve was first introduced by Farouki and Sakkalis [26] in 1990.
It is defined by a parameterized polynomial curve which has hodographs that satisfy a Pythagorean
condition. The definition is given as:

Definition 1. (The PH curve [26]). Suppose that r(q) =
{
x(q), y(q), z(q)

}
is a polynomial curve parameterized

by q. r(q) is a PH curve, if the first derivatives of its components satisfy the following Pythagorean condition:

x′2(q) + y′2(q) + z′2(q) = σ2(q), (2)

where x(q), y(q), z(q) and σ(q) are polynomials of q.
In view of numerical stability, PH curves can be written in the following Bernstein–Bézier form [16,26]:

r(q) =
n∑

k=0

pk

(
n
k

)
(1− q)n−kqk, q ∈ [0, 1] , (3)

where pk is known as the “control point” of the curve and n is the order of the curve. According to [27,28],
the lowest order of PH curve that has an inflection point is the fifth, called the quintic PH curve.
The inflection point provides sufficient flexibility in path shape to be appropriate for path-planning.
Hence, the quintic PH curve is applied for UAV path-planning in this paper.

Generally, the poses at the initial and final locations, namely boundary conditions r(0),r′(0),r(1)
and r′(1), are known beforehand. Then, the first-order Hermite interpolation [29], combined with the
complex vector method or with the quaternion method [29], can be used to solve the 2-D or 3-D quintic
PH curve. Details about the solving process are introduced in [29,30]. After getting the polynomial
expression of the PH path r(q), the path length of the PH curve can be obtained by integrating the
polynomial ‖r′(q)‖, namely,

L(q) =
∫
‖r′(q)‖ , q ∈ [0, 1] . (4)

According to differential geometry theory [22], the curvature and torsion are fundamental
properties of a curve, by which the smoothness of the curve is completely determined. In 2-D
cases, the torsion is identically equal to zero. Curvature describes the bending extent of a curve,
while torsion represents the twisting extent. For UAVs, these two properties also play an important
role in the mechanics of a vehicle. The curvature is proved proportional to the lateral acceleration,
while the torsion is proportional to the angular momentum. Thus, the UAV path should satisfy the
maximum-curvature and maximum-torsion constraints, which are known as the kinematic constraints
of a UAV. The curvature and torsion at any point on the path can be solved by following equations [22]:

κ(q) =

∣∣∣r′(q) × r′′(q)
∣∣∣∣∣∣r′(q)∣∣∣3 , (5)

τ(q) =
(r′(q) × r′′(q)) · r′′′(q)∣∣∣r′(q) × r′′(q)

∣∣∣2 , (6)

where r′(q), r′′(q) and r′′′(q) are the first, second, and third derivatives of r(q), respectively. Obviously,
the curvature and torsion of a PH path are rational polynomials. To describe the smoothness of a PH
path quantitatively, we introduce the definition of the elastic energy of a curve.
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Definition 2. (The elastic energy [31]). The elastic energy of a curve is defined as the integral of the sum of
squares of curvature and torsion with respect to arc length, namely:

E =

∫
(κ2 + τ2)ds. (7)

In general, the lengths of direction vectors, m0 = ‖r′(0)‖ and m1 = ‖r′(1)‖, are considered to be
the control variables. The lager the values of m0 and m1, the smoother the PH path, but the greater the
path length. Therefore, appropriate values of m0 and m1 are optimized so that the kinematic constraints
of UAVs are satisfied, namely

∣∣∣κ(q)∣∣∣ ≤ κmax and
∣∣∣τ(q)∣∣∣ ≤ τmax.

3. DCPSO with Cooperation

As addressed above, cooperative path-planning for multi-UAV formation rendezvous is mostly
a complicated multi-objective optimization problem with many coupled constraints. The solutions
of the problem are a collection of UAV paths and each UAV path is part of the solution set.
The relationship between these two is similar to that between population and subpopulation in
the co-evolutionary theory [32]. Inspired by the co-evolutionary theory, cooperative co-evolutionary
genetic algorithms (CCGA) have been applied in path-planning for multiple robots or UAVs [33,34].
However, the conventional CCGA has low search efficiency and may easily trap local optimum.
The existing cooperative particle swarm optimization (CPSO) [35,36] can easily jump out of local
optimum, but they lack effective cooperation between subpopulations and cannot be directly used for
path-planning for multiple UAVs. To take full advantage of CPSO, a distributed cooperative particle
swarm optimization (DCPSO) algorithm with cooperation is proposed.

3.1. Standard Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population-based heuristic method. It was first proposed
by Elberhart and Kennedy in 1995, who were inspired by the social behavior of bird flocks. The PSO
algorithm is widely used in optimal scheduling [37,38], path-planning [11,23], big data digging [39],
and so on. PSO owns several evolutionary characteristics similar to genetic algorithms (GA), such as
initialization with a population of random solutions and updating based on previous generations.
However, PSO has fewer setting parameters, simpler implementation, and a faster convergence rate
compared with GA.

A swarm of particles are randomly initialized in the PSO algorithm. Each particle has three
properties, which are position, velocity, and fitness. Assuming a swarm of n particles in a D-dimensional
optimization problem, the velocity and position of particle i are denoted as Vi = (vi1, . . . , viD) and
Xi = (xi1, . . . , xiD), respectively. The fitness of particle i can be solved by the fitness function. The best
solution of particle i found so far is represented as pbesti = (pi1, . . . , piD), generally known as the
personal best location and the best position found by all particles so far is denoted as gbest = (g1, . . . , gD),
known as the global best location. In each iteration, each particle’s velocity and position are updated
using the following equation:

vid(t + 1) = $(t)vid(t) + c1r1(pid(t) − xid(t)) + c2r2(gd(t) − xid(t)) (8)

xid(t + 1) = xid(t) + vid(t + 1) (9)

where i = 1, 2, . . . , n, d = 1, 2, . . . , D, t = 1, 2, . . . , T, T is the maximum generation number, $ is the
inertia weigh, c1 and c2 are acceleration coefficients which are typically set to c1 = c2 = 2, and r1

and r2 are randomly generated within [0, 1], which are used to keep the diversity of the swarm.
From Equation (8) we can see that the velocity updating term consists of three parts: $(t)vid(t),
which is the inherited velocity from previous generation, reflecting the particle’s memory property;
c1r1(pid(t)− xid(t)), which is the cognitive learning velocity from its history, attracting the particle to its
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historical best position; and c2r2(gd(t) − xid(t)), which is the social learning velocity from the swarm
history, attracting the particle to the historical best position of the swarm. Generally, for fear of a blind
search, the velocity and position of each particle are limited to [−Vmax, Vmax] and [Xmin, Xmax].

3.2. Distributed Cooperative Particle Swarm Optimization with Cooperation

The PH path is adopted as the parameterized path of a UAV in this paper. According to the
theory of the PH curve, a path is determined by the lengths of direction vectors, namely m0 and
m1, under certain poses at initial and final locations. So, the path-planning for N UAV formation
rendezvous means getting each UAV a pair of (m0, m1) so that the corresponding PH path can meet
those constraints (including safety requirements, kinematic constraints, cooperation requirements,
and others) and the total cost of all paths reaches the minimum or second minimum.

Here, the possible solutions of N UAVs are regarded as N sub-swarms or subpopulations. A distributed
cooperative particle swarm optimization (DCPSO) with cooperation mechanism is proposed to optimize
the N PH paths cooperatively. The particles in each sub-swarm update their positions and velocities and
finish their fitness computations independently, which is the same procession as the standard PSO. In order
to achieve cooperation within UAVs, each sub-swarm communicates with the others to transmit their
representative individuals, then N cooperative groups are formed. Then, in each new-forming group,
fitness of particles in the current subpopulation is modified and the personal and group best locations are
also modified. Therefore, particles in each sub-swarm will move to the optimal or suboptimal solutions
with cooperation between UAVs. The flow chart of the DCPSO with cooperation is given in Figure 2.
It can be seen that information interaction between UAVs only happens in forming cooperative groups
and fitness modification, which means the proposed algorithm has a distributed structure. To improve
searching efficiency, an elite keeping strategy is adopted.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 
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3.2.1. Algorithm Initialization

As addressed, each particle j in sub-swarm i denotes an alternative PH path of UAV i, which is
represented as zi j = (mi j,0, mi j,1). The particle’s velocity is represented as vi j = (vi j,0, vi j,1), i = 1, . . . , N,
and j = 1, . . . , M, where M is the sub-swarm’s size. According to the prescribed search space
[Zmin, Zmax] and velocity range [−Vmax, Vmax], all particles’ positions and velocities can be assigned
randomly. The particles’ initial fitness is calculated and cooperatively modified in a way that will
be introduced in subsequent sections. The personal best locations and group best locations are
also initialized.

3.2.2. Update of Velocities and Positions

According to the standard PSO algorithm, the velocity and position of particle zi j can be updated
with Equation (8) and Equation (9), respectively. What is more, the value of inertia weight $ plays
an important role in creating a balance between global exploration and local exploitation. A large value
for $ facilitates global exploration, which is useful in the initial stages of an optimization. However,
a small value allows for better local searching, which is particularly useful in the later stages, as the
swarm moves toward the neighborhood of the optimum.

In [40], a value for$dynamically decreasing from 0.9 to 0.4 is recommended for better performance.
Hence, a dynamically changed $ is adopted in this paper, which is updated by the following equation:

$(t) = $start − ($start −$end)(
t
T
)

2
, (10)

where $start = 0.9, $end = 0.4, and T is the maximum number of iterations.

3.2.3. Fitness Function

In order to generate a flyable and safe PH path for UAV i with a short length and appropriate
smoothness, the fitness function for UAV i is designed as:

fi = 1/(w1 Ji,fuel + (1−w1)Ji,curve + Ji,obsc + Ji,nofly + Ji,terr + Ji,unflyble), (11)

where w1 is a user-defined weight parameter. Ji,fuel is the cost of fuel consumption, which is
approximately proportional to the path length of UAV i. Here, let Ji,fuel = Li, where path length Li can
be calculated by Equation (4). Ji,curve is the cost of path smoothness, which can be described by the elastic
energy of the PH path. Hence, let Ji,curve = Ei, where the elastic energy Ei is calculated by Equation (7).
Ji,obsc, Ji,nofly, Ji,terr, and Ji,unflyble are the penalty functions for avoiding the obstacles, no-fly zones,
collisions with terrain, and meeting the maximum curvature and torsion constraints, respectively.

For simplicity, the PH path is discretized as Np points. If all the discretized points do not collided
with the obstacles or pass through the no-fly zones, Ji,obsc = 0 or Ji,nofly = 0; otherwise, a large positive
number (like 105) is assigned to Ji,obsc or Ji,nofly. Similarly, if all the discretized points can avoid collision
with the terrain, Ji,terr = 0; otherwise, a large positive number (like 105) is assigned. If the curvature
and torsion at all discretized points satisfy the maximum curvature and torsion constraints, the PH
path is considered flyable and Ji,unflyble = 0; otherwise a large positive number is assigned, which can
be formulized as:

Ji,unflyble =


105, max

q

∣∣∣κi(q)
∣∣∣ > κ

max
|| max

q

∣∣∣τi(q)
∣∣∣ > τmax

0, max
q

∣∣∣κi(q)
∣∣∣ ≤ κ

max
& max

q

∣∣∣τi(q)
∣∣∣ ≤ τmax

, (12)

where κmax and τmax are the maximum curvature and torsion, respectively.
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In a 3-D environment, the terrain is simulated by following function:

H(x, y) = a · sin(x + b) + c · sin(y + d) + e · cos( f ·
√

x2 + y2) + g · sin(h · x + l · y), (13)

where a, b, c, d, e, f , g, h, and l are custom constants.

3.2.4. Cooperative Fitness Modification

For achieving the simultaneous arrival and collision avoidance between UAVs, a cooperation
mechanism among all the sub-swarms is proposed as follows. After obtaining all the particles’ fitness,
each sub-swarm has to offer a representative particle based on their fitness, then N new cooperative
groups are formed. Each cooperative group i consists of the sub-swarm i and all the representative
particles. Generally, selecting the representative particle for a sub-swarm is very important; the current
best particle or the historical best one is usually selected. In this paper, the group best location of each
sub-swarm is selected as its representative particle.

Then, the particles in each cooperative group are required to modify their fitness according to all
the representative particles. Namely, for cooperative group i, check whether the particles of sub-swarm
i will collide with the representatives from other sub-swarms; if collision happens, a penalty term is
added to the particle’s fitness. Meanwhile, among the N representatives, find j, which is the one that
has the largest path length as the reference particle; its path length is seen as the reference path length
Lref. To satisfy the simultaneous arrival constraint of multi-UAV formation, if the reference particle j
does not belong to sub-swarm i, namely i , j, the particles in sub-swarm i are required to modify their
fitness by adding a penalty term. The penalty term is directly proportional to the absolute difference
between the path length of a current particle and the reference one. Thus, the larger length difference
will obtain the larger penalty value. Therefore, the modified fitness function of particle i is denoted
as follows:

fi′ = 1/(1/ fi + Ji,collision + Ji,dtime), (14)

where Ji,collision and Ji,dtime are the added penalty values, which can be expressed as:

Ji,collision =

{
105, collision
0, collision− free

, (15)

Ji,dtime =

{
100 ∗ |Li − Lref|

2 , i , j
0 , i = j

, (16)

where Li is the path length of any particle in subpopulation i.
Determining the collision between two UAVs by using the rotational properties of PH path is

described in detail as follows. If there is no collision between two PH paths, the minimum separation
distance between these two paths should be greater than the sum of the two UAVs’ safety radiuses at
any moment.

Consider two PH paths of UAV i and UAV j, namely ri(q) and r j(q). Their safety radiuses are
represented as Ri and R j, respectively. For simplicity, each PH path is discretized as Nph equidistant
points. Because all UAVs fly at a same constant speed and arrive at the rendezvous point simultaneously,
the distance between the two UAVs at any moment approximately equals the distance between the two
equidistant points with the same number. Hence, the minimum separation distance between the two
paths approximately equals the minimum distance between any two equidistant points with the same
number. As shown in Figure 3, the safety balls are centered on the equidistant points along each path.
If the safety balls overlap at any equidistant points with the same number on each path, a collision
could happen. According to the rotational properties of PH path, the path length can be calculated
by the polynomial Equation (4). Hence, the corresponding path parameter q at any equidistant point
along a PH path can be solved by the Newton–Raphson iterative method. The coordinates of each
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equidistant point are obtained by Equation (3). Supposing the coordinates of any equidistant points
k of ri(q) and r j(q) are represented as (xi,k, yi,k, zi,k) and (x j,k, y j,k, z j,k), and k = 1, . . . , Nph. Therefore,
the constraint of collision avoidance between any two UAVs can be written as:

dismin,i j > Ri + R j

dismin,i j = min
{
disi j(k)

∣∣∣k = 1, . . . , Nph

}
disi j(k) =

√
(xi,k − x j,k)

2 + (yi,k − y j,k)
2 + (zi,k − z j,k)

2

i , j, i = 1, . . . , N, j = 1, . . . , N,

, (17)

where dismin,i j is the minimum separation distance.
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3.2.5. Cooperative Path-Planning with DCPSO

In conclusion, the formation rendezvous problem of multi-UAV based on DCPSO can be solved
by the following steps:

Step 1. Initialize all sub-swarms:
(1) For the N UAVs, the size of each sub-swarm is M, T is the maximum iteration number, and the

current iteration is set to t = 0;
(2) The velocities and positions of all the particles are initialized within the bounded search space

[−Vmax, Vmax] and [Zmin, Zmax], respectively;
(3) Each particle’s fitness is calculated using Equation (11); the best particle in each sub-swarm is

selected as its representative. Each particle’s fitness is modified cooperatively using Equation (14).
Then, the initial personal and global best solutions are easy to obtain.

Step 2. The particles’ velocities and positions in each sub-swarm are updated using Equation
(8) and Equation (9), which are limited within the prescribed search space and velocity range. Then,
each particle’s fitness is calculated using Equation (11). To improve the searching efficiency of the
DCPSO algorithm, an elite keeping method is used. In each sub-swarm, the best particle of the previous
generation is used to replace the worst one in the current generation.

Step 3. The group best location of each sub-swarm is selected as the representative and cooperative
groups are formed. Then, each particle’s fitness is modified in each cooperation group using
Equation (14).

Step 4. For each sub-swarm i, compare every particle zi j with the personal best location pbesti j;
if the particle is better, let pbesti j = zi j, i = 1, . . . , N, j = 1, . . . , M.

Step 5. For each sub-swarm i, compare every particle zi j with the group best location gbesti; if the
particle is better, let gbesti = zi j, i = 1, . . . , N, j = 1, . . . , M.
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Step 6. If t = T, end the iteration and output the best solutions of each sub-swarm; otherwise,
let t = t + 1 and go back to Step 2.

3.2.6. Time Complexity Analysis and Remarks

The time complexity analysis on the proposed DCPSO algorithm with cooperation is given
as follows:

(1) The time complexity of initialization of all sub-swarms is O
(

N∑
i=1

M
)
;

(2) The time complexity of updating all particles’ velocities and positions is O
(

N∑
i=1

M
)
;

(3) The time complexity of calculating fitness of particles is O
(

N∑
i=1

(M ·Nthreat)

)
, where Nthreat is

the number of threats, including obstacles and no-fly zones;

(4) The time complexity of fitness modification for all particles is O
(

N∑
i=1

(M ·N ·Nph)

)
, where Nph

is the number of equidistant points of the discretized PH path;
(5) The time complexity of updating the personal best locations and group best locations is

O
(

N∑
i=1

M
)
.

Hence, the total time complexity is:

O
(

N∑
i=1

M
)
+ O

(
N∑

i=1
M

)
+ O

(
N∑

i=1
(M ·Nthreat)

)
+ O

(
N∑

i=1
(M ·N ·Nph)

)
+ O

(
N∑

i=1
M

)
= O

(
N∑

i=1
(M ·N ·Nph + M ·Nthreat + 3M)

) (18)

Remark 1. According to the time complexity analysis, the fitness calculations and modifications of particles
occupy the most computing time. This is because the safety detection is conducted in fitness calculation and
modification, with the collision detection between UAVs in particular taking up a large portion of time. For collision
checking between UAVs, coordinates of each equidistant point have to be solved by the Newton–Raphson iterative
method, which is a complicated and time-consuming process.

Remark 2. It can be seen in Figure 2 that the algorithm proposed in this paper has a distributed structure.
Therefore, it can be implemented in parallel on multiple computers for reducing the computing time.

Remark 3. The length of paths produced will be closed to equal, but may not be exactly the same. The differences
can be diminished by slightly increasing the parameters (m0, m1) of the resulting paths which have the
smaller lengths.

Remark 4. In view of the limited flexibility of a single PH path, only a few no-fly zones and obstacles are
considered here. For complicated environments, a path of several PH curves connected one by one is more suitable.

4. Simulation Results

4.1. Path Planning for 2-D Formation Rendezvous

When all are UAVs flying at the same and constant altitude, the problem is simplified to the 2-D
formation rendezvous and there is no need to consider the terrain, namely Ji,terr ≡ 0. Only two obstacles
and two no-fly zones exist in the environment, which are modeled as circles and rectangles. The initial
poses of UAVs and the formation pose are given in Table 1 and the desired formation configuration is
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given in Table 2. The safety radius and maximum curvature of all UAVs are 0.1 km and κmax = 2km−1.
Other parameters of the DCPSO are as follows: M = 20,T = 50,w1 = 0.5, and Np = Nph = 50.

The results are depicted in Figures 4 and 5. In Figure 4, the paths of UAVs for formation rendezvous
are given, which are generated by the DCPSO without cooperation, the DCPSO with cooperation,
and the conventional CCGA, respectively. The curvature variations with respect to path length of
all three UAVs are given in Figure 5. In Figure 4, “�” denotes the initial location of UAV, “�” is the
formation rendezvous point, and “♦” shows the desired formation configuration at the rendezvous
point. The lengths of the three paths and their minimum separation distances with the different
algorithms are given in Table 3.

From Figures 4a and 5a, all three paths generated by DCPSO without cooperation between UAVs
avoid the obstacles and no-fly zones in the environment and the curvature changes continuously while
meeting the maximum-curvature constraint. However, from Table 3 we can see that the lengths differ
significantly because of no cooperation between UAVs. Thus, UAVs cannot arrive at the rendezvous
point simultaneously while flying at the same constant speed and the desired configuration cannot
be achieved.

For DCPSO with cooperation proposed in this paper, as shown in Figures 4b and 5b, the generated
paths can also satisfy the safety requirements and the kinematic constraints of UAVs. Furthermore,
the lengths of the three paths are almost the same from Table 3, with a maximum difference of 0.0028 km
and no collision occurs between UAVs. This means the UAVs can achieve simultaneous arrival and
form the desired configuration at the rendezvous point.

On the contrary, paths generated by the conventional CCGA can almost achieve simultaneous
arrival collision-free between UAVs, as well as satisfying the safety requirements and the kinematic
constraints of UAVs, as shown in Figure 4c, Figure 5c, and Table 3. The maximum difference of
lengths is about 0.1 km, which cannot be ignored and needs to be diminished by slightly increasing the
parameters (m0, m1) of paths with the smaller lengths. On the other hand, the largest length is about
0.55 km larger than that produced by DCPSO with cooperation, which means the conventional CCGA
has trapped the local optimum.

To analyze the performance comparison between the conventional CCGA and the DCPSO
proposed in this paper, 30 experiments in the same environment for both algorithms are conducted.
The statistical results of these experiments are given in Table 4. Assume that, if the maximum difference
of lengths in an experiment is larger than 0.35 km (about 1% of the path length), this corresponding
experiment is considered to have failed. According to Table 4, the success rate of the proposed DCPSO
is up to 0.9, while the CCGA only has a value of 0.433. Taking only the successful experiments into
consideration, the mean length and standard deviation of each path are given in Table 4. With the
proposed DCPSO, the maximum mean length is 35.0611 km and the mean maximum difference of
lengths is about 0.0301 km, while the values are 35.2982 km and 0.1515 km with CCGA. This means by
using the conventional CCGA, it is easier to trap the local optimum. On the other hand, the standard
deviations of lengths with DCPSO are much smaller than those with CCGA, as seen in Table 4.
This suggests that the proposed DCPSO has a better searching stability than the conventional CCGA.
It can also be seen from the Monte Carlo results that the average computation time of the DCPDO
algorithm is 2.35 s and that of CCGA is 3.11 s. We have to say that the proposed algorithm cannot be
directly used in a real-time situation because the collision detection and avoidance among particles
take a large amount of time. However, the proposed path-planning algorithm can be used on board
if a prediction mechanism is added. For example, the UAVs in formation agree on a rendezvous
maneuver time. Then, each UAV estimates its states at that rendezvous maneuver time. The estimated
states of the UAVs are used as the input of the formation rendezvous algorithm. Using the algorithm,
the UAVs can obtain their rendezvous paths.
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Table 1. Poses at UAVs’ starting points and rendezvous points (2-D).

UAVs/Rendezvous Point Pose x, y, χ/(km, km, rad)

UAV1 (2,−5,π/6)
UAV2 (−1, 10,−π/4)
UAV3 (−3, 20,−π/5)

Rendezvous point (35, 15, 0)

Table 2. Desired formation configuration.

UAVs (xfi,yfi)/(km,km)

UAV1 (0.6, 0)
UAV2 (–0.3, –0.6)
UAV3 (–0.3, 0.6)

Table 3. Lengths of three paths and their minimum separation distances.

Algorithms L1 (km) L2 (km) L3 (km) dismin,12
(km)

dismin,13
(km)

dismin,23
(km)

DCPSO without cooperation 35.0610 31.3760 34.3439 0.7863 1.0817 1.2000
DCPSO with cooperation 35.0611 35.0590 35.0618 0.9868 1.0817 0.4879

Cooperative co-evolutionary
genetic algorithms (CCGA) 35.6054 35.5208 35.6208 0.9564 1.0817 0.3261

Table 4. Statistical results of 30 simulations.

Statistical Results DCPSO with Cooperation CCGA

Amount of simulations 30 30
Number of success 27 13
Success rate 0.9 0.433
Mean of L1 (km) 35.0611 35.2982
Standard deviation of L1 (km) 0.0001 0.1530
Mean of L2 (km) 35.0310 35.1467
Standard deviation of L2 (km) 0.0673 0.1413
Mean of L3 (km) 35.0597 35.2329
Standard deviation of L3 (km) 0.0054 0.1828
Average computation time(s) 2.35 3.11
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4.2. Path Planning for 3-D Formation Rendezvous

In the case of 3-D, obstacles are modeled as cylinders and no-fly zones are represented by
rectangles with infinite heights. The initial poses of UAVs and the formation poses are given in Table 5.
The desired formation configuration is the same as above. The maximum curvature and torsion of
UAVs are κmax = τmax = 2km−1. The terrain is modeled using Equation (13). Other conditions and
parameters are the same as above.

The paths of UAVs generated by the proposed DCPSO with cooperation in 3-D environments
are shown in Figure 6. The curvature and torsion variations with respect to path length of each UAV
are given in Figure 7. The length of three paths and their minimum separation distances are given
in Table 6. Simulation results show that all three paths avoid the obstacles, no-fly zones, and the
terrain. Both the curvature and torsion of the three paths change continuously while meeting the
maximum-curvature and maximum-torsion constraints of UAVs. Meanwhile, the maximum difference
of lengths is only 0.0081 km, which means simultaneous arrival of UAVs can be achieved and no
collision happens between UAVs. Therefore, the algorithm proposed in this paper is also suitable in
cooperative path-planning for UAV formation rendezvous in 3-D environments.

Table 5. Poses at UAV starting points and rendezvous point (3-D).

UAVs/Rendezvous Point Pose (x,y,z,χ,γ)/(km,km,km,rad,rad)

UAV1 (2,−5, 2.3,π/6,π/12)
UAV2 (−1, 10, 2,−π/4,π/8)
UAV3 (−3, 20, 3.3,−π/5,−π/7)

Rendezvous point (35, 15, 3, π/9, 0)

Table 6. Lengths of three paths and their minimum separation distances (3-D).

L1 (km) L2 (km) L3 (km) dismin,12 (km) dismin,13 (km) dismin,23 (km)

35.0470 35.0432 35.0513 0.9527 1.0817 1.2000
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5. Conclusions

In this paper, a distributed cooperative particle swarm optimization (DCPSO) algorithm was
proposed to generate a set of spatial paths for multi-UAVs that execute formation rendezvous missions.
The quantic PH curve was used as the path because of its curvature continuity. In the DCPSO
algorithm, the particles in each sub-swarm updated their positions and velocities separately, then they
communicated with other sub-swarms to modify their fitness to realize simultaneous arrival under
constraints. Some key points are illustrated as follows:

(1) Considering the kinematic constraints of UAV and collision avoidance, the proposed path
planning method could generate simultaneous arrival paths for UAV formation rendezvous.

(2) Compared with the cooperative co-evolutionary algorithm (CCGA), the proposed algorithm
could jump out of local optimum easily and had a better stability.
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