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Abstract: Recent electron microscopy (EM) imaging techniques make the automatic acquisition
of a large number of serial sections from brain samples possible. On the other hand, it has been
proven that the multisynaptic bouton (MSB), a structure that consists of one presynaptic bouton and
multiple postsynaptic spines, is closely related to sensory deprivation, brain trauma, and learning.
Nevertheless, it is still a challenging task to analyze this essential structure from EM images due
to factors such as imaging artifacts and the presence of complicated subcellular structures. In this
paper, we present an effective way to identify the MSBs on EM images. Using normalized images as
training data, two convolutional neural networks (CNNs) are trained to obtain the segmentation of
synapses and the probability map of the neuronal membrane, respectively. Then, a series of follow-up
operations are employed to obtain rectified segmentation of synapses and segmentation of neurons.
By incorporating this information, the MSBs can be reasonably identified. The dataset in this study
is an image stack of mouse cortex that contains 178 serial images with a size of 6004 pixels × 5174
pixels and a voxel resolution of 2 nm × 2 nm × 50 nm. The precision and recall on MSB detection are
68.57% and 94.12%, respectively. Experimental results demonstrate that our method is conducive to
biologists’ research on MSBs’ properties.

Keywords: electron microscopy; multisynaptic bouton; convolutional neural network; image
processing; synapse; neuron

1. Introduction

Electron microscopy (EM) connectomics is an ambitious research direction aimed at studying
comprehensive brain connectivity maps using high-throughput, nanoscale microscopes [1].
The development of EM technologies has greatly promoted the progress of brain science and
connectomics. Although EM provides sufficient resolution to reveal the invaluable information about
structures such as neurons, mitochondria, and synapses [2], higher resolution results in a multiplication
of the data volume. As is known to all, it is time-consuming and difficult to annotate large volumes
of data manually. Therefore, there is an urgent need to develop automated algorithms to process the
structures in EM images.

Much effort has been devoted to developing automated algorithms for analyzing the EM data.
One of the main application scenarios is neuron segmentation. Recently, Januszewski et al. [3] used
a method called flood-filling to segment and trace neurons in a dataset obtained by serial block-face
scanning electron microscopy (SBF-SEM) from a male zebra finch brain. It is a recurrent neural
network (RNN)-based method unifying the two steps of finding the boundary between synapses with
edge detectors or machine learning classifiers and combining image pixels that are not separated by

Appl. Sci. 2019, 9, 2591; doi:10.3390/app9132591 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/13/2591?type=check_update&version=1
http://dx.doi.org/10.3390/app9132591
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2591 2 of 19

boundaries using algorithms such as watershed or image segmentation. Due to the important role
of mitochondria in cell function, researchers have attempted to quantify important mitochondrial
properties in recent years. Vitaladevuni et al. [4] designed a boosting-based classifier for texture
features to detect and segment mitochondria in EM images. Lucchi et al. [5] considered not only
texture features, but also features on the shape of mitochondria. Using the graph cut model, they
performed high-precision stereo segmentation of mitochondria on superpixels. Synapses also play
an important role in the nervous system, which allows neurons to transmit an electrical or chemical
signal to other neurons. Staffler et al. [6] reported an automated detection method for synapses
from conventionally en-bloc stained 3D electron microscopy image stacks, SynEM. It is based on
a segmentation of the image data and focuses on classifying borders between neuronal processes
as synaptic or non-synaptic. Xiao et al. [7] proposed a deep learning-based method for synapse 3D
reconstruction, where the Dijkstra algorithm and GrabCut algorithm were used to segment the synaptic
cleft.

In addition to the several structures just mentioned, multisynaptic boutons (MSBs) are also worthy
of study. It has been proven that MSBs are closely related to sensory deprivation, brain trauma, and
learning [8–10]. MSBs are boutons that make synaptic contacts with multiple postsynaptic structures.
They were first seen in cat brain exactly 50 years ago [11] and have been observed in mice, rats, rabbits,
cats, and monkeys [8,12–16]. Previous work showed that the formation of MSB can be induced by
visual sensory deprivation, an enriched environment, brain lesion, motor skill learning, and auditory
associative learning [12–14]. Dendritic spines are tiny protrusions from neuronal dendrites and form
the postsynaptic component of the synapse in the brain [17–20]. Increasing the area or number of
dendritic spines can result in more efficacious synaptic transmission and thus enhance the strength of
neuronal connections [12,21,22]. Both dendritic spines and shafts can form MSBs [17,23]. Long-term
potentiation (LTP), a major form of synapse plasticity, can result in increased spine number and
elevated proportion of MSBs in rat hippocampus [12], consistent with the idea that MSB may represent
a strengthened form of synaptic connection. Therefore, analyzing the structure and connectivity of
MSBs is critical in understanding sensory experience- and learning-associated synaptic plasticity.

As mentioned above, MSBs are presynaptic boutons that are in contact with multiple postsynaptic
structures. Unlike the single-synapse boutons, the special structure of MSBs determines that we have
to identify them step by step. Inspired by the previous work focusing on bio-electron image processing,
we propose an efficient way to identify the MSBs from serial EM images. We first use a CNN-based
(convolutional neural network) algorithm to detect and segment the synapses. An effective algorithm
for filtering the pseudo-synapses and the missed synapses is then used to optimize the results on
synapses. Meanwhile, we design a residual network to predict the neuronal membrane and further
obtain the segmentation of the neurons with an improved watershed-based algorithm. Based on the
information of synapses and neurons obtained in the above steps, it is reasonable to identify the MSBs
on serial EM images. Our method manages to automate MSBs’ detection and recognition, which
will provide a powerful tool for neuroscience research on synaptic plasticity associated with learning
and memory.

2. Materials

The biological specimen in this paper is mouse cortex (provided by the Institute of Neuroscience,
Chinese Academy of Sciences). Automated tape-collecting ultra-microtomy scanning electron
microscopy (ATUM-SEM) was used to obtain the image stack of the mouse cortex specimen of
a volume of 12 µm × 10.35 µm × 8.9 µm (performed at the Institute of Automation, Chinese Academy
of Sciences). The image stack consisted of 178 serial images with a size of 6004 pixels × 5174 pixels
and a voxel resolution of 2 nm × 2 nm × 50 nm. Figure 1 presents the images and ground truth on the
adjacent sections. The ground truth was manually labeled by three well-trained graduate students with
cross-validation. A total of 1230 synapses were annotated for the whole image stack, and the neuron
membrane of the former 5 images was annotated. The software FIJI was used for annotation, and the
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interface is shown in Figure 2. The database and the manually-labeled ground truth are available on
the website (http://95.163.198.142/MiRA/synapse_deng/).

Figure 1. Datasets and multisynaptic boutons (MSBs). (A) Serial SEM images; (B) an anisotropic
stack of neural tissue from mouse cortex acquired by Automated tape-collecting ultra-microtomy
(ATUM)-SEM; (C) MSBs appearing on serial images.

Figure 2. Interface of FIJI for labeling the ground truth. (A) Interface of FIJI for labeling synapse;
(B) interface of FIJI for labeling neuronal membrane.

3. Methods

The main steps of MSBs detection are shown in Figure 3. Firstly, histogram equalization was
performed on the image stack. Based on the equalized images, we located and segmented the synapses
with the mask R-CNN. The contextual information was also applied to removing the false synapses
and to make up the missed synapses. Meanwhile, we used a deep network to obtain the probability
map of the neuronal membrane, from which we obtained the neuron segmentation with an improved

http://95.163.198.142/MiRA/synapse_deng/
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marker-controlled watershed segmentation algorithm. Finally, the MSBs could be located by using the
information of synapses and neurons.

Raw image

Equalized image Neuron segmentation

Multisynaptic bouton

Synaptic segmentation

Figure 3. The workflow of our method for MSB detection from a serial EM image stack.

3.1. Image Preprocessing

In order to reduce the effects of illumination and other factors on detecting and segmenting
synapses and neurons, we transformed the intensity of the raw image to make the histogram
equalized [24,25]. For each raw image Iraw, we first counted the gray-value histogram of the image.

h(rk) = nk, (1)

where rk is the kth gray scale (k = 0, 1, · · · , 255) and nk is the number of pixels with a gray value of rk.
Then, we used the following transformation,

P(rk) = nk/n, (2)

where n =
L
∑

k=1
nk.

From Figure 4, we can notice that the contrast between foreground (synapses, the membrane of
neurons) and background was more significant on the processed image.

3.2. Recognition of Synapse

In this section, we show the procedures for synapse detection and segmentation. Inspired by
Hong et al. [26], we first adopted the MaskR-CNN (region-CNN) [27] to detect and segment synapses
on the serial EM image stack. Then, an algorithm for filtering the pseudo-synapses and locating the
missed synapses was used to rectify the preliminary results of synapses.
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Figure 4. The raw image and image processed with histogram equalization. (A) Left: raw image;
middle: zoomed area containing an MSB; right: histogram of the raw image; (B) left: image processed
with histogram equalization; middle: zoomed area containing an MSB; right: histogram of the image
processed with histogram equalization.

3.2.1. Detection and Segmentation with Mask R-CNN

The main idea of Mask R-CNN is to extend the original FasterR-CNN and add a branch to use
the existing detection to predict the target in parallel. The architecture of the proposed network is
illustrated in Figure 5. The first module is a fully-convolutional network (FCN) for extracting features
over the input images. It outputs a feature map for each input image, where the foreground is more
prominent. The next module, region proposal network (RPN), then generates region proposals over
each feature map. It is a small network that slides over the feature maps. In the field of view of
the sliding window, different possible regions (anchors) of different sizes are generated. All anchors
are classified into foreground and background, where partial anchors belonging to the foreground
are used to optimize regression parameters to correct the bounding boxes. The rectified foreground
anchors that have great possibilities of containing targets are called “proposals”. Through an RoIAlign
layer, the proposals on the corresponding feature maps are mapped into a fixed size. The fixed-size
RoIs are imported in a network that consists of three branches, the classification branch, regression
branch, and mask branch. The classification branch gives the probability that the object belongs to
each class, while the regression branch fixes the position of the bounding box of the proposal once
again. The mask branch is a small FCN applied to each RoI, predicting a segmentation mask.

3.2.2. Rectifying Detection Results of Synapses on the Serial EM Image Stack

Confirming the connection of objects on serial images in 3D is helpful in rectifying the detection
results [28]. We present an algorithm for confirming the connection of synapses in 3D. We denote by
Pi,j the jth synapse on the ith section, in which the index j is randomly given. The algorithm includes
the following steps:

1. For the synapse on the first section P1,j, we assign it a 3D serial number N3d
1,j = j.
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2. For the synapse on the ith section Pi,j, (i > 2), we calculate the Euclidean distance between Pi,j

and {Pi′}i−1
i′=i−3. Denote by Di,i′

j,j′ the distance between Pi,j and Pi′ ,j′ :

Di,i′
j,j′ = ‖ci,j − ci′ ,j′‖2, (3)

where ci,j is the centroid of the bounding box of Pi,j.
3. Find the closest synapse to Pi,j, and denote it by Pi′′ ,j′′ .

argmin
i′′ ,j′′

{Di,i−1
j,1 ,Di,i−1

j,2 , · · · ,Di,i−3
j,1 ,Di,i−3

j,2 , · · · }. (4)

4. Verify if Pi,j is the closest synapse to Pi′′ ,j′′ on the ith section. Find the closest synapse to Pi′′ ,j′′ on
the ith section, and denote it by Pi,j′′′ .

argmin
i,j′′′

{Di′′ ,i
j′′ ,1,Di′′ ,i

j′′ ,2, · · · }. (5)

If j′′′ = j and the distance between Pi,j and Pi′′ ,j′′ is smaller than a given threshold θ (according to
the thickness of sections of 50 nm, i.e., 25 pixels in the x-y direction, we set θ = 100),

Di,i′′
j,j′′ ≤ θ, (6)

we consider that Pi,j and Pi′′ ,j′′ are the same synapse appearing on different sections. Then, we
assign the 3D serial number of Pi,j to Pi′′ ,j′′ . If j′′′ 6= j or Equation (6) is not satisfied, we consider
that Pi,j and Pi′′ ,j′′ are not the same synapse in the 3D perspective. We assign a new 3D serial
number to Pi′′ ,j′′ .

Resnet50

feature map

RoIAlign

RPN

box

class
proposals

fixed size 
feature map

boxclass

mask

Figure 5. The architecture of Mask R-CNN. RPN, region proposal network.

With the algorithm for assigning the 3D serial number to synapses on the serial image stack,
we give each synapse on the serial image stack a 3D serial number. The same synapses appearing
on different sections have the same 3D serial number. Based on this, it is easy to count the number
of synapses in the 3D perspective. A synapse is a spatial structure with a size of about 200 nm [7].
Therefore, one synapse should appear on at least 3 adjacent sections under the condition that the
thickness of the section is 50 nm. We deleted the synapses that appeared on less than 3 layers, which
were considered as pseudo-synapses. Meanwhile, in order to avoid the inaccuracy of synapse statistics
caused by synapses that were missed, as shown in Figure 6, where the yellow rectangle indicates
missed, while the red rectangles indicate correct detection, we also needed to locate the synapses that
were missed. For the synapses with the same 3D serial number, if the layer numbers of the sections
they are in was incoherent, it was likely that there were missed synapses on the the section with
a discontinuous serial number.
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Figure 6. Detection results of synapses on several serial images. The yellow rectangle indicates missed,
while the red rectangles indicate correct detection.

3.3. Segmentation of Neuron

In this section, we introduce the procedures to obtain the segmentation of neurons. Firstly,
a well-designed deep neural network is trained to output the probability map of the neuronal
membrane. Then, a series of morphological operations are performed on the probability map to
obtain neuron segmentation.

3.3.1. Probability Map of the Neuronal Membrane

For the recognition of the neuronal membrane, an efficient contextual residual network [29] was
used in this study. It was first used on the public dataset ISBI (International Symposium on Biomedical
Imaging) 2012, and the experimental results showed its effectiveness in the recognition of the neuronal
membrane on EM images. The schematic diagram showing the training/testing process of the network
that outputs the probability map of neuronal membrane is shown in Figure 7. The network consisted of
two main parts: a ResNet38-like module and an expansive module. As for the ResNet38-like module,
the first improvement is that a maximum pooling layer was added after the first convolutional layer,
which greatly reduced the number of parameters. Following the max-pooling layer were 8 residual
units, which can be divided into 6 blocks. Block 1 and Block 2 was composed of two residual units,
respectively, each of which consisted of two convolutional layers with a kernel size of 3× 3. By setting
the stride of kernels on the first convolutional layer of Block 1 and Block 2 to 2, they downsampled
the image to 1/4 of the original size. For Block 3 and Block 4, each consisted of two convolutional
layers. Correspondingly, Block 5 and Block 6 were composed of three residual units, respectively.
In order to cope with the problem that the distribution of the training set was inconsistent with the
distribution of the prediction set, that is the internal covariate shift (ICS) phenomenon, we used
mini-batch normalization before the exponential linear units (ELUs) so that the result (each dimension
of the output) had a mean of 0 and a variance of 1, which helped to increase the convergence speed
and improve the prediction results. For the feature maps outputted by the max pooling layer, Block 1
and Block 6 were upsampled by fractional strided convolution with channels 64, kernel size 2N × 2N,
and stride N (N = 2, 4, and 8 for upsampling layers, respectively). The global information and local
cues from different scales were then incorporated by summation-based skip connections. Unlike
concatenation-based skip connections, summation-based skip connection provides a more thorough
integration of multi-scale context cues and overcomes the vanishing gradient problem more efficiently.
Finally, two convolutional layers and dropout (p = 0.5) were used to refine the pixel-wise prediction
and improve generalization ability.
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Figure 7. The network architecture for recognition of the neuronal membrane [29]. Red and green
blocks annotated M, N, and S represent convolutional layers with channels M, kernel size N × N, and
stride S; yellow blocks denoted N and S imply max pooling over N × N patches with stride S; blue
blocks with M, N, and S denote deconvolution layers, and the parameters are similar to that of the
convolutional layers; the purple box indicates the softmax layer; the red numbers above straight arrows
imply the size of feature maps, while the numbers below straight arrows imply the channels of feature
maps, and the numbers above curved arrows represent the repetitions of residual units.

3.3.2. Neuron Segmentation with the Marker-Controlled Watershed Algorithm

This section shows how to use a modified watershed-based segmentation method to separate
neurons in a 2D EM image, and the workflow is shown in Figure 8. Based on the probability map of the
neuronal membrane outputted from the network described in the above subsection, we first obtained
the foreground marker. Then, we used watershed segmentation to separate the neurons under the
guidance of the rectified foreground marker.

Figure 8. The workflow of segmenting neurons based on the probability map of the neuronal membrane.
(A) Input probability map of the neuronal membrane; (B) the complement of the input probability map;
(C) foreground marker; (D) rectified foreground marker; (E) neuron segmentation).

The watershed transform finds “catchment basins” and “watershed ridge lines” in an image by
taking it as a surface where light pixels are high and dark pixels are low [30]. It is a natural way to
segment neurons with the watershed-based algorithm under the hypothesis that the neurons and
membranes are “catchment basins” and “watershed ridge lines”, respectively. Segmentation using the
watershed transform works better if we can identify, or “mark”, foreground objects and background
locations. Therefore, to make the segmentation result more accurate, we extracted a part of each neuron
as the foreground mark. Here, we do not give the background mark. For each probability map of the
neuronal membrane I (as shown in Figure 8A) whose pixel values in I varied from 0–255, we used the
modified marker-controlled watershed segmentation following these basic procedures.

Firstly, we computed its complement I′ (as shown in Figure 8B):

I′ = 255− I. (7)

Next, we found the markers of the foreground objects. These markers should be
connected speckle pixels inside each of the neurons. We used opening-by-reconstruction and
closing-by-reconstruction to make the internal part of each neuron “flatter” and denoted by I′obrcbr the
clean image. The opening-by-reconstruction is an erosion followed by a morphological reconstruction,
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while the closing-by-reconstruction is a dilation followed by a morphological reconstruction.
Reconstruction-based opening and closing are more effective than standard opening and closing
at removing small blemishes without affecting the overall shapes of the objects. The dark spots
and stem marks on the probability map of the neuronal membrane can be removed efficiently by
performing these two operations. The detailed process is shown in Equation (8):

I′e = I′ 	 se,
I′obr = I′e � I′,
I′obrd = I′obr ⊕ se,
I′obrcbr = 255− (255− I′obrd)� (255− I′obr),

(8)

where 	,⊕,� are the erosion, dilation, and reconstruction operations, respectively. se is a disk-shaped
structuring element with a radius of 10 pixels. The regional maxima of I′obrcbr are foreground markers.
We denoted by I′f gm1 (as shown in Figure 8C) the binary image of the foreground markers. To prevent
the foreground markers in some objects from reaching the edge of the object, we shrunk them by
a closing followed by an erosion:

I′f gm1 = regionalMaxima(I′obrcbr),
I′f gm2 = I′f gm1 • se2,
I′f gm3 = I′f gm2 	 se2,

(9)

where • is the close operation and se2 is a disk-shaped structuring element with a radius of 5 pixels. In
addition, some connected components that have fewer than a certain number of pixels should also
be removed because this algorithm tends to leave some stray isolated pixels. We denoted by I′f gm (as
shown in Figure 8D) the binary image of the rectified foreground marker.

Then, as described in Equation (10), we took the probability map I as the gradient magnitude
image Igrad and modified it using morphological reconstruction, so only the regional minima where
I′f gm is nonzero were preserved.

Igrad = I,
Igrad2 = Igrad � I′f gm.

(10)

Lastly, we can obtain the segmentation of I by performing the watershed transform on the
modified gradient magnitude image Igrad2:

Ilabel = watershed(Igrad2). (11)

As can be seen from Figure 8E, the width of the boundary indicated by this red line was only
one pixel. This was caused by the fact that we only gave the foreground mark without giving
the background mark. This helps to integrate the synaptic segmentation information to locate
multiple sites.

3.4. MSB Identification

As shown in Figure 9, the MSBs can be positioned logically by incorporating the segmentations of
neurons and synapses. For each synapse, we can know the labels of pre- and post-synaptic neurons by
projecting the bounding box of the synapse onto the labeled segmentation of neurons. According to
the morphological characteristics of MSB, it can be concluded that the neuron shared by several
synaptic clefts was an MSB. Firstly, we located each synapse on the labeled segmentation of neurons.
The two neurons with maximum frequency labels were considered as pre- and post-synaptic neurons
corresponding to the synapse. Naturally, a neuron corresponding to multiple synapses, that is a neuron
whose label frequency was more than 2 times, was considered to be an MSB.
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Figure 9. The workflow of MSB identification. (A) Mask of synapses; (B) segmentation of neurons;
(C) mask of synapses superimposed on the segmentation of neurons.

4. Results

To demonstrate the effectiveness of the proposed algorithm, we counted the number of
detected MSBs from our dataset and compared the results with the manually-labeled ground truth.
The measurements we selected to evaluate the results of synapse detection were Precision and Recall..
Precision, also referred to as the positive predictive value, is the fraction of relevant instances among
the retrieved instances, while Recall is the fraction of relevant instances that have been retrieved over
the total amount of relevant instances:

Precision =
True Positives

True Positives + False Positives
, (12)

Recall =
True Positives

True Positives + False Negatives
. (13)

This study adopted the Jaccard similarity [31] as the evaluation measurement for segmentation,
which is defined as the size of the intersection divided by the union of the two segmentation results in
the field of image processing:

J(Si, Sj) =
|Si ∩ Sj|
|Si ∪ Sj|

, (14)

where Si and Sj represent the ground truth and segmentation, respectively. Pixel-error and
Rand-error [32] were used for evaluating the segmentation results of neurons. Pixel-error is the ratio of
the number of misclassified pixels to the total number of pixels. Rand-error is the difference between
one and the Rand-index. The Rand-index is a similarity evaluation method for two clusters that can be
used to measure segmentation due to the fact that segmentation can be regarded as a cluster of pixels.

Pixel-error =
Number of False Positive Pixels + Number of False Negative Pixels

Number of Pixels
, (15)

Rand-error = 1− Rand-index = 1− N1 + N2

C2
n

, (16)

where n is the number of pixels, N1 is the number of pairs of pixels that are in the same connected
object in the ground truth and in the same connected object in the segmentation results, and N2 is the
number of pairs of pixels that are in the different connected objects in the ground truth and in the
different connected objects in the segmentation results

Due to the limitation of computer memory, we split each original image of size 6004 pixels ×
5174 pixels into nine sub-images with a size of 2048 × 2048 in the experiment for training the Mask
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R-CNN. The overlapping pixels between adjacent sub-images in the x and y directions were 485 and
78, respectively.

For the 1602 sub-images, 630 sub-images were for training, while 270 sub-images were for
verification, and the other 702 sub-images were for testing. The neuronal membrane of the former
five images was manually annotated. The images with a size of 6004 pixels × 5174 pixels were split
into sub-images with a size of 1024 pixels × 1024 pixels, each of which was further split into four
images with a size of 512 pixels × 512 pixels. In total, 720 sub-images with a size of 512 pixels × 512
pixels were obtained, 450 sub-images for training, 150 sub-images for validation, and 120 sub-images
for testing. To improve the robustness of the networks, we enlarged the training dataset by means
of data augmentation, including rotation and flipping. In addition, reliability issues arise when the
distribution of input training data differs from the distribution of the evaluation model [33]. Therefore,
we randomly added Gaussian noise to the raw image (mean = 0, variance = 0.1) to make the model
more robust during the training phase. The training and testing tasks were conducted on a server
equipped with an Intel i7 CPU with 512 GB of main memory and a Tesla K40 GPU.

To illustrate the effectiveness of Mask R-CNN in the detection of synapses, we show the detection
results of synapses using AdaBoost. From Figure 10, we can notice that the precision and recall were
about 10.00% and 95.15%, respectively, under the default threshold (the default value of the minimum
number of adjacent rectangles in which the target was detected was three). Besides, we show the
comparison of the detection results on synapses in Figure 10 to illustrate the effectiveness of our
algorithm for assigning a 3D serial number to synapses on the serial image stack and the algorithm for
deleting pseudo-synapses and locating missed synapses. In total, we detected 13,036 synapses on the
serial image stack. We found that there were 2027 synapses that only appeared on one section, which
were considered as pseudo-synapses. With the algorithm for deleting pseudo-synapses and locating
missed synapses, we removed these pseudo-synapses and located 445 missed synapses. As shown in
Figure 10, the recall rate was increased from 97.15%–97.64%, and the accuracy rate was increased from
54.30%–62.12%.

Precision Recall

50

75

100

Pe
rc

en
t (

%
)

AdaBoost

Mask R-CNN

Mask R-CNN + our optimization strategy

Figure 10. Comparison of the detection results on synapses.

For the comparison of synapse segmentation results, the morphology-based method and
a variational model-based method [34–36] were selected. As shown in Figure 11, the mask R-CNN
was superior to the other two methods in maintaining the basic shape and edge smoothness and
was basically consistent with the manually-annotated ground truth. The Jaccard similarity of the
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segmentation results of synapses is shown in Table 1. For the comparison of the segmentation results of
neurons, the neuronal membrane prediction results of ResNet50 [37] are shown in Figure 12. Obviously,
our approach was superior to ResNet50 in maintaining the neuronal membrane. The Pixel-error and
Rand-error [32] of the segmentation results of neurons are shown in Table 2. In this way, the accuracy
of the segmentation was guaranteed when the neurons were segmented based on the probability map
of the neuronal membrane.1_80 6_37 6_21 5_31 4_21
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Figure 11. The comparison of synapse segmentation results (Row 1: raw images; Row 2: the ground
truth; Row 3: segmentation results of the morphology method; Row 4: segmentation results of the
method in [34–36]; Row 5: segmentation results of Mask R-CNN).

Table 1. Comparison of synapse segmentation.

Morphology Method Variational Model Method [34–36] Mask R-CNN

J(Synapses, Ground truth) 19.21% 18.49% 65.55%

Table 2. Comparison of neuron segmentation.

Our Method ResNet50 [37]

Pixel-error 5.61% 7.81%
Rand-error [32] 12.74% 27.34%
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Figure 12. The comparison of neuronal membrane prediction (Row 1: raw images; Row 2: the ground
truth; Row 3: prediction results of ResNet50 [37]; Row 4: prediction results of Mask R-CNN).

We list the number of misdetected MSBs and missed MSBs in 10 images in Table 3, where the
first image is from the training set and the others images are from the test set. Figure 13 shows the
identification results of MSBs on the 121th image. There were six MSBs identified, in which one MSB
was missed (Figure 13A) and two MSBs were misidentified (Figure 13C). Figure 13B shows one of the
four correctly-identified MSBs. The identified results on the whole image stack are available on the
website mentioned above. According to our statistics, each section of a size of 12 µm × 11.3 µm from
mouse cortex had about 5.1 MSBs. The precision and recall of our method on MSBs’ identification were
68.57% and 94.12%, respectively.

Figure 13. Detection results of MSBs on the 121th image. (A) A missed MSB; (B) a correctly-detected
MSB; (C) a misdetected MSB.
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Table 3. The numerical analysis of the identified results of MSBs in 10 images.

Image Manual Our Method

Total False Positive False Negative

Layer 1 8 10 2 0

Layer 21 7 10 3 0

Layer 41 6 7 1 0

Layer 61 3 5 2 0

Layer 81 3 4 2 1

Layer 101 4 7 3 0

Layer 121 5 6 2 1

Layer 141 4 7 4 1

Layer 161 8 11 3 0

Layer 178 3 3 0 0

Average 5.1 7 2.2 0.3

In Figure 14, we show three types of MSBs: Type A, one bouton to two synapses; Type B, one
bouton to three synapses; and Type C, one bouton to four synapses. From left to right are raw
images, bouton segmentations, synapse segmentations and the superimposed images of synapse
segmentations and the manually-labeled ground truth of synapses. In the superimposed images,
the yellow area is the overlapping area of segmentations and the manually-labeled ground truth,
containing correctly-predicted pixels. The red area and green area consist of misclassified pixels and
missing pixels, respectively. To evaluate the segmentation performance, we computed the Jaccard
similarity between the synapse segmentations and the manually-labeled ground truth of synapses,
as shown in Table 4. Table 5 shows the statistics of different types of MSBs: approximately 94.31%
axon-two postsynaptic sites (dendrite spines or shafts), 4.99% axon-three postsynaptic sites (dendrite
spines or shafts), and 0.70% axon-four postsynaptic sites (dendrite spines or shafts). The morphological
changes in MSBs can induce pattern and functional strength alterations in neural connections, such
as synchronous activity, learning, and memory [12,38]. Apart from the percentage ratio of different
MSBs’ profiles, the area of the synapse, especially the presynaptic bouton and PSD (postsynaptic
density) along the portion of the plasma membrane, are a characteristic feature of the synapses.
The area of the presynaptic axon boutons and PSD are also shown in Table 4. The average area of the
presynaptic axon boutons and PSD was 0.5731 µm2 and 0.0121 µm2, respectively. A previous study
indicated that structural alterations of the presynaptic boutons and the PSD led to sustained changes
in neurotransmitter release, which played an important role in synapse-specific forms of plasticity, as
well as neuropathy [39]. Deep learning method application in MSBs’ detection and recognition will be
a useful tool in neuroscience study. µ µ

Table 4. Statistics of MSBs in Figure 14.

J(Synapses, Ground truth) Area(Neuron) (µm2) Area(Synapse) (µm2) Area(Neuron)/
Area(Synapses)

A 62.54% 0.2050 0.0266 12.98%
B 57.48% 0.3634 0.0334 9.20%
C 48.40% 0.6497 0.0048 7.40%
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Figure 14. Partial recognition results of MSB. From left to right: raw image, segmentation of neuron,
segmentation of synapses, and the comparison of the segmentation of synapses and the ground truth
of synapses, where the yellow pixels represent true positives, red pixels represent false positives, and
green pixels represent false negatives.

Table 5. Statistics of different types of MSBs.

Type A Type B Type C Total

Numbers 946 50 7 1003
Ratio 94.31% 4.99% 0.7% 100%

5. Discussion

As shown in Figure 15, three types of MSBs were identified in mouse cortex: (1) axon-multiple
dendritic shaft synapse, a single axon presynaptic terminal forming synapses with two or more
postsynaptic dendritic shafts; (2) axon-multiple dendritic spine synapse, a single axon presynaptic
bouton forming synaptic contact with two or more postsynaptic dendritic spines; (3) axon-dendritic
shafts-dendritic spine, including a single axon terminal site forming synapses with one or more
dendritic shafts and one or more dendritic spines. Kim et al. suggested that different types of MSBs
have disparate effects on cerebellar synaptic transmission [40]. Therefore, it makes sense to classify
the MSBs in more detail. For example, in many cases, it is necessary to analyze different groups of
biological tissue data grouped by age or drug variables to further explore the role of different factors.
Our method can be used to analyze the differences in the number or distribution of MSBs in different
groups. Especially when the amount of data is large, the advantages of this automatic method are
more obvious. Except for ATUM-SEM, current mainstream EM technologies include serial block-face
scanning electron microscopy (SBF-SEM), serial section transmission electron microscopy (ssTEM), and
focused ion beam scanning electron microscopy (FIB-SEM). Although each of these methods has its
pros and cons, they all provide sufficient resolution to reveal invaluable information about structures
such as neurons, mitochondria, and synapses. Therefore, our approach is also suitable for EM images
of these types and data from other biological tissues.
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Figure 15. Three types of MSBs. (A) Axon-multiple dendritic shaft synapse; (B)axon-multiple dendritic
spine synapse; (C) axon-dendritic shafts-dendritic spine; where the A in yellow is the axon, Sh in blue
is the dendritic shaft, and Sp in red is the dendritic spine.)

Though the recognition accuracy of our method was acceptable under the premise of a high recall
rate, which is of great help to biologists’ research on MSBs, the proposed method will also fail in
some cases. As shown in Figure 16, the MSBs were incorrectly identified in the same area of three
adjacent images. Due to the misdetection of synapses on more than two serial images, our algorithm
for deleting pseudo-synapses and locating missed synapses failed to remove pseudo-synapses and
even mistakenly added synapses on the image “Section 122”. This was caused by the fact that the edges
of soma were too similar in morphology to the synapses, which made them difficult to distinguish.
In order to solve this problem, we needed to improve the robustness of the algorithm in synaptic
detection. Similarly, over-segmentation or under-segmentation of neurons can also lead to missed or
misdetected MSBs.

As mentioned above, our method relied on synaptic detection and neuron segmentation, so
improving algorithm performance was one of our directions for improvement. Meanwhile, two
networks that handled synapses and membrane structures separately were trained in this study.
From the perspective of complexity, if the two networks can be combined into one, that is designing
a multi-class segmentation network, the efficiency of the recognition algorithm would be greatly improved.
The difficulty is that the synaptic cleft is located on the membrane of the neuron and is very prone
to confusion.

Figure 16. Misidentified MSBs on three adjacent images.

6. Conclusions

In this paper, we presented an approach for identifying MSBs on a serial EM image stack of mouse
cortex. According to the morphological characteristics of MSB, synapses and neurons were segmented
in parallel on each image. For the detection and segmentation of synapses, Mask R-CNN was used
followed by an algorithm for filtering the pseudo-synapses and making up the missed synapses.
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For neuron segmentation, an effective residual network was first used for predicting the neuronal
membrane. Then, a morphology-based method was adopted to obtain segmentations of neurons from
the probability map of the neuronal membrane outputted from the previous step. The MSBs, finally,
were identified by incorporating the segmentations of synapses and neurons. The experimental results
showed that the accuracy of recognition was acceptable under the premise of a high recall rate, which
is of great help to biologists’ research on MSBs. The application and directions for improvement of the
proposed method were also discussed.
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