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Abstract: This paper presents a novel algorithm for structural reliability analysis based on the finite
step length and Armijo line search to remove the drawbacks of the Hasofer–Lind and Rakwitz–Fiessler
(HL-RF) algorithm that may be subjected to non-convergence in the first-order reliability method
(FORM). Initially, the sensitivity factor with finite step length is introduced for preventing the iterative
process of the algorithm from entering a periodic loop. Subsequently, an optimization method based
on the sufficient descent condition with the Armijo line search technique is proposed. With that,
the initial step length and adjusting coefficient are optimized to enhance the applicability of the
algorithm emphatically for highly nonlinear functions. A comparison analysis is carried out between
the proposed algorithm and existing FORM-based algorithms to validate the robustness and efficiency
of the proposed algorithm. The results of this demonstrate that the proposed algorithm is superior to
the HL-RF algorithm in terms of robustness and surpass the other existing FORM-based algorithms
in connection to efficiency.

Keywords: reliability analysis; first-order reliability method; HL-RF algorithm; finite step length;
Armijo line search

1. Introduction

Traditional structural analysis process generally starts with the establishment of reasonable
mechanical models, and then obtains the responses based on the deterministic structural parameters
and certain external loads [1,2]. However, a number of uncertainties of involved parameters are
unneglectable in practical engineering, which may lead the results of reliability analysis to considerable
deviations [3–5]. To assess these uncertainties, the probability-based reliability analysis methods spring
up and then are maturely applied to a number of sectors and societies [6–9].

The main work in structural reliability analysis is to obtain the failure probability by solving the
following multi-dimensional integration:

P f = Pr
{
g(X) < 0

}
=

∫
g(X)<0

fX(X)dX (1)

where Pr{·} is the probability, X = (X1, X2, · · · , Xn) are the basic random variables, g(X) is the limit
state function (LSF) and fX(X) is the joint probability density function (PDF) of X. Generally, it is
arduous to calculate the multiple integral in Equation (1) directly. The commonly used methods are
approximate methods and simulation methods [10]. The approximate methods include the first-order
reliability method (FORM) [11,12] and the second-order reliability method (SORM) [13,14], which
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are defined under the concept of the first and second-order Taylor expansion of the LSF, respectively.
The simulation methods, such as direct Monte-Carlo simulation (MCS) [15,16], line sampling [17],
and importance sampling [18,19] evaluate the reliability through a considerable amount of stochastic
simulations. In engineering practice, the FORM is used the most because of its simplicity and the good
balance between accuracy and efficiency.

The Hasofer–Lind and Rakwitz–Fiessler (HL-RF) algorithm, which is proposed by Hasofer and
Lind and then is extended by Rakwitz and Fiessler [11,12], is a classical and widely used algorithm in the
FORM. However, it may converge in a low speed or even fail to converge any more under the situation
that highly nonlinear LSFs are involved. This limitation inspires researchers to devote their efforts to
develop algorithms both in academia and the engineering practice sectors. Liu et al. [20] developed
a modified HL-RF (MHL-RF) algorithm by introducing a stepsize parameter. The merit function,
based on the augmented Lagrange method, is used to find the proposed stepsize. Zhang et al. [21]
constructed a simpler merit function; the proposed algorithm named as iHL-RF is superior to the
MHL-RF algorithm in efficiency. Santos et al. [22] established a differentiable merit function, and
the Wolfe condition is implemented to search the stepsize. Santosh et al. [23] presented a stepsize
search method for the MHL-RF algorithm based on the variant of Goldstein’s rule. These stepsize
determinations have increased a lot the computational effort.

Yang [24] employed chaotic dynamics analysis to construct a stability transformation method
(STM) for removing the chaos phenomenon of the HL-RF algorithm. The convergence rate, however,
proved to be slow. Keshtegar [25] proposed the chaotic conjugate STM algorithm based on the conjugate
gradient method. Meng et al. [26] established a directional STM algorithm using the chaos feedback
control approach. Keshtegar et al. [27] presented a relaxed HL-RF (RHL-RF) algorithm by introducing
the relaxed coefficient, which is dynamically calculated by the relaxed approach. As a continuation of
the research, Meng et al. [28] developed the adaptive STM and enhanced adaptive STM algorithms by
transforming the calculation of the most probable failure points into finding the most probable target
points. An inappropriate control factor may lead to inefficiency of these algorithms.

To improve the robustness of the HL-RF algorithm, Gong and Yi [29] put forward a finite step
length (FSL) algorithm, although with a low computational efficiency as a consequence of inflexible
step lengths. Then, efforts were made by Roudak et al. [30] and Keshtegar et al. [31] to improve the
convergence rate of partial functions by finding a better choice of the step length of the FSL algorithm.
Meanwhile, Keshtegar [32] proposed a conjugate HL-RF (CHL-RF) algorithm based on the conjugate
gradient direction, and some relevant works were also given [33,34]. The CHL-RF algorithm can
generally improve the convergence rate, but its performance depends strongly on the choice of the
conjugate gradient factor and step length. In addition, there are other algorithms similar to the FORM,
such as the first-order saddlepoint approximation methods [35], HLRF-BFGS algorithm [36], and
hybrid particle swarm optimization algorithm [37].

Robustness and efficiency of the iterative algorithms are the main indexes of the FORM. Benefitting
from simplicity and high efficiency, the HL-RF algorithm is the most frequently selected for general
reliability analysis. LSFs of structures, however, tend to be increasingly high-dimensional with highly
nonlinear functions as a consequence of structure complexity and the scale incremental in an incredible
speed, which proved to result in the HL-RF algorithm failing to converge any more. The improved
algorithms, e.g., STM, HLRF-BFGS, and RHL-RF algorithms, are alternative options with low efficiency,
indicating that the mentioned developed algorithms are still limited in aspects of low robustness and
poor efficiency. Motivated by this, this paper puts forward a new algorithm, namely, adaptive finite
step length (AFSL), for structural reliability analysis based on the FSL algorithm and the Armijo line
search method. In terms of the developed algorithm, a step length together with an Armijo-line-search
based optimization method are introduced to improve the robustness and guarantee the efficiency of
the algorithm, respectively. Besides, the initial step length and adjusting coefficient are optimized to
ensure applicable of the algorithm in nonlinear scenarios.
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The structure of the paper is organized as follows. Section 2 presents the proposed AFSL algorithm.
Numerical analysis of the robustness and efficiency of the developed algorithms is illustrated in Section 3.
Section 4 is the discussions, and the conclusions appear at the end.

2. Proposed Adaptive Finite Step Length Algorithm

2.1. HL-RF Algorithm

Due to its simplicity and efficiency, the HL-RF algorithm [20] is a widely used algorithm to
estimate the failure probability. It includes the following three main steps.

(1) Transform the random variables X into standard normal random variables U by Rosenblatt or
Nataf transformation techniques [26], which is expressed as

U = Φ−1[FX(X)] (2)

where Φ−1 is the inverse cumulative distribution function (CDF) of the standard normal distribution,
FX is the CDF of X, and U = (U1, U2, · · ·Un).

(2) Find the most probable point (MPP) U∗ by using the following iterative formulation:

Uk+1 =
G
(
Uk

)
−∇

TG
(
Uk

)
Uk∥∥∥∥∇G

(
Uk

)∥∥∥∥ αk (3)

where ‖·‖ is the norm of a vector, k is the counter of iteration, ∇G
(
Uk

)
is the gradient of G

(
Uk

)
, and αk is

the sensitivity factor that can be calculated by

αk = −
∇G

(
Uk

)∥∥∥∥∇G
(
Uk

)∥∥∥∥ (4)

(3) Estimate the failure probability by

P f ≈ Φ(−β) (5)

where Φ is the CDF of the standard normal distribution and β = ‖U∗‖ is the reliability index.
However, the HL-RF algorithm may fail to converge for highly nonlinear functions. As shown

in Figure 1, assume that Uk is obtained after the iteration of step k, Uk+1 is determined based on the
sensitivity factor αk and the limit state surface. It is obviously that the line L1 is parallel to the negative
gradient direction at point Uk. If the negative gradient direction at point Uk+1 is parallel to the line L2,
we have Uk+2 = Uk and the iterative process is caught in a periodic loop. Several improved algorithms,
such as the STM [24], HLRF-BFGS [36], and RHL-RF [27] algorithms, have been developed to overcome
the non-convergence of HL-RF algorithm, but more computational efforts are needed.

2.2. Adaptive Finite Step Length Algorithm

To make the algorithm robust and efficient, this paper introduces a step length parameter into the
sensitivity factor. As shown in Figure 2, the sensitivity factor is defined as

αk =
Uk

a∥∥∥Uk
a

∥∥∥ (6)

where Uk
a is the auxiliary point along with the negative gradient direction at point Uk, which can be

calculated by
Uk

a = Uk
− λ∇G

(
Uk

)
(7)
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where λ > 0 is the step length.

Figure 1. Illustration of the periodic oscillation of the Hasofer–Lind and Rakwitz–Fiessler
(HL-RF) algorithm.

Figure 2. Iterative process of the sensitivity factor with step length.

The new point Uk+1, which is the intersection point of line L and limit state surface, can be obtained
by Uk+1 = βk+1αk. In practical engineering, the LSFs of structures are generally too complex to solve
directly the reliability index βk+1 by G

(
βk+1αk

)
= 0. On this basis, the first-order Taylor expansion of

the LSFs is used, and G
(
βk+1αk

)
= 0 is approximated as

G
(
Uk

)
+∇TG

(
Uk

)(
βk+1αk

−Uk
)
≈ 0 (8)

The reliability index is accordingly computed as

βk+1
≈

∇
TG

(
Uk

)
Uk
−G

(
Uk

)
∇TG

(
Uk

)
αk

(9)
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Consequently, the iterative formulation can be summarized as

Uk+1 =
∇

TG
(
Uk

)
Uk
−G

(
Uk

)
∇TG

(
Uk

)
αk

αk (10)

where,

αk =
Uk
− λ∇G

(
Uk

)∥∥∥∥Uk
− λ∇G

(
Uk

)∥∥∥∥ (11)

Noted that if λ→∞ , Equation (11) becomes

lim
λ→∞
αk = lim

λk→∞

Uk/λ−∇G
(
Uk

)∥∥∥∥Uk/λ−∇G
(
Uk

)∥∥∥∥ = −
∇G

(
Uk

)∥∥∥∥∇G
(
Uk

)∥∥∥∥ (12)

Equation (12) indicates that the HL-RF algorithm is a special case of the above iterative formulation
with infinite step length. Therefore, it is named as FSL algorithm [29].

Compared with the HL-RF algorithm, the same simple FSL algorithm is better in robustness.
It does not need the extra computational effort to calculate the step length. However, the step length is
hard to determine properly for various nonlinear LSFs. For example, if the LSF is highly nonlinear, a
large step length may make the algorithm fail to converge; otherwise, the convergence rate may be
slow. To address these issues, an adaptive optimization method is proposed for FSL algorithm based
on the sufficient descent condition with the Armijo line search in this paper.

According to the sufficient descent condition [33], the adjustment of step length is expressed as

λk+1 =

{
λk

∥∥∥Uk+1
−Uk

∥∥∥ < ∥∥∥Uk
−Uk−1

∥∥∥
cλk

∥∥∥Uk+1
−Uk

∥∥∥ ≥ ∥∥∥Uk
−Uk−1

∥∥∥ (13)

where c is the adjusting coefficient, and a recommended value for c in this paper is between 0.5~0.6.
In Equation (13), if

∥∥∥Uk+1
−Uk

∥∥∥ ≥ ∥∥∥Uk
−Uk−1

∥∥∥, the step length is set as λk+1 = cλk. In the extreme
case that

∥∥∥Uk+1
−Uk

∥∥∥ >> ∥∥∥Uk
−Uk−1

∥∥∥, Uk+1 is the point with a large deviation; this deviation will
make the calculation inefficient, especially when the point nears the MPP. Therefore, such iteration
points need to be optimized. The optimization model is defined as

Uk+1
∗ = Uk + θkdk (14)

where Uk+1
∗ is the optimized iteration point of Uk+1, θk is the optimized coefficient, and dk is the search

direction that given by
dk = Uk+1

−Uk (15)

Theoretically, the optimized coefficient should minimize the value of the LSF along the search
direction. However, it requires the exact line search to result in considerable computational effort [38–40].
For most optimization algorithms, the convergence rate does not depend on the exact search process.
Therefore, the inexact line search can not only guarantee the acceptable reduction of the objective
function but also make the final iteration sequence convergence, indicating which is powerful.
The Armijo line search method [31] is defined as

G
(
Uk + βbdk

)
≤ G

(
Uk

)
+ σβb

∇
TG

(
Uk

)
dk (16)

where σ, β ∈ (0, 1) are pre-selected parameters, b is the smallest nonnegative integer satisfying the
inequality, and θ = βb.
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To ensure the global convergence, the merit function proposed by Zhang and Kiureghian [21] is
used, which is given as

m(U) =
1
2
‖U‖+ ρ

∣∣∣G(U)
∣∣∣ (17)

where ρ is a constant and should satisfy ρ > ‖U‖/∇G(U).
According to Equations (16) and (17), the optimized coefficient θk can be calculated by

θk = max
b

{
βb

∣∣∣∣m(
Uk + βbdk

)
−m

(
Uk

)
< 0

}
(18)

where β = 0.5 and ρ = ‖U‖/∇G(U) + 10 are used in the proposed method.
In addition, the initial step length is generally selected as 50 in the FSL algorithm [29], which is

unsuitable to a number of LSFs. In this paper, the initial step length is empirically defined as

λ0 = min

 50∥∥∥∥∇G
(
U0

)∥∥∥∥ , 50

 (19)

where U0 is the initial point, and the mean point in standard normal space is the same as the initial point.
The convergence properties of the AFSL algorithm are analyzed as follows. Existing a step length

λk makes
∥∥∥Uk+1

−Uk
∥∥∥ < ∥∥∥Uk

−Uk−1
∥∥∥. Let

∥∥∥Uk+1
−Uk

∥∥∥ = tk
∥∥∥Uk
−Uk−1

∥∥∥ with 0 < tk < 1, we have

∥∥∥Uk+1
−Uk

∥∥∥ = tk
∥∥∥Uk
−Uk−1

∥∥∥ = tktk−1
∥∥∥Uk−1

−Uk−2
∥∥∥ = · · · = k

Π
i=1

ti
∥∥∥U1
−U0

∥∥∥ (20)

where lim
k→∞

k
Π
i=1

ti
≈ 0. Therefore, lim

k→∞

∥∥∥Uk+1
−Uk

∥∥∥ ≈ 0, showing the convergence of the proposed algorithm.

In addition, according to Equation (7), we have

Uk+1
i

Uk+1
j

=
αk

i

αk
j

=

Uk
i − λ

k
∂G

(
Uk

)
∂Ui

Uk
j − λ

k
∂G

(
Uk

)
∂U j

(21)

where i, j = 1, 2, · · · , n and i , j.
Knowing that lim

k→∞

∥∥∥Uk+1
−Uk

∥∥∥ ≈ 0, Equation (21) can be modified as

lim
k→∞

Uk+1
i

lim
k→∞

Uk+1
j

=

lim
k→∞

αk
i

lim
k→∞

αk
j

=

−

∂G
(
Uk

)
∂Ui

−

∂G
(
Uk

)
∂U j

(22)

Therefore,

lim
k→∞
αk = −

∇G
(
Uk

)∥∥∥∥∇G
(
Uk

)∥∥∥∥ (23)

The vector α∞ is orthogonal to the limit state surface, U∞ is the MPP. According to the above, the
proposed algorithm can find the MPP easily.
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2.3. Summary of the Proposed Algorithm

Three features of the proposed AFSL algorithm for reliability analysis are concluded as:
(i) inheritance, that is, the proposed algorithm process features of the FSL algorithm are as simple as
those of the HL-RF algorithm but superior in robustness; (ii) efficiency, the proposed algorithm is more
efficient than the FSL algorithm due to the iteration point adaptive optimization method based on
the Armijo line search being employed; (iii) availability, the AFSL algorithm is suitable for various
nonlinear LSFs by establishing the relationship between the initial step length and the initial iteration
point. Consequently, the proposed algorithm can efficiently deal with various reliability analysis
problems, especially for highly nonlinear functions. The framework of the proposed AFSL algorithm
is shown in Figure 3, and the main steps are summarized as follows:

Figure 3. Framework of the proposed AFSL algorithm.

(1) Let k = 0, and set the start point X0.
(2) Transform the random variables X into standard normal random variables U by Equation (2).
(3) Calculate the sensitivity factor αk by Equation (11).
(4) Determine the new point Uk+1 based on Equation (10).
(5) Check convergence. If

∥∥∥Uk+1
−Uk

∥∥∥/
∥∥∥Uk

∥∥∥ ≤ ε (ε is a small positive number), then stop,
β =

∥∥∥Uk+1
∥∥∥ and go to step (8); otherwise, go to step (6).

(6) If k = 0, set k = k + 1 and go to step (3); otherwise, go to step (7).
(7) If

∥∥∥Uk+1
−Uk

∥∥∥ < ∥∥∥Uk
−Uk−1

∥∥∥, set k = k + 1 and go to step (3); otherwise, optimize the iteration
point Uk+1 based on Equation (14), set λk = cλk and k = k + 1, go to step (3).
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(8) The failure probability is estimated by Equation (5).

3. Illustrative Examples

Five nonlinear examples are given, in this section, to demonstrate the robustness and efficiency of
the proposed AFSL algorithm by comparisons with the HL-RF [20], STM [24] (with λ = 0.1 and C = I),
HLRF-BFGS [36], RHL-RF [27], and FSL [29] (with λ = 50 and c = 1.5) algorithms. The parameter in
the proposed AFSL algorithm is set as c = 0.55. The same stopping criterions (ε = 10−6) are used for
all algorithms.

3.1. Mathematical Examples

Example 1. A highly nonlinear function is given as [26]

G1 = X4
1 + 2X4

2 − 20 (24)

where X1 and X2 are normal random variables with µ1 = µ2 = 10 and σ1 = σ2 = 5.

The number of iterations, G-evaluations, ∇G-evaluations, and reliability index for all algorithms
are listed in Table 1. Figure 4 shows the iterative processes of reliability index. According to Table 1,
the STM, RHL-RF, FSL, and proposed AFSL algorithms converge to stable solutions, but the HL-RF
and HLRF-BFGS algorithms fail to converge. The HL-RF algorithm produces the periodic solutions of
{0.9267, 0.9863}. The results calculated by MCS with 106 samples are P f = 1.87× 10−3 and β = 2.8998.
The AFSL algorithm converges to the stable result as β = 2.3842, which is more accurate than the other
algorithms. In addition, according to the number of iterations, G-evaluations and ∇G-evaluations, they
have shown that the proposed algorithm is more efficient than the other algorithms.

Table 1. Results of different algorithms for Example 1.

Algorithms Iterations G-Evaluations ∇G-Evaluations β Pf

HL-RF – – – – –
STM 154 154 154 2.3654 9.01 × 10−3

HLRF-BFGS – – – – –
RHL-RF 181 361 181 2.3654 9.01 × 10−3

FSL 108 108 108 2.3655 9.00 × 10−3

Proposed AFSL 26 47 26 2.3842 8.56 × 10−3

Figure 4. Iterative processes of reliability index for Example 1.
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Example 2. A convex performance function is given by [29]

G2 =
1
P

ln
{
exp[P(1 + X1 −X2)] + exp[P(5− 5X1 −X2)]

}
(25)

where P = 1, both X1 and X2 are standard normal variables. Its limit state surface is shown in Figure 5.

Figure 5. The limit state surface for Example 2.

The iterative processes of reliability index for all compared algorithms are given in Table 2.
The iterative processes of reliability index are shown in Figure 6. The failure probability computed by
MCS with 106 samples is 3.43 × 10−3 (β = 2.7035). From Table 2 and Figure 6, the HL-RF algorithm fails
to converge, for its iterative process falls into a periodic loop. The STM, HLRF-BFGS, RHL-RF, FSL,
and the proposed AFSL algorithms converge to stable results, i.e., β = 2.2995, P f = 1.07× 10−2 and
X∗ = (0.8641, 2.1310). The number of iterations is 119, 16, 106 43, and 17, respectively. The proposed
AFSL and HLRF-BFGS algorithms are more efficient than the STM, RHL-RF, and FSL algorithms.

Table 2. Results of different algorithms for Example 2.

Algorithms Iterations G-Evaluations ∇G-Evaluations β Pf

HL-RF – – – – –
STM 119 119 119 2.2995 1.07 × 10−2

HLRF-BFGS 16 16 16 2.2995 1.07 × 10−2

RHL-RF 106 211 106 2.2995 1.07 × 10−2

FSL 43 43 43 2.2995 1.07 × 10−2

Proposed AFSL 17 26 17 2.2995 1.07 × 10−2

Figure 6. Iterative processes of reliability index for Example 2.
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3.2. Structural/Mechanical Examples

Example 3. A vehicle side-impact with the performance function is expressed as [26]

G3 = 0.489X3X7 + 0.843X5X6 − 0.0432X9X10 + 0.0556X9X11 + 0.000786X2
11 − 0.75 (26)

where Xi(i = 1, · · · , 11) are normal variables, for X1 ∼ X7, µ = 1, and σ = 0.05, for X8 ∼ X9, µ = 0, 3 and
σ = 0.006, and for X10 ∼ X11, µ = 0, and σ = 10.

Results of the HL-RF, STM, HLRF-BFGS, RHL-RF, FSL, and the proposed AFSL algorithms
are listed in Table 3. The iterative processes of reliability index are shown in Figure 7. The failure
probability based on the MCS with 107 samples is 1.24 × 10−4 (β = 3.6643). According to Table 3 and
Figure 7, the reliability indexes of all algorithms converge to 3.4975, except the HL-RF and HLRF-BFGS
algorithms. The HL-RF algorithm produces the periodic solutions of {1.2957, 3.1757, 2.0351, 1.9180}.
The number of iterations, G-evaluations and ∇G-evaluations prove that the proposed AFSL algorithm
is more efficient than other algorithms.

Table 3. Results of different algorithms for Example 3.

Algorithms Iterations G-Evaluations ∇G-Evaluations β Pf

HL-RF – – – – –
STM 114 114 114 3.4975 2.35 × 10−4

HLRF-BFGS – – – – –
RHL-RF 120 239 120 3.4975 2.35 × 10−4

FSL 64 64 64 3.4975 2.35 × 10−4

Proposed AFSL 36 39 36 3.4975 2.35 × 10−4

Figure 7. Iterative processes of reliability index for Example 3.

Example 4. A ten-bar truss structure is shown in Figure 8. Based on the tip displacement at Node 3, its LSF is
given by [27]

G4 = d0 −D (27)
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where d0 = 0.11(m) is the allowable value, and the maximum displacement D is computed by

D =
PL

A1A2E



4
√

2A3
1

(
24A2

1 + A2
3

)
+ A3

3

(
7A2

1 + 26A2
2

)
4A2

2

(
8A2

1 + A2
3

)
+ 4
√

2A1A2A3(3A1 + 4A2) + A1A2
3(A1 + 6A2)

+

4A1A2A3
(
20A2

1 + 76A1A2 + 10A2
3 + 25

√
2A1A3 + 29

√
2A2A3

)
4A2

2

(
8A2

1 + A2
3

)
+ 4
√

2A1A2A3(3A1 + 4A2) + A1A2
3(A1 + 6A2)


(28)

The relevant parameters and their distribution are described in Table 4.

Figure 8. Ten-bar truss structure.

Table 4. Statistics of random variables in Example 4.

Variable Distribution Mean Coefficient of Variation Dimension

A1 Normal 8.39 × 10−3 0.05 m2

A2 Normal 1.29 × 10−3 0.05 m2

A3 Normal 5.81 × 10−3 0.05 m2

P Gumbel 4.45 × 105 0.1 N
L Normal 9.14 0.05 m
E Log-normal 6.89 × 104 0.05 MPa

The results of the HL-RF, STM, HLRF-BFGS, RHL-RF, FSL, and the proposed AFSL algorithms are
given in Table 5. It can be seen that all algorithms converge to the point X∗ = (8.30 × 10−3, 1.29 × 10−3,
5.75 × 10−3, 4.85 × 105, 9.33, 6.75 × 104) with P f = 0.1258 (β = 1.1464). The result is close to P f = 0.1345
(β = 1.1055), which is computed by MCS with 105 samples. The number of iterations of the HL-RF and
proposed AFSL algorithms is 7, which is more efficient than the other algorithms in this example.

Table 5. Convergent results of different algorithms for Example 4.

Algorithms HL-RF STM HLRF-BFGS RHL-RF FSL AFSL

A1(m2) 8.30 × 10−3 8.30 × 10−3 8.30 × 10−3 8.30 × 10−3 8.30 × 10−3 8.30 × 10−3

A2(m2) 1.29 × 10−3 1.29 × 10−3 1.29 × 10−3 1.29 × 10−3 1.29 × 10−3 1.29 × 10−3

A3(m2) 5.75 × 10−3 5.75 × 10−3 5.75 × 10−3 5.75 × 10−3 5.75 × 10−3 5.75 × 10−3

P(N) 4.85 × 105 4.85 × 105 4.85 × 105 4.85 × 105 4.85 × 105 4.85 × 105

L(m) 9.33 9.33 9.33 9.33 9.33 9.33
E(MPa) 6.75 × 104 6.75 × 104 6.75 × 104 6.75 × 104 6.75 × 104 6.75 × 104

β 1.1464 1.1464 1.1464 1.1464 1.1464 1.1464
P f 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258

Iterations 7 115 127 20 9 7
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Example 5. A two-degree of freedom dynamic system is shown in Figure 9. According to the force capacity of
the secondary spring, the LSF is expressed as [34]

G5 = Fs −Ks × P
(
E
[
x2

s

])1/2
(29)

where Fs is the force, P = 3 is the peak factor and mean-square relative displacement of the secondary spring
E
[
x2

s

]
is computed by

E
[
x2

s

]
=

πS0

4ξsωs

 ξaξs

ξpξs
(
4ξ2

a + θ2
)
+ γξ2

a

×

(
ξpω3

p + ξsω3
s

)
ωp

4ξaω4
a

 (30)

where S0 is intensity of the white noise, γ = Ms/Mp, ωp =
√

Kp/Mp,ωs =
√

Ks/Ms, ωa =
(
ωp +ωs

)
/2,

ξa =
(
ξp + ξs

)
/2 and θ =

(
ωp −ωs

)
/ωa. The information of eight random variables with lognormal

distribution is given in Table 6.

Figure 9. Two-degrees of freedom dynamic system.

Table 6. Statistics of random variables in Example 5.

Random Variable Mp Ms Kp Ks ξp ξs Fs S0

Mean 1 0.01 1 0.01 0.05 0.02 15 100
Standard
Deviation 0.1 0.001 0.2 0.001 0.02 0.01 1.5 10

The number of iterations, G-evaluations, ∇G-evaluations, and reliability index for all algorithms
are listed in Table 7. The iterative processes of reliability index are shown in Figure 10. Using the MCS
with 106 samples, the failure probability is obtained as 5.04 × 10−3 (β = 2.5733). The HL-RF algorithm
has failed to converge. It yields the periodic solutions of {3.2644, 3.6503}. The other algorithms converge
to the stable results as β = 2.1002, P f = 1.79 × 10−2 and X∗ =(1.02, 9.98 × 10−3, 1.06, 1.04 × 10−2,
2.67 × 10−2, 1.16 × 10−2, 13.61, 104.19). However, the proposed AFSL algorithm is more efficient than
the other algorithms.

Table 7. Results of different algorithms for Example 5.

Algorithms Iterations G-Evaluations ∇G-Evaluations β Pf

HL-RF – – – – –
STM 187 187 187 2.1002 1.79 × 10−2

HLRF-BFGS 294 294 294 2.1002 1.79 × 10−2

RHL-RF 144 287 144 2.1002 1.79 × 10−2

FSL 256 256 256 2.1002 1.79 × 10−2

Proposed AFSL 82 94 82 2.1002 1.79 × 10−2
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Figure 10. Iterative processes of reliability index for Example 5.

4. Discussions

In the previous section, five nonlinear examples were used to prove the performance of the
proposed AFSL algorithm in both effectiveness and convergence aspects, by comparison the calculated
reliability index and number of iterations with the HL-RF, STM, HLRF-BFGS, RHL-RF, and FSL
algorithms are used for comparisons in each example. The results globally are listed in Table 8. It can
be concluded that the HL-RF algorithm has the worst robustness. The HL-RF algorithm converges
only in Example 4. In Examples 1–3 and 5, its iterative processes are trapped in a periodic loop.
The HLRF-BFGS algorithm fails to converge in Examples 1 and 3. Furthermore, its convergence rate
is the lowest in Examples 4 and 5. Other improved HL-RF algorithms, i.e., STM, RHL-RF, and FSL
algorithms, converge to stable results in all examples. However, they are inefficient. According to the
convergent results of Examples 1–5, the proposed AFSL algorithm is more robust than the HL-RF and
HLRF-BFGS algorithms, and more efficient than the STM, RHL-RF, and FSL algorithms. Consequently,
the proposed AFSL algorithm has the best convergence performance.

Table 8. Convergent results (i.e., reliability index\iterations) for Examples 1–5.

Algorithms Example 1 Example 2 Example 3 Example 4 Example 5

HL-RF – – – 1.1464\7 –
STM 2.3654\154 2.2995\119 3.4975\114 1.1464\115 2.1002\187

HLRF-BFGS – 2.2995\16 – 1.1464\127 2.1002\294
RHL-RF 2.3654\181 2.2995\106 3.4975\120 1.1464\20 2.1002\144

FSL 2.3655\108 2.2995\43 3.4975\64 1.1464\9 2.1002\256
Proposed AFSL 2.3842\26 2.2995\17 3.4975\36 1.1464\7 2.1002\82

Noted that the proposed AFSL algorithm is developed based on the FSL algorithm. To illustrate
its advantages, a further comparison is made between the FSL algorithm and the proposed AFSL
algorithm with the same parameters (λ = 35 and c = 1.4), as tabulated in Table 9. In Example 4,
the numbers of G and ∇G evaluations are the same for that the iteration points are non-adjustable.
However, in Examples 1–3 and 5, the numbers of G and ∇G evaluations have reduced significantly.
Figure 11 shows the details of the iterative processes for Example 3. Therefore, the computational effort
is effectively decreased by the proposed optimization method. This adaptive optimization method in
the iterative process can also be applied to other similar algorithms.
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Table 9. Comparisons (i.e., G-evaluations\∇G -evaluations) of the FSL and AFSL algorithms.

Algorithms Example 1 Example 2 Example 3 Example 4 Example 5

FSL 121\121 55\55 184\184 9\9 290\290
Proposed AFSL 114\48 50\36 32\29 9\9 113\82

Figure 11. The comparisons of iterative process for Example 3.

The selection of adjusting coefficient in the proposed AFSL algorithm is studied as well. Figure 12
shows the number of iterations of the proposed AFSL algorithm with different adjusting coefficients.
It can be seen that the adjusting coefficient c does not have significant effects on the iterations of the
proposed AFSL algorithm. For the recommended value of c ∈ [0.5, 0.6], the proposed AFSL algorithm
can converge effectively.

Figure 12. Iterations of the proposed AFSL algorithm with different adjusting coefficients.
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5. Conclusions

In this paper, a robust and efficient algorithm for structural reliability analysis, namely, the AFSL
algorithm is developed. The algorithm can solve the problems like the non-convergence issue for the
HL-RF algorithm and the inefficiency of several existing FORM-based algorithms.

Firstly, a step length parameter is introduced to the HL-RF algorithm which avoids the iterative
process from falling into periodic loop and then makes the proposed algorithm more robust. Secondly,
an adaptive iteration point optimization method is proposed based on the sufficient descent condition
with the Armijo line search, aiming at optimizing the iteration points with large errors in the iterative
process by which the proposed algorithm can be more efficient than many existing FORM-based
algorithms. Finally, the initial step length and the adjusting coefficient are optimized, making the
proposed algorithm more suitable for various nonlinear functions. The robustness and efficiency of the
proposed AFSL algorithm are concluded from the results comparison with several existing FORM-based
algorithms, e.g., the HL-RF, STM, HLRF-BFGS, RHL-RF, and FSL algorithms. The robustness and
efficiency of the proposed algorithm is verified by five selected functions from the published literature,
and those functions are receiving attention in both academia and engineering practice.

However, it should be mentioned that the accuracy of the proposed algorithm may be hard
to guarantee for highly nonlinear functions. The error is mainly caused by the first-order Taylor
approximation of the LSF, which is an inherent problem of the FORM. Therefore, more accurate
methods, such as the advanced line sampling and importance sampling, should be combined to
improve the accuracy of the proposed algorithm in the future.
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