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Abstract: Previous studies have attempted to find autonomic differences of the cardiac system between
the congestive heart failure (CHF) disease and healthy groups using a variety of algorithms of pattern
recognition. By comparing previous literature, we have found that there are two shortcomings:
(1) Previous studies have focused on improving the accuracy of models, but the number of features
used has mostly exceeded 10, leading to poor generalization performance; (2) Previous works rarely
distinguish the severity levels of CHF disease. In order to make up for these two shortcomings,
we proposed two models: model A was used for distinguishing CHF patients from the normal
people; model B was used for diagnosing the four severity levels of CHF disease. Based on long-term
heart rate variability (HRV) (40000 intervals–8h) signals, we extracted linear and non-linear features
from the inter-beat-interval (IBI) series. After that, the sequence forward selection algorithm (SFS)
reduced the feature dimension. Finally, models with the best performance were selected through the
leave-one-subject-out validation. For a total of 113 samples of the dataset, we applied the support
vector machine classifier and five HRV features for CHF discrimination and obtained an accuracy
of 97.35%. For a total of 41 samples of the dataset, we applied k-nearest-neighbor (K = 1) classifier
and four HRV features for diagnosing four severity levels of CHF disease and got an accuracy of
87.80%. The contribution in this work was to use the fewer features to optimize our models by the
leave-one-subject-out validation. The relatively good generalization performance of our models
indicated their value in clinical application.
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1. Introduction

Heart failure is the disability of the heart in pumping blood to the body efficiently [1]. Many
previous works have confirmed that autonomic imbalance is the leading cause of congestive heart
failure (CHF) disease. The autonomic nervous system (ANS) consists mainly of two branches, the
sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS) [2,3]. For the
subjects in the normal group, the activities of two nervous systems are in a state of dynamic equilibrium.
However, studies have shown that CHF breaks this equilibrium state due to excessive sympathetic
activity [4]. The New York Heart Association (NYHA) has classified CHF into four scales based on the
severity of the disease, NYHA I, II, III, and IV, respectively. Some papers have classified patients with
mild heart failure (NYHA I or II) as low-risk patients and patients with severe heart failure (NYHA III
or IV) as high-risk patients [5]. For patients with mild heart failure, the excessive activation of SNS and
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the continuous reduction of PNS activity would lead to an extreme imbalance of autonomic nerves if
there is no suitable treatment, which would inevitably lead to further deterioration of the disease [5].

Heart rate variability (HRV), which represents the variation of inter-beat-interval, provides very
useful information on the dynamics of heartbeat behavior [6,7]. Previous researchers have typically
extracted linear and nonlinear HRV features from the inter-beat-interval (IBI) signals. The linear
features are the signal parameters in time-domain, frequency-domain, and time-frequency domain [7–9].
In order to reveal other valuable information contained in the IBI signal, some researchers have used the
complexity analysis method to extract nonlinear indicators [10–20]. In 2003, Asyali et al. [21] applied
Bayesian classifiers and nine long-term measurements for CHF discrimination with an accuracy of
93.24%. In 2007, İşler et al. [22] utilized eight features of wavelet entropy and classical short-term
HRV measurements and k-nearest-neighbor classifiers for CHF diagnosis and achieved an accuracy of
96.39%. In 2012, Yu et al. [23] applied support vector machine (SVM) classifier and genetic algorithm
(GA) for CHF recognition and achieved an accuracy of 98.79%. In their work, 16 features by using
bi-spectral heart rate (HR) analysis of short-term measurements were applied for CHF recognition [23].
In 2016, Acharya et al. [24] applied empirical mode decomposition (EMD) for automated identification
of congestive heart failure. Using 22 short-term HRV measurements with support vector machines,
they achieved an accuracy of 97.64% [24]. In 2017, Mahajan et al. [25] applied Ensemble classifiers and
10 short-term HRV measurements for CHF discrimination with an accuracy of 98.10%.

In 2013, Melillo et al. [5] tried to assess the severity levels of CHF disease by using long-term
HRV measurements. The classification and regression tree (CART) classifier were used to separate
lower-risk patients from higher-risk patients with an accuracy of 85.4%. In 2015, Shahbazi et al. [26]
proposed a generalized discriminant analysis method, applied k-nearest-neighbor classifier for CHF
risk assessment based on long-term HRV, and obtained an accuracy of 100%. In 2016, Chen et al. [27]
built a four-level risk assessment model for CHF detection and quantification based on the DT-SVM
(decision tree based support vector machine) algorithm. The model obtained a total accuracy of 96.61%
in risk assessment among individuals of N (no risk), P1 (mild risk), P2 (moderate risk), and P3 (severe
risk) [27]. In that paper, they used 180 features, including 126 dynamic measurements and 54 static
measurements [27]. In 2019, Li et al. [28] proposed a four-stage classification problem using an end to
end deep model, which extracted 20 features by convolution at max-pooling layers, and an accuracy of
97.6% was achieved.

From the previous work above, we have found that there are two points which need to be further
explored: 1) They have focused on improving the accuracy of models, but the number of features in
their pattern recognition models mostly exceeds 10 [23–25,27,28]. However, the limited number of
features improves certainly the interpretability of the classification; 2) Compared with the diagnosis
of the severity levels of CHF, researchers were more inclined to diagnose CHF patients from normal
people. For CHF risk assessment, their research was the consolidation of multiple NYHA scales into one
category for identification [5,26–28]. Therefore, researchers rarely distinguished the four severity scales
of CHF disease clearly, which is a four-class classification problem. In view of the above-mentioned
reasons, we proposed two models based on long-term HRV (40,000 HRV intervals–8h): model A was
used for distinguishing CHF patients from the normal people (binary classification); model B was used
for diagnosing the four severity levels of CHF disease (four-class classification). Detailed processes of
building the two models are described in the following sections.

2. Materials

2.1. Data Collection

In previous studies, the RR interval time series (RRITS) was often used as the data source for
analyzing HRV measures [21–27]. The RRITS was calculated as the interval between two consecutive
R peaks of heartbeat in the electrocardiographic (ECG) signals. The data we studied were all
from the RRITS database in the PhysioBank server. The data can be downloaded online from
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http://www.physionet.org/cgi-bin/atm/ATM for free. Each recording in the RRITS database was
manually reviewed and corrected by experts. Supported by the National Research Resource Center of
the National Institutes of Health, the PhysioBank server is a joint project involving many research and
medical institutions [29,30].

As shown in Table 1, our study used a total of four RRITS databases. A total of 116 24-hour RR
interval recordings were included in the dataset of 72 normal subjects and 44 CHF subjects. The data of
normal subjects comes from two databases: the MIT/BIH Normal Sinus Rhythm Database (Nrsdb) and
the Normal Sinus Rhythm RR Interval Database (Nrs2db) [29]. The data of CHF patients were obtained
from the BIDMC Congestive Heart Failure Database (Chfdb) and the Congestive Heart Failure RR
Interval Database (Chf2db) [30]. Due to the lack of recordings of NYHA IV CHF patients in the CHF
RR database, we labeled NYHA III-IV CHF patients as NYHA IV CHF patients in the database.

Table 1. RR interval time series (RRITS) database with the normal and congestive heart failure
(CHF) subjects.

Group Database DL NR Age

Normal
Nrsdb Norm 18 34 ± 8

Nrs2db Norm 54 61 ± 11

CHF

Chfdb NYHA III-IV 15 56 ± 11

Chf2db
NYHA I 4

55 ± 11NYHA II 8
NYHA III 17

DL: database label; NR: number of recordings; Age: Mean ± Std (standard deviation); Nrsdb: Normal Sinus
Rhythm Database; Nrs2db: Normal Sinus Rhythm RR Interval Database; Chfdb: Congestive Heart Failure Database;
Chf2db: Congestive Heart Failure RR Interval Database; NYHA: New York Heart Association.

2.2. Data Preprocessing

The flowchart of the data processing is given in Figure 1. We first downloaded the RRITS signal
from the public database. However, we found that RRITS included too many ectopic heartbeat intervals
that cover up important physiological information [5]. According to beat annotations files provided
from the database, we removed the ectopic intervals of each RRITS signal with manual review and
correction. Therefore, the NN interval time series will be obtained by removing all ectopic intervals,
such as ventricular ectopic, supraventricular ectopic, or unknown. In order to ensure the reliability of
the signal, the ratio of the length of the NN interval time series to the length of the RRITS (NN/RR) was
calculated. The ratio was used as a measure of data reliability to exclude the recordings where the ratio
was less than the threshold. In general, the ratio is set to 80% because it is a satisfactory compromise
between the number of subjects included in the research work and the NN signal quality [5]. Based
on the above excluding criterion, one recording was excluded from each of NYHA II, NYHA III, and
NYHA IV CHF groups, respectively. Finally, we randomly selected continuous 40,000 NN intervals as
one segment for each recording. As shown in Table 2, we obtained 113 samples for building model A,
including 72 healthy samples and 44 CHF samples. We obtained 41 samples for building model B,
including 4 NYHA I CHF samples, 7 NYHA II CHF samples, 16 NYHA III CHF samples, and 14 NYHA
IV CHF samples.

It was necessary to specify that in order to make the HRV signals more stable and homogeneous
when extracting the frequency domain features, some previous researchers removed the linear trend of
the HRV signal and used the cubic-spline interpolation method to re-sample it at a rate of 4 samples
per second [22,23,31,32]. However, we applied the Lomb-Scargle (LS) periodogram proposed in [31,32]
to calculate the power spectrum. In this case, HRV signals did not require resampling in our
research [33,34].

http://www.physionet.org/cgi-bin/atm/ATM
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Figure 1. Flowchart of the data processing in this study. RRITS: RR interval time series.

Table 2. Dataset for building model A and B.

Model Level Database CL NR NS Samples

Model A 2-class
Nrsdb,
Nrs2db Norm 72 72 × 1

113

Chfdb,
Chf2db CHF 41 41 × 1

Model B 4-class Chf2db
CHF I 4 4 × 1

41
CHF II 7 7 × 1
CHF III 16 16 × 1

Chfdb CHF IV 14 14 × 1

NR: number of recordings; NS: number of segments; NS: NR× number of segments for each subject; CL: classification
label; CHF I-IV: NYHA I-IV; Nrsdb: Normal Sinus Rhythm Database; Nrs2db: Normal Sinus Rhythm RR Interval
Database; Chfdb: Congestive Heart Failure Database; Chf2db: Congestive Heart Failure RR Interval Database;
NYHA: New York Heart Association; CHF: congestive heart failure.

3. Methods

After preprocessing the HRV signals, we extracted linear and nonlinear features. Then, the
sequence forward selection (SFS) algorithm was used to reduce the dimension of the feature space.
Finally, a variety of classification algorithms were used for building model A and B, and the models
with the best performance were selected.

3.1. Feature Extraction

3.1.1. Linear Feature

Features extracted in the time-domain and frequency-domain are listed in Table 3 [7,8]. We
extracted 8 time-domain features in this study. Frequency-domain HRV measures were analyzed
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based on the estimation of the power spectrum (PSD) through the LS method. After estimating PSD,
three main spectral components were distinguished from the spectrum: very low frequency (VLF), low
frequency (LF), and high frequency (HF) components. These frequency bands were bounded with
the limits 0–0.04, 0.04–0.15, and 0.15–0.40 Hz, respectively [7]. To a certain extent, frequency-domain
HRV measures reflected the activity of the autonomic system. As described in Table 3, we extracted
8 frequency-domain HRV features.

In addition to the classical HRV measures, we also used time-frequency domain measures based
on the wavelet theory. HRV signal fluctuates in an irregular and complex manner [35]. Quantification
power of the features based on time-domain and frequency-domain analysis is limited when analyzing
non-stationary HRV signals. Therefore, we characterized and quantified the non-stationary properties
of physiological signals based on wavelet theory. We used the mother wavelet ‘db4’ to perform a
4-scale decomposition. From the low frequency to high frequency, we got 5 frequency bands, and the
wavelet coefficients of 5 bands were CA4, CD4, CD3, CD2, and CD1, respectively. Then, the mean and
the standard deviation of the coefficients of each band were calculated [9,36]. Finally, we extracted
10 features based on the time-frequency domain.

Table 3. Heart rate variability (HRV) measures in the time-domain and frequency-domain.

Variable Unit Description

PNN10 % Percentage of differences between adjacent NN intervals that are longer than 10 ms.
PNN20 % Percentage of differences between adjacent NN intervals that are longer than 20 ms.
PNN30 % Percentage of differences between adjacent NN intervals that are longer than 30 ms.
pNN50 % Percentage of differences between adjacent NN intervals that are longer than 50 ms.
Mean ms Mean of all NN intervals.
SDNN ms Standard deviation of all NN intervals.
RMSSD ms Square root of the mean of the sum of the square of differences between adjacent NN intervals.

Triangular Index The number of all NN divided by the height of histogram of all NN Intervals. The interval of the
histogram is set to 1/128 ms.

TOTPWR ms2 The power between 0 and 0.4 Hz.
PVLF ms2 The power between 0 and 0.04 Hz, reflecting the activity of sympathetic.

PLF ms2 The power between 0.04 and 0.15 Hz, reflecting dual regulation of sympathetic and
parasympathetic nerves.

PHF ms2 The power between 0.15 and 0.4 Hz, reflecting the activity of parasympathetic.
RATIO1 PLF/PHF, reflecting the balance between sympathetic and parasympathetic nerves.
RATIO2 PHF/PLF, reflecting the balance between sympathetic and parasympathetic nerves.

NPLF Normalized power of LF, PLF/ (PLF + PHF).
NPHF Normalized power of HF, PHF/ (PLF + PHF).

3.1.2. Non-Linear HRV Features

In this paper, non-linear indicators were obtained by local Hurst exponent analysis based on the
wavelet theory, detrended fluctuation analysis (DFA), entropy analysis, and Poincare plot analysis.

Biomedical signals are generated by complex self-regulating systems that process inputs with
a wide range of characteristics [10,11]. Previous studies have shown that HRV signals with healthy
people are a multi-fractal signal. However, the HRV signal with CHF patients is approximately a single
fractal signal [10,11]. The fractal properties are characterized by ∆h (∆h = hmax − hmin, h is the Hurst
exponent) [11]. In 1999, Ivanov et al. [11] evaluated the local Hurst exponent h through the modulus of
the maxima values of the wavelet transform at each point in the time series and scales a = 2 × 1.15i,
i = 10,... 41. They have found the Hurst exponent has a great ability to distinguish CHF patients from
normal people [11]. We analyzed the fractal characteristics of the subjects based on long-term HRV
signals. The scales in our research were consistent with other papers, i.e., a = 2 × 1.15i, i = 10,...41.

DFA is often used to quantify HRV signals. This technique is a modification of root-mean-square
analysis of random walks applied to non-stationary signals [12,13]. In this paper, we extracted two
features using the DFA algorithm: α1 was obtained by least square fitting of F(n) and small scale n
(4 ≤ n ≤ 16); α2 was obtained by least square fitting of F(n) and larger scale n than 16.

Sample entropy (SampEn) and fuzzy measure entropy (FuzzyMEn) are often used as measures for
the analysis of the complexity of HRV signals [14–17]. Usually, SampEn and FuzzyMEn are influenced
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by the parameters of embedding dimension m and tolerance threshold r [16,17]. In this paper, the best
combination of m and r for SampEn and FuzzyMEn were obtained by statistical significance analysis.

The Poincare plot can reflect the nonlinear characteristics of the nature of the HRV signal. It is a
graph of each RR (or NN) interval against the next interval [18,19]. In this article, we extracted three
features based on the Poincare diagram analysis, i.e., SD1 (the width of the Poincare plot), SD2 (the
length of the Poincare plot), and SD1/SD2 [20].

3.2. Feature Selection

We extracted 34 features, including 26 linear features and 8 non-linear features in our research.
For high-dimension feature sets, building models directly has a large computation cost [37]. On the
contrary, the limited number of features improves certainly the interpretability of the classification [37].
Therefore, it is necessary to use the feature selection method to find the best feature subset. This optimal
feature subset uses the least number of features to get the best performance of the classifier [37]. In this
paper, we used the SFS algorithm for reducing the feature dimension. SFS algorithm is a bottom-up
search procedure, which starts from an empty feature set and adds one feature at each iteration step by
using some evaluation functions [38,39]. In this paper, we used the classification performance of the
classifier as the evaluation function of the feature selection process.

3.3. Classification

In order to build models with the best performance, our work applied a variety of
classification algorithms, including support vector machine (SVM), linear discriminant analysis
(LDA), k-nearest-neighbor (KNN), decision tree (DT), and Bayesian (NB). Relevant principles of
classification algorithms can be referred to the previous studies [21–27]. The kernel function for SVM
classifier was a radial basis function. We used the five algorithms mentioned for building model A
and B. All features were normalized between 0 and 1 using the min-max method proposed in [22,32]
before classification.

The performance of different classifiers was evaluated by the indicators of precision (Prec),
sensitivity (Sens), specificity (Spec). The calculation of these three evaluation indicators refers to
Equations (1)–(3). Besides, AUC, i.e., the area under the ROC (receiver operating characteristic) curve,
was also simply calculated by Equation (4) [5,40]. To compute these estimators, true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) should be measured first. For
the four-class classification, we divided the problem into four 2-class classifications. In each 2-class
problem, we viewed one kind of NYHA scales as a positive case and the other three NYHA scale as
negative cases.

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

AUC =
1
2

( TP
TP + FN

+
TN

TN + FP

)
(4)

After building the models, there are usually two ways to validate the performance of the models:
Cross-subject validation [36,41]: If the dataset has N subjects, and one subject provides n samples,

this validation uses all the samples (m × n samples for the test set) from m different subjects as the test
set, and uses all the remaining samples ((N−m) × n samples for training set) to train the classifier. This
way one can obtain M accuracies by training M models if the m subjects selected each time are different
from each other. Then, the average of M accuracies as the final accuracy of models is calculated.
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Intra-subject validation [36,41]: The common ten-fold cross-validation is this way. Because this
method of validation requires random scrambling of samples, it will result in multiple samples for
each subject being present in both the test set and the training set.

Obviously, compared with cross-subject validation, the intra-subject validation usually obtains a
higher recognition rate [24,42]. However, the model using intra-subject validation does not predict
well for unknown data. On the contrary, this shows that the models using cross-subject validation and
obtaining accuracy have a great application value. Since each subject in our study provided a segment,
the leave-one-subject-out was cross-subject validation for evaluating models [22,23,32,40].

4. Results

4.1. The Setting of Feature Parameters

1. The nonlinear feature α1 was extracted based on the DFA algorithm, and the small scale n
ranges were from four to 16. Different ranges of the large scale n (n ≥ 16) show very different
quantification power for HRV signals. In order to find an optimal scale range for large scale n, we
analyzed the statistical difference of the feature α2 between the normal and CHF groups. The
span of the scale range is 48, and the length of the sliding step is four.

As shown in Table 4 and Figure 2, α2 was significantly different between the normal and CHF
groups at the n values of 16 ≤ n ≤ 64, 56 ≤ n ≤ 104, 60 ≤ n ≤ 108, with 16 ≤ n ≤ 64 corresponding to
the smallest p-value (p = 4 × 10−4 by Student’s t-test, marked red in Figure 2). Therefore, we chose
16 ≤ n ≤ 64 for the calculation of feature α2.

Table 4. The statistical t-test results of the feature α2 in the 14 scale ranges for the normal and congestive
heart failure (CHF) groups.

Scales 16–64 20–68 24–72 28–76 32–80 36–84 40–88

Norm 1.05 ± 0.14 1.03 ± 0.13 1.01 ± 0.13 1.00 ± 0.12 1.00 ± 0.12 1.00 ± 0.12 0.99 ± 0.12
CHF 0.89 ± 0.33 0.93 ± 0.32 0.96 ± 0.31 0.98 ± 0.30 1.00 ± 0.30 1.03 ± 0.29 1.04 ± 0.29

p-value 4 × 10−4 * 0.02 * 0.21 0.70 0.76 0.35 0.15

Scales 44–92 48–96 52–100 56–104 60–108 64–112 68–116

Norm 0.98 ± 0.12 0.98 ± 0.12 0.98 ± 0.12 0.98 ± 0.12 0.98 ± 0.12 0.98 ± 0.12 0.98 ± 0.12
CHF 1.05 ± 0.28 1.06 ± 0.28 1.07 ± 0.28 1.07 ± 0.27 1.07± 0.27 1.07± 0.27 1.06 ± 0.26

p-value 0.07 0.03 * 0.02 * 0.01 ** 0.01 ** 0.02 * 0.02 *

*: statistical difference (p-value <0.05); **: significant difference (p-value <0.01).
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Table 5 gives the statistical F-test results of the feature α2 with various scales for CHF disease
with four severity levels. The F-test is generally used for the significant test between multiple groups.
According to the statistical results, the feature α2 was not statistically significantly different in all scales
for CHF diseases with different severity levels. The range of scale from 16 to 64 was relatively better
than other ranges and was applied for calculating feature α2 when building model B.

Table 5. The statistical F-test results of the feature α2 in the 14 scale ranges for four severity levels of
congestive heart failure (CHF).

Scales 16–64 20–68 24–72 28–76 32–80 36–84 40–88

CHF I 1.03 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.98 ± 0.16 0.96 ± 0.02 0.94 ± 0.02
CHF II 0.93 ± 0.07 0.96 ± 0.06 1.00 ± 0.04 1.03 ± 0.03 1.05 ± 0.03 1.05 ± 0.03 1.08 ± 0.38
CHF III 0.97 ± 0.05 1.00 ± 0.05 1.02 ± 0.05 1.03 ± 0.06 1.04 ± 0.06 1.05 ± 0.07 1.05 ± 0.08
CHF IV 0.83 ± 0.08 0.89 ± 0.08 0.93 ± 0.08 0.97 ± 0.08 1.00 ± 0.09 1.02 ± 0.09 1.04 ± 0.09
p-value 0.34 0.55 0.73 0.87 0.91 0.92 0.85

Scales 44–92 48–96 52–100 56–104 60–108 64–112 68–116

CHF I 0.91 ± 0.02 0.92 ± 0.02 0.90 ± 0.02 0.88 ± 0.02 0.87 ± 0.03 0.96 ± 0.03 0.93 ± 0.06
CHF II 1.09 ± 0.04 1.10 ± 0.04 1.09 ± 0.05 1.08 ± 0.05 1.07 ± 0.05 1.05 ± 0.04 1.03 ± 0.04
CHF III 1.05 ± 0.08 1.05 ± 0.09 1.04 ± 0.93 1.03 ± 0.09 1.02 ± 0.09 1.01 ± 0.09 0.99 ± 0.09
CHF IV 1.07 ± 0.09 1.07 ± 0.09 1.08 ± 0.09 1.08 ± 0.08 1.08 ± 0.08 1.08 ± 0.09 1.07 ± 0.07
p-value 0.79 0.74 0.67 0.60 0.58 0.54 0.46

2. Different parameters (m and r) of sample entropy (SampEn) and fuzzy measure entropy
(FuzzyMEn) also lead to different quantification power of HRV signals. In order to find
the best combinations of parameters, the parameter m changed from one to three with a step of
one, and r changed from 0.10 to 0.20 with a step of 0.05. For the normal and CHF groups, Table 6
gives the statistical Kolmogorov-Smirnov (KS) test results of SampEn and FuzzyMEn with a
different combination of parameters. For CHF diseases with different severity levels, Table 7 gives
the statistical F-test results of SampEn and FuzzyMEn with different combinations of parameters.

Table 6. The statistical Kolmogorov-Smirnov (KS) test results of the sample entropy (SampEn) and fuzzy
measure entropy (FuzzyMEn) with different combinations of m and r for the normal and congestive
heart failure (CHF) groups.

Tolerance
Threshold

Group Embedding Dimension SampEn Embedding Dimension FuzzyMEn

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

r = 0.10
Norm 1.58 ± 0.44 1.43 ± 0.46 1.34 ± 0.46 1.03 ± 0.27 1.34 ± 0.46 0.92 ± 0.27
CHF 1.61 ± 0.42 1.43 ± 0.44 1.43 ± 0.44 1.28 ± 0.37 1.43 ± 0.44 0.97 ± 0.28
p-value 0.95 1.00 1.00 6 × 10−5 ** 0.12 0.37

r = 0.15
Norm 1.09 ± 0.33 0.96 ± 0.33 0.89 ± 0.33 0.71 ± 0.23 0.87 ± 0.27 0.67 ± 0.23
CHF 1.35 ± 0.40 1.18 ± 0.41 1.09 ± 0.41 0.99± 0.36 1.02 ± 0.34 0.74 ± 0.25
p-value 1 × 10−3 ** 3 × 10−3 ** 0.02 * 3.8 × 10−6 ** 0.01 ** 0.15

r = 0.20
Norm 0.88 ± 0.28 0.76 ± 0.30 0.70 ± 0.30 0.53 ± 0.20 0.67 ± 0.23 0.52 ± 0.20
CHF 1.06 ± 0.37 0.90 ± 0.37 0.82 ± 0.36 0.79 ± 0.34 0.83 ± 0.32 0.59 ± 0.22
p-value 0.06 0.23 0.35 9 × 10−7 ** 3 × 10−3 ** 0.10

*: statistical difference (p-value <0.05); **: significant difference (p-value <0.01).

As shown in Table 6, m = 1 and r = 0.15 obtained the SampEn values with the most significant
statistical difference (p = 1 × 10−3 by KS test) between the two groups; m = 1 and r = 0.20 got the
FuzzyMEn values with the most significant statistical difference (p = 9 × 10−7 by KS test) between the
two groups. Therefore, m = 1 and r = 0.15 was set for SampEn, and m = 1 and r = 0.20 for FuzzyMEn
in model A. Similarly, based on F-test results in Table 7, m = 1 and r = 0.10 was set for SampEn and
FuzzyMEn in model B.
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Table 7. The statistical F-test results of the sample entropy (SampEn) and fuzzy measure entropy
(FuzzyMEn) with different combinations of m and r for the different severity levels of congestive heart
failure (CHF).

Tolerance
Threshold

Group Embedding Dimension SampEn Embedding Dimension FuzzyMEn

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

r = 0.10

CHF I 1.12 ± 0.11 0.96 ± 0.10 0.85 ± 0.08 0.81 ±0.04 0.96 ± 0.06 0.73 ± 0.05
CHF II 1.52 ± 0.08 1.37 ± 0.12 1.31 ± 0.13 1.26 ± 0.03 1.31 ± 0.06 0.99 ± 0.05
CHF III 1.69 ± 0.10 1.55 ± 0.13 1.47 ± 0.14 1.27 ± 0.11 1.36 ± 0.11 1.04 ± 0.08
CHF IV 1.94 ± 0.15 1.78 ± 0.16 1.68 ± 0.16 1.38 ± 0.20 1.48 ± 0.15 1.08 ± 0.07
p-value 8 × 10−4 ** 2 × 10−3 ** 2 × 10−3 ** 0.05 * 0.12 0.13

r = 0.15

CHF I 0.96 ± 0.05 0.80 ± 0.05 0.70 ± 0.04 0.87 ± 0.02 0.67 ± 0.05 0.51 ± 0.03
CHF II 1.48 ± 0.06 1.33 ± 0.08 1.27 ± 0.10 1.02 ± 0.07 1.07 ± 0.04 0.82 ± 0.05
CHF III 1.41 ± 0.19 1.27 ± 0.20 1.19 ± 0.18 0.99 ± 0.13 1.10 ± 0.14 0.81 ± 0.07
CHF IV 1.59 ± 0.21 1.39 ± 0.25 1.30 ± 0.23 1.04 ± 0.18 1.15 ± 0.15 0.82 ± 0.06
p-value 0.06 0.13 0.10 0.10 0.09 0.13

r = 0.20

CHF I 0.68 ± 0.04 0.56 ± 0.04 0.48 ± 0.03 0.38 ± 0.02 0.50 ± 0.03 0.38 ± 0.03
CHF II 1.19 ± 0.10 1.04 ± 0.10 0.98 ± 0.10 0.83 ± 0.08 0.93 ± 0.08 0.65 ± 0.03
CHF III 1.18± 0.12 1.04 ± 0.11 0.97 ± 0.11 0.79 ± 0.12 0.91 ± 0.12 0.65 ± 0.06
CHF IV 1.20 ± 0.23 1.07 ± 0.23 0.98 ± 0.21 0.82 ± 0.16 0.92 ± 0.13 0.66 ± 0.05
p-value 0.11 0.13 0.11 0.14 0.13 0.15

*: statistical difference (p-value <0.05); **: significant difference (p-value <0.01).

4.2. Validation

4.2.1. Model A

Table 8 shows the leave-one-subject-out validation performance of model A for different
classification algorithms. The highest accuracy of 97.35% was achieved by using both SVM and
KNN (K = 1) classifiers. However, the SVM used fewer features (number of features (NF) = 5) to
achieve the same accuracy of KNN (K = 1). In order to better apply model A to the clinical diagnosis of
CHF disease, we tried our best to make CHF patients not misdiagnosed as normal subjects. Therefore,
with the same accuracies of SVM and KNN (K = 1), the sensitivity indicator was an important index.
For the sensitivity and AUC indicators, the performance of the SVM was (Sensitivity = 97.56% and
AUC = 0.963) better than the performance of KNN (K = 1, Sensitivity = 95.12%, and AUC = 0.959).
Therefore, considering the better NF, sensitivity, accuracy, and AUC, our work used the SVM classifier
to build model A.

Table 8. Performance parameters of various classifier algorithms for building model A.

Classifier NF Best Features TN FP TP FN Prec
(%)

Sens
(%)

Spec
(%)

Acc
(%) AUC

SVM 5 TOTPWR, PLF/PHF, SD1, α2, SampEn 70 2 40 1 95.24 97.56 97.22 97.35 0.963

LDA 4 PNN50, PLF/(PLF+PHF), ∆h, SD1/SD2 70 2 35 6 94.60 85.37 97.22 92.92 0.907

DT 7 PNN30, RMSSD, Triangular Index, PHF,
PLF/PHF, Mean of CD4, FuzzyMEn 70 2 39 2 95.12 95.12 97.22 96.46 0.952

NB 5 PNN50, SDNN, PLF/(PLF+PHF), Std of
CD2, FuzzyMEn 69 3 37 4 92.50 90.24 95.83 93.80 0.922

1-NN 6 PVLF, PHF/PLF, PLF/(PLF+PHF), SD2,
SD1/SD2, α2

71 1 39 2 97.50 95.12 98.61 97.35 0.959

3-NN 5 TOTPWR, Mean of CD4, SD1/SD2, α2,
SampEn 71 1 38 3 97.44 92.68 98.61 96.46 0.948

5-NN 4 PVLF, PLF/(PLF+PHF), SD2, FuzzyMEn 69 3 40 1 93.02 97.56 95.83 96.46 0.957

7-NN 4 Std of CA4, Mean of CD4, Std of CD2,
SampEn 69 3 37 4 92.50 90.24 95.83 93.80 0.922

NF: the number of feature; TN: true negatives (class Norm as Norm); FP: false positives (class Norm as CHF); TP:
true positives (class CHF as CHF); FN: false negatives (class CHF as Norm); Acc: accuracy, Acc = (TP + TN) / (TN +
FP + TP + FN); AUC: area under ROC curve; CHF: congestive heart failure; SVM: support vector machine; LDA:
linear discriminant analysis; DT: decision tree; NB: Bayesian; Prec: precision; Sens: sensitivity; Spec: specificity.
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4.2.2. Model B

After accurately diagnosing CHF disease, it was necessary to categorize the four severity levels
of the CHF disease. Considering that NYHA I CHF patients only have four recordings, the value
of K cannot be too large for KNN algorithm. In our research, the value of K equaled 1, 3, and 5,
respectively. Table 9 briefly shows the leave-one-subject-out validation parameters of model B for
each classification algorithm. We applied KNN (K = 1) classifier and four features for building model
B with the highest accuracy of 87.80%. The selected best features were seen to be PNN20, PNN50,
TOTPWR, and FuzzyMEn, respectively. In order to further analyze the performance of the model, we
divided the four-class classification problem into four binary classification problems. In each binary
classification problem, one severity level of CHF disease was considered to be the target class, and
other severity levels of CHF disease were considered to be the negative class. Table 10 shows the
leave-one-subject-out validation performance of the KNN (K=1) classifier for building model B. For
mild CHF disease (CHF I-II), the values of precision and sensitivity are smaller than those of severe
CHF disease (CHF III-IV). The reason is that the number of mild CHF subjects is too small.

Table 9. The performance parameters of five classifier algorithms for building model B.

Classifier NF Best Features Acc (%)

SVM 4 PNN50, Mean, RATIO1, SampEn 78.05
LDA 3 PNN20, PNN50, NPHF 70.73
DT 3 PNN50, FuzzyMEn, SD2 82.93
NB 4 PNN20, SDNN, ∆h, SD1 70.73

1-NN 4 PNN20, PNN50, TOTPWR, FuzzyMEn 87.80
3-NN 4 PNN50, SDNN, TOTPWR, SD1/SD2 73.17
5-NN 3 PNN20, RMSSD, PVLF 78.05

NF: number of features; Acc: accuracy; SVM: support vector machine; LDA: linear discriminant analysis; DT:
decision tree; NB: Bayesian.

Table 10. Performance of the k-nearest-neighbor (KNN) (K = 1) classifier for building model B.

Group Predicted Classes Performance Evaluation

CHF I CHF II CHF III CHF IV Prec (%) Sens (%) Spec (%)

True Classes

CHF I 3 0 1 0 75.00 75.00 97.30
CHF II 1 4 2 0 80.00 57.14 97.06
CHF III 0 1 15 0 83.33 93.75 88.00
CHF IV 0 0 0 14 100 100 100

CHF: congestive heart failure; Prec: precision; Sens: sensitivity; Spec: specificity.

5. Discussion

5.1. Comparison of Similar Work

Table 11 highlights the results in previous related studies that used HRV signals as the data source
for analysis. The accuracy of models built by previous researchers has exceeded 95%, which indicated
that there is a big difference in the cardiac system between the normal and CHF groups. However,
the number of features they used mostly exceed 10. In contrast, we applied the SVM classifier and
only five features for model A with an accuracy of 97.35%. We used a larger sample size to build our
model A to make it more stable than previous studies. Previous work is more inclined to find the
difference between the normal and CHF groups. In Table 11, researchers have evaluated the different
severity levels of CHF disease, and a large number of features were used for binary and four-class
classifications [27,28].
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Table 11. Comparison between related previous work and our work.

Date Study CL Dataset FS NF Classifier Acc (%)

2003 [21] Asyali 2 74 × 1 × 24 h – 9 Bayesian 93.24
2007 [22] İşler 2 83 × 1 × 5 min GA ≥8 KNN 96.39
2011 [40] Leandro 2 83 × 1 × 24 h ESM 6 DT 96.40
2012 [23] Yu 2 83 × 1 × 68 min GA 16 SVM 98.79
2013 [4] * Melillo 2 44 × 1 × 24 h ESM 7 DT 85.40
2014 [32] Narin 2 83 × 1 × 5 min SBS 27 SVM 91.56
2014 [43] * Guidi 3 Non-uniform – 5 CART 81.80%
2015 [26] * Shahbazi 2 44 × 1 × 24 h GDA 1 KNN 100
2016 [24] Acharya 2 Non-uniform RM 22 SVM 97.60
2016 [27] * Chen 4 116 × 1 × 24 h SBS 180 DT-SVM 96.61
2017 [25] Mahajan 2 107 × 1 × 24 h RM 10 Ensemble 98.10
2018 [42] Li 2 Non-uniform – 1 CNN 81.85
2019 [28] * Li 4 Non-uniform – 20 CNN 97.60

Our work 2 113 × 1 × 8 h SFS 5 SVM 97.35
Our work 4 41 × 1 × 8 h SFS 4 KNN 87.80

CL: classification level; FS: feature selection; NF: the number of features; Acc: accuracy. For feature selection
algorithms, GA: genetic algorithm; ESM: exhaustive search method; SBS: sequence backward selection; GDA:
generalized discriminant analysis; RM: ranking method; – indicating that feature selection algorithm is not used.
The form of the dataset is Recording × Segmentation × Time. In other papers, * means that the model was used for
distinguishing the different severity levels of congestive heart failure (CHF) disease; the unmarked papers indicated
that models were used for diagnosing CHF disease. KNN: k-nearest-neighbor; DT: decision tree; SVM: support
vector machine; SFS: sequence forward selection; CART: classification and regression tree; CNN: convolutional
neural network; DT-SVM: decision tree based support vector machine.

However, we applied the KNN (K = 1) classifier and four features for diagnosing the four severity
levels of CHF disease with an accuracy of 87.80%. In 2016, Acharya et al. [24] divided the RRITS of
each recording in the database into a segment with 2000 intervals and applied the SVM classifier and
22 features for CHF discrimination with an accuracy of 97.60%. In 2018, Li et al. [42] divided the RRITS
of each recording in the database into a segment with 300 intervals and applied the CNN classifier
and one feature for CHF discrimination with an accuracy of 81.85%. In these two papers, one subject
provided more than one RRITS segments in the database, and the use of ten-fold cross-validation to
evaluate the performance of classifier means that the data of the training set and the data of the test set
may come from the same subject. That was to say, the evaluation of these two models was intra-subject
and not cross-subject validation. Because of large similarities between multiple segments of the same
subject, intra-subject validation of evaluating models tended to achieve an over-optimistic accuracy.
However, the two models we built were evaluated using more robust cross-subject validation, and a
higher accuracy was obtained.

5.2. Limitations of This Study

We used 113 subjects to build the two proposed models. As we can see from Tables 1 and 2, the
number of NYHA I and NYHA II CHF subjects was significantly smaller than that of NYHA III and
NYHA IV CHF subjects. For the lack of recordings of NYHA IV CHF patient in the CHF RR database,
we labeled NYHA III-IV CHF patients as NYHA IV CHF patients in the database. Obviously, the small
number and imbalance of the dataset will make it difficult to further improve the accuracies of the
classifiers [44,45]. Besides, due to the relatively small amount of recordings, we only leave one subject
for cross-validation. As long as our dataset is small and unbalanced, it is impossible to confirm the
generalization of our results unless a larger public dataset is available [44,45]. Therefore, we still need
to validate our models with larger dataset in the future.

6. Conclusions

This paper proposed two models for automatic CHF diagnosis. Model A was used for
distinguishing CHF patients from normal people (binary classification), and model B was used
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to diagnosing four severity levels of CHF diseases (four-class classification). Model A applied the
SVM classifier and five HRV indicators (TOTPWR, PLF/PHF, SD1, α2, and SampEn) with an accuracy
of 97.35%. Model B applied the KNN (K = 1) classifier and four HRV indicators (PNN20, PNN50,
TOTPWR, and FuzzyMEn) with an accuracy of 87.80%. The advantage of model A and B was the
use of a small amount of features while ensuring that the model has high accuracy. This advantage
indicated the application value of our models in clinical practice.
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