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Abstract: With the development of multimedia devices, earphones are playing an increasingly
important role. This article applies the lumped parameter method using an equivalent circuit to
model the electromagnetic, mechanical, and acoustic domains of earphones. Then, parameters are
determined according to the dimensions and material properties of earphone parts. On the basis
of the analysis tool and determined parameters, a Helmholtz protector is analyzed and designed
to improve the high-frequency response. Samples are fabricated, and the experiment verifies the
analysis method. The experimental result shows that the peaks at 7 k and 10 k are decreased at 8.05 dB
and 7.89 dB. The root means square value of SPL deviation compared with target curve decreased
from 9.77 to 4.39. High-frequency response is improved by using the Helmholtz protector.
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1. Introduction

With the rapid development of consumer products such as mobile phones, notebook computers,
and MP4 players, earphones have been recognized as multifunctional assets to increase the convenience
of consumer electronics. Based on the speaker driver type, there are MEMS speaker driver earphones [1],
balanced armature speaker driver earphones [2], and dynamic speaker driver earphones [3].

The present study focuses on dynamic speaker driver earphones. The earphone parts are shown
in Figure 1. The Lorenz force is generated with an input current in the magnetic circuit. Then,
the force contributes to the vibration of the diaphragm, which leads to sound radiation through the
front chamber.
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To design and develop the earphone product, some previous studies have presented simulation
methods. The finite element method has been used to analyze earphone performance [4]. According
to the relationship between multi physics (electromagnetic, mechanical, and acoustic domains) and
an equivalent circuit [5,6], the lumped parameter method (LPM) can be used to analyze earphone
performance [7,8]. Based on the LPM, coupling between the headphone and the ear has been
investigated in artificial ears and models. The influence of the back volume is taken into account [9].
A model of a dynamic driver in an enclosure has been developed using lumped-parameter analysis
and analogous circuits [10]. In addition, the properties of porous materials have been investigated to
determine their influence on the SPL of an insert earphone [11]. The acoustic structure (volume of
front chamber, volume of back chamber duct radius, and length) has been optimized by making use of
annealing optimization [12]. To determine the performance of an insert earphone, the target curve for
an insert earphone has been defined [13,14].

The parameters of the dynamic speaker driver in previous studies [5–12] were obtained from
experiments, so that it is impossible to use these parameters to design a new earphone structure
without samples. The first novelty of the present work is the identification of parameters in the analysis
tool with respect to the dimensions and material properties. In this way, each dimension and each
material property of an earphone can be varied to determine their influence on earphone performance.
The second novelty involves analysis and design of a Helmholtz protector based on the proposed
analysis tool and identified parameters. It is a challenge to match with the target curve from 7 k to 10 k
because the mismatch is generated by the resonance of the ear canal. In other words, they will always
exist if there is an ear canal. The paper focuses on the high-frequency response improvement from
7 k to 10 k by reducing the mismatch caused by the ear canal. The designed Helmholtz protector can
reduce the peak value of SPL from 7 k to 10 k and improve the earphone high-frequency response.

The main content of this paper is as follows. First, the electromagnetic, mechanical, and acoustic
domains are described by the LPM, which makes use of an equivalent circuit. Second, based on
the dimensions and material properties, the electromagnetic and mechanical domain parameters are
identified by FEM. The acoustic parameters are determined from the acoustic component dimension.
These parameters are treated as input information for simulation. Then, based on the simulation,
a Helmholtz protector is designed and simulated to improve the SPL. Finally, the earphone sample is
manufactured. The SPL simulation result is matched with the experimental result. With the use of a
Helmholtz protector, the high-frequency response is improved.

2. Analysis Method

2.1. Electromagnetic Modeling

The electromagnetic part is depicted in Figure 2. The relevant mathematical equation is as follows.

ZE = RE + jwLE (1)

where RE is the electrical voice coil resistance at DC, LE is the voice coil inductance, w is the angular
frequency and ZE is the electrical impedance.
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2.2. Mechanical Modeling

A 1-DOF vibration system is adopted for the mechanical domain, as depicted in Figure 3.
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The governing equation is as follows.

F = Mms
..
X + Rms

.
X +

1
Cms

X (2)

where Mms is the mechanical mass of the driver vibration system, Rms is the mechanical resistance
of the total-driver losses, Cms is the mechanical compliance of the driver vibration system, and X is
displacement.

2.3. Acoustic Modeling

To analyze the SPL performance of an earphone, all acoustic components need to be modeled in
the analysis tool. The acoustic domain is modeled as follows.

The acoustic components of a dynamic speaker unit are shown in Figure 4. There is a hole located
in the center of the protector. As a result of the existence of a diaphragm, there is a front cavity and a
back cavity in the unit. On the yoke, there are three holes.
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Figure 4. Cavity and hole in dynamic speaker unit.

The cavity is modeled as the acoustical compliance shown in Figure 5.
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The related equation to define the acoustical compliance is as follows [15].

Ca =
V
ρc2 (3)

The small hole is modeled in Figure 6.
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The mathematical expression for the small hole is described by the following equation:

Zhole = jwMa + Ra (4)

where Zhole Ma and Ra are the acoustical impedance, acoustical mass and acoustical resistance,
respectively, which can be expressed as [16]:

Ma =
332−13x+7x2+2x3

249−9x+4x2+2x3
4ρl
πd2

Ra = 8 fρl
4√

4096+45x3+4x4

d2x2

(5)

where x = d/2β; β =
√
(η/(ρ2π f )) is the viscosity coefficient of the fluid (η = 18.6 × 10−6 n·s/m2 at 20 ◦C

for air); ω is the angular frequency; and l and d are the length and diameter of the hole, respectively.
In addition to the dynamic speaker unit, a sound port and test jig are also present. Figure 7.

demonstrates the acoustic structure. The structure consists of one back chamber, one conical tube,
three cylinder tubes, and an IEC-60711 coupler.
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Figure 7. Cross-section view of dynamic earphone experiment condition.

The tubes can be treated as transmission line models. Except for the cylinder tube, there is conical
tube in front of the speaker unit. The tube modeling is shown in Figure 8.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 15 
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The following equations are mathematic models of a cylinder tube and conical tube.(
p1

q1

)
=

[
cos(kl) jZw sin(kl)

( j/Zw) sin(kl) cos(kl)

](
p2

q2

)
(

p1

q1

)
=

 ( x1
x0
) cos(kl) − ( 1

kx0
) sin(kl) ( x0

x1
) jZw sin(kl)

(
j

Zw
)[ x1

x0
+ ( 1

kx0
)

2
] sin(kl) − ( L

x0
)( 1

kx0
) cos(kl) ( x1

x0
)[cos(kl) + ( 1

kx0
) sin(kl)]

( p2

q2

) (6)

The parameters are k =ω/c, where ω = 2πf ; l = tube length; and Zw = ρc/S = ρc/πa2, where ρ is
the air density and c is the speed of sound propagation. p1, q1, p2, and q2 are inward sound pressure,
outward sound pressure, inward volume velocity and outward volume velocity. x1 and x0 are the
lengths of the tube along the surface direction.

If the diameter of the tube changes, there will be added length because of the existence of radiation
impedance at the tube end. The tube end correction is shown in Figure 9.
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The tube end correction is as follows
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(7)

where d1, d, d2, ∆l1, l0 and ∆l2 are the left side tube diameter, middle tube diameter, right side tube
diameter, left side tube end correction length, middle tube length and right side tube end correction.
Considering both sides of the tube end correction

l = l0 + ∆l1 + ∆l2 (8)

The test jig is an IEC-60711 coupler, which is a standard product and has a lumped parameter
model [17]. The cross-section view and electrical equivalent circuit are represented in Figure 10.
The parameter values are listed in Table 1.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 15 
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Table 1. Parameters of IEC-60711 coupler.

Item Value

Ma1 (kg·m−4) 82.9
Ma2 (kg·m−4) 9400
Ma3 (kg·m−4) 130.3
Ma4 (kg·m−4) 983.8
Ma5 (kg·m−4) 133.4
Ca1 (m5

·N−1) 0.943 × 10−12

Ca2 (m5
·N−1) 1.9 × 10−12

Ca3 (m5
·N−1) 1.479 × 10−12

Ca4 (m5
·N−1) 2.1 × 10−12

2.4. Electromagnetic-Mechanical-Acoustic Coupling

The coupling between the electromagnetic domain and mechanical domain is modeled by
current-controlled voltage sources (CCVSs). The model is depicted in Figure 11. In the electromagnetic
domain, there is a back EMF, which is determined by the velocity in the mechanical domain. The force
in the mechanical domain depends on the current in the electromagnetic domain. The relationships are
described by the following equations.

F = Bli
Vback = Blv

(9)
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Here, F is the force resulting from the current, Bl is the force factor, Vback is the back EMF, and v
and i are the velocity and current, respectively.

The coupling between the mechanical domain and acoustic domain is modeled by a
current-controlled current source (CCCS) and a voltage-controlled voltage source (VCVS). The model
is depicted in Figure 12. In the acoustic domain, the volume velocity depends on the velocity in
the mechanical domain. The acoustic pressure is determined by the force in the mechanical domain.
The relationships are described by the following equations.

p = F
Sd

Vvolume = vSd
(10)
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In these equations, p is the acoustic pressure, F is the force in the mechanical domain, Sd is the
effective area, and Vvolume is the volume velocity.
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Based on the component circuit model, the equivalent circuit of an earphone is shown Figure 13.
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3. Parameter Identification

3.1. Electromagnetic Parameter Identification

Electromagnetic parameter identification is based on the static magnetic FEM. The boundary
condition is shown in Figure 14. The vector potential of the outside air region is zero. The governing
equations are

∇×H = J
B = ∇×A

J = σE
B = µH

(11)
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Here, A is the magnetic vector potential, J is the current density, H is the magnetic intensity,
µ is the permeability in a vacuum, E is the electric field intensity, and σ is the electrical conductivity
After solving the governing equation, the flux density for every node in the model can be obtained.
By solving for the flux density B and flux intensity H, the change in magnetic energy is calculated as

∆W =
1
2

∫
∆H∆BdV (12)

where ∆H and ∆B are the change in magnetic flux intensity and flux density caused by a change in the
current. The inductance is related to the change in magnetic energy. The relationship is described as

LE =
2∆W

∆I
(13)

The unit for LE, ∆W and ∆I are Henry, Joule and Ampere.
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3.2. Mechanical Parameter Identification

The mechanical system includes a diaphragm and coil. Figure 15 demonstrates the structure.
To determine the mechanical parameters, mechanical FEM simulation is used. The governing equation
is as follows

[M]
{ ..
u
}
+ [C]

{ .
u
}
+ [K]{u} = {F} (14)

where [M], [C], [K], {F}, and u denote the mass matrix, damping matrix, stiffness matrix, vector of
current force, and displacement, respectively. The boundary conditions are shown in Figure 15. Force is
input on the coil. The edge of the diaphragm is fixed. To determine the stiffness, a 0.01-N force is
input. The displacement of the coil is 3.598 × 10−2 mm. Then, the stiffness Kms is calculated as the
displacement divided by the input force. The resulting value is 0.278 N/mm. By performing modal
analysis of the mechanical system, the resonance frequency is found. Based on the relationship between
mass, stiffness and resonance frequency

f0 =
1

2π

√
Kms

Mms
(15)
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The mass Mms is calculated as 0.006 g.
Table 2 lists the identified parameters for the dynamic speaker unit.

Table 2. Parameters of dynamic speaker unit.

Item Value

RE (Ohm) 15
LE (mH) 0.02
Mms (g) 0.006

Rms (kg/s) 0.35
Cms (mm/N) 3.597
Kms (N/mm) 0.278

3.3. Acoustic Parameter Identification

The acoustic parameters all relate to the dimensions of the tubes, cavities, and holes. The tube
and hole parameters are listed in Table 3. The cavity parameters are given in Table 4.

Table 3. Parameters of holes and tubes.

Item Length (mm) Diameter (mm)

1st hole on yoke 0.55 1
2nd hole on yoke 0.55 0.5
3rd hole on yoke 0.55 1
Hole on protector 0.9 1.7

tube 1 2.3 2.5
tube 2 4 2.8
tube 3 6.5 7.4
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Table 4. Parameters of cavities.

Item Value

Front cavity in unit (mm3) 11.11
Back cavity in unit (mm3) 25.14

Back chamber (mm3) 159

3.4. Electromagnetic-Mechanical-Acoustic Coupling Parameter Identification

The electromagnetic-mechanical coupling parameter is the force factor Bl. The flux density is
obtained by FEM simulation. With the known coil length, the force factor is calculated to be 0.159 N/A.

The mechanical-acoustic coupling parameter is the effective area of the diaphragm. The method
for identifying the effective area is shown in Figure 16.
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Considering the same air volume V, the effective area is calculated using equation [18].

Sd =

∫
Sc x(rc)dS

xcoil
(16)

where x(rc) is the displacement of a point on the diaphragm, rc is the distance between the point and
the center of the diaphragm, and xcoil is the average displacement of the coil. To obtain the effective
area, the mechanical static FEM is used. The boundary conditions are shown in Figure 17. The input is
the displacement of the coil. With fixed boundary conditions and input displacement, the deformation
of the diaphragm can be determined. By integrating the deformation on every part of the diaphragm
and using the Equation (17), the effective area is calculated to be 28.2 mm2.
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After the parameters are applied in the equivalent circuit, the SPL simulation result for an earphone
can be obtained. The experiment is performed after the sample is manufactured. According to the SPL
comparison of the simulation and experiment in Figure 18, the simulation tool is verified by the experiment
and can be used to analyze the performance of a dynamic earphone. From 20 Hz to 7 kHz, the SPL did not
decrease because the SPL is tested in the pressure field. The acoustic wave propagates in the front chamber
and the IEC-60711 coupler. From 7 kHz to 14 kHz, there are three peaks. The first and second peaks are
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due to the front chamber and tubes (ear canal) in the front end. The third peak is due to the IEC-60711
coupler. The experimental and simulation results show that there are differences between the target SPL
and the analyzed earphone SPL. In Figure 18, the target comes from previous research by Olive [13,14].
The target curve has the best high-frequency response and can be used as a benchmark.
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Figure 18. Experimental and simulated results (without Helmholtz protector).

4. Design of Helmholtz Protector

The experimental and simulation results show that there are differences between the target SPL
and analyzed earphone SPL. There are two peaks due to the front chamber and tubes (ear canal) in the
front end. These two peaks can be decreased using an acoustic structure to decrease the SPL difference
between the analyzed earphone and target. In this study, a Helmholtz protector is applied as such an
acoustic structure.

The Helmholtz protector consists of two sets of cavities and holes, as shown in Figure 19. The cavity
is treated as an acoustical compliance. The small hole is treated as an acoustical resistance and acoustical
mass. Therefore, there will be two peaks because there are two sets of cavities and holes. The equivalent
circuit of the Helmholtz cavity and hole is parallel to the acoustic sound tube that goes to the IEC-60711
coupler. The cavity and hole set can act as a resonant muffler. The acoustical compliance of cavity is
given in Equation (3), and the acoustical mass of the hole is described in Equation (5). The volume of
the cavity controls the acoustical compliance, and the length controls the acoustical mass. The protector
is manufactured by injection molding. The manufacture tolerance is 0.05 mm. The goal is to cause the
resonance of the Helmholtz protector to occur at 7 kHz and 10 kHz. The lengths of the 1st and 2nd
holes are selected to be 0.65 mm and 1.6 mm, respectively. The volumes of the 1st and 2nd Helmholtz
cavities are 9 mm3 and 2.5 mm3, respectively. With the Helmholtz protector, the earphone equivalent
circuit is depicted in Figure 20. Figure 21 shows a comparison of the simulation results for an earphone
with a Helmholtz protector and an earphone without a Helmholtz protector. The SPL values at 7 kHz
and 10 kHz decrease. Not only are the peak values at 7 kHz and 10 kHz decreased, but there is also
a decrease in the entire range from 7 kHz to 10 kHz. Thus, the SPL difference is reduced using the
Helmholtz protector.
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5. Experiment

To realize this concept, samples were manufactured. Figure 22 demonstrates the sample parts.
Figure 23 shows the Helmholtz protector and a normal protector. Figure 24 depicts the equipment and
setup for the SPL experiment. In the experiment, an NTI system was applied. The testing frequency
range was from 20 Hz to 20 kHz. A swept sine signal was used. In the NTI system, the received
sound signal is transformed to the frequency domain by a fast Fourier transform (FFT). Figure 25
shows the experimental SPL results. Just like the comparison of simulation results, the peaks at
7 kHz and 10 kHz are reduced by using the Helmholtz protector. The experimental result for the
earphone with the Helmholtz protector shows less difference compared with the earphone without the
Helmholtz protector.
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To check the performance of the earphone from 7 k to 10 k., the root mean square value of
SPL deviation is used. The SPL deviation is defined as the SPL difference compared with the target
curve [13,14] from 7 k to 10 k. The equation is described as following

RMSdeviation =

√√
1
n

n∑
i=1

(y− ytarget)
2, (17)

where y and ytarget are the SPL value of the designed earphone and target. The root mean square value
of the SPL deviation for the earphone with the Helmholtz protector is calculated to be 4.39, while that
for the earphone without the Helmholtz protector is 9.77. The high-frequency response is improved
when the Helmholtz protector is used.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 15 
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6. Conclusions

In this study, the dynamic earphone parts are modeled as an electrical element and the equivalent
circuit method is used to analyze the SPL. Electromagnetic, mechanical and acoustic parameters are
determined based on the earphone parts dimension and material property. According to the SPL
analysis method, there are differences between the analyzed earphone SPL and target SPL because of
the peaks at 7 kHz and 10 kHz. To decrease the peak value, a Helmholtz protector is designed and
applied. The lengths of the 1st and 2nd holes are selected to be 0.65 mm and 1.6 mm, respectively.
The volumes of the 1st and 2nd Helmholtz cavities are 9 mm3 and 2.5 mm3, respectively. Samples are
manufactured, and experiments are conducted. A comparison shows that the analysis is verified by the
experimental result. Furthermore, with the Helmholtz protector, the difference in the SPL is reduced.
The root mean square value of the SPL deviation for the earphone with the Helmholtz protector is 4.39,
while that for the earphone without the Helmholtz protector is 9.77. The high-frequency response is
thus improved using the Helmholtz protector.
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SPL Sound pressure level
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HATS Head and Torso Simulator
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