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Abstract: In this study, we propose a novel approach to prepare few-layer graphene (FLG) dispersions,
which is realized by exfoliating natural graphite flakes in a surfactant aqueous solution under
hydrothermal treatment and liquid-phase exfoliation. In order to obtain stable and well-dispersed
FLG dispersions, pristine graphite is hydrothermally expanded in a hexadecyltrimethylammonium
bromide (CTAB) aqueous solution at 180 ◦C for 15 h, followed by sonication up to 3 h. In comparison
to long-time sonication methods, the present method is significantly efficient, and most importantly,
does not involve the use of an oxidizing agent and hazardous media, which will make it more
competent in the scalable production of graphene.
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1. Introduction

Owing to its outstanding physical and chemical properties [1,2], graphene has become the most
studied nanomaterial of the past decade. Until now, many top-down methods have developed
for preparing graphene, such as micromechanical cleavage of graphite [3], oxidation-reduction of
graphite [4,5], electrochemical exfoliation of graphite [6], and liquid-phase exfoliation of graphite [7].
Among them, the liquid-phase exfoliation is the most commonly used method to prepare graphene
by sonication at a low cost and with minimal environmental impact. However, this method mostly
involves the use of high-boiling point solvents, e.g., N-methyl-pyrrolidone (NMP) [8] and a long
sonication time to reach high concentrations of dispersed graphene [9].

A viable liquid-phase exfoliation route is carried out in an aqueous solution through suitable
surfactants [10] (and biosurfactants [11]) that reduce and optimize the high surface energy of water to
match with highly hydrophobic graphitic surfaces [12]. Surfactants offer the steric and electrostatic
repulsion that is necessary to avoid the graphene sheets from aggregation due to the sonication
which breaks up graphite into few-layer graphene (FLG) flakes that are coated by the surfactant
molecules [12,13]. Surfactants, therefore, are excellent candidates in the direct exfoliation of graphite
because they are used as a dispersant and a stabilizer.
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In an effort to circumvent long sonication time limitations (e.g., the induced defects in graphene
structure [14]), Ou et al. [15] successfully demonstrated the preparation of FLG dispersions from
graphite powder, in a relatively short sonication time by combining heat-treatment in NMP and
liquid-phase exfoliation in different organic solvents. The heat-treatment increases the interlayer
distance of graphite, which is stabilized by adding polyvinyl pyrrolidone (PVP), followed by sonication
for up to 20 h to prepare well-dispersed FLG dispersions. To our knowledge, an alternative method
that combines heat-treatment of natural graphite flakes and direct exfoliation in stabilizing surfactants
is unexplored, particularly, at a short sonication time.

In this study, we propose such a method to prepare FLG dispersions in surfactant water solution
using hydrothermal treatment and liquid-phase exfoliation. First, we subject pristine natural graphite
to temperature to produce pretreated graphite flakes. Subsequently, pretreated graphite is exfoliated
into FLG by sonication and centrifugation. The cationic surfactant, hexadecyltrimethylammonium
bromide (CTAB), is selected as a dispersant and a stabilizer [16,17]. CTAB is commonly considered as
the dispersing agent to stabilize aqueous solutions of graphene [18] and it has also been used as the
precursor for preparing graphene nanocomposites [19] with promising applications in electrochemical
sensing and biosensing [20].

2. Materials and Methods

Natural graphite flakes were purchased from Pingdu Huadong Graphite Co. Ltd., and the CTAB
(H5882-100G, 98%, M.W. 364.45) was purchased from Sigma Aldrich. The graphite and the CTAB were
used as received, without further purification. In a typical experiment, 100 mg of natural graphite
flakes were added into 50 mL of CTAB aqueous solution at different surfactant concentrations (i.e.,
0.1, 0.5, and 1.0 mg mL−1). The resulting mixture was transferred into a sealed Teflon vessel (100 mL)
and reacted at 180 ◦C for 15 h (optimal parameters reported in [15,21]) to obtain pretreated graphite.
After the hydrothermal treatment (HT), pretreated graphite was immediately dispersed in the very
same CTAB aqueous solution by sonication, employing a tip sonicator (UP100H-Hielscher, 50 watts,
30 kHz) in continuous operation. To reduce the damage to the graphene sheets by ultrasonic processing,
the maximum sonication time was 3 h. The sonication produced black suspensions that were left
to stand overnight and then centrifugated for 90 min at 2000 rpm (optimal parameters reported
in [22]) to remove nonexfoliated graphite flakes. After centrifugation, the pipette-extracted 40 mL
supernatant was semitransparent without the presence of agglomerates (Supplementary Figure S1).
The concentration of dispersed graphene was determined by UV-visible absorption spectroscopy and
the absorbance (A) was adapted to calculate the concentration using the Beer–Lambert law (a widely
used approach [10,22,23]):

CG =
A

l · α660

where, l = 0.01 m, is the path length and α = 1390 mL mg−1 m−1, is the absorption coefficient of the
dispersed graphene in the surfactant water solutions [10]. The characteristic absorption spectra of
the dispersed graphene were recorded using UV-vis spectroscopy (UV-160A, Shimadzu Corporation,
Japan). The morphologies of the samples were observed using a scanning electron microscopy (SEM,
Quanta Feg 400 F7) with accelerating voltage ranging from 5 to 35 kV. Raman spectra were obtained
using a Jobin Yvon LABRAM spectrometer, with a 514 nm laser wavelength.

3. Results and Discussions

To begin, we briefly analyze the hydrothermal conditions, the sonication process, the surfactant
effect, and the yield. Supplementary Figure S2 shows the schematic route of the preparation process
for graphene dispersions. Under hydrothermal conditions, various factors affect the graphite crystal
structure which include temperature and pressure. Temperature generates water vapor, and pressure
origins changes in the kinetics of reactions affecting the graphite structure [24]. Therefore, temperature
and pressure create conditions for the intercalation of the CTAB (and water) molecules between
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graphene layers [25]. The intercalation increases the interlayer distance of graphite which is crucial to
the improvement of the subsequent ultrasonication process [15].

Ultrasonication is described by the effect of acoustic cavitation of high frequency ultrasound
in the formation, growth, and collapse of microbubbles in solution, which induces shock waves on
the graphite surface, producing exfoliation of graphite into FLG [26]. Notwithstanding, the direct
exfoliation of graphite in water is possible and the resulting exfoliated graphene flakes are not stable.
The CTAB molecules have a cationic ammonium head group and an extended alkyl chain as a tail [26].
It is expected that the CTAB molecules are adsorbed onto the graphene surface through electrostatic
interactions [25]. The hydrophobic interaction of the alkyl chains of the CTAB molecules on the
graphene surface prevents the re-staking and agglomeration of exfoliated flakes.

The yield of this approach, based on the absorption coefficient of [10], was ∼5% and needs to be
optimized. At this point, the apparent low concentration of dispersed graphene in comparison with
the relative amount of CTAB, is the result of using the absorbance to calculate the concentration by
the Beer–Lambert law. Since this approach is usually used to obtain the concentration of dispersed
graphene [10,22,23], it is employed to emphasize the role of hydrothermal treatment instead of its
final yield. Attempts to improve the yield are currently in progress using the gravimetric method and
extending the study for cationic/anionic surfactants.

Pristine (gray) graphite and pretreated (light-yellow) graphite are shown in Figure 1a,b, respectively.
The optical change is due to the interaction of graphite with the surfactant, and therefore the obtained
light-yellow graphite is due to the presence of molecular bromine because the resulting pretreated
graphite was not washed after HT, which is verified by the surfactant bubbles in Figure 1b. Since
pretreated graphite is dispersed in the very same CTAB aqueous solution, sonication is immediately
used to simplify the method.

In order to understand the role of HT, Figure 1a,b present the concentration of dispersed graphene
considering different amounts of CTAB and different sonication times. Again, we stress that this study
is limited to 3 h of sonication, however it is well-known that the exfoliation yield is increased by
increasing the sonication time, and a suitable sonication time is 10 h [15]. We show, however, that the
concentration of dispersed graphene from pretreated graphite is significantly enhanced, suggesting
that HT plays a crucial role. Therefore, depending on the amount of CTAB, sonication time, and HT, the
concentration of dispersed graphene ranges from 40 µg mL−1 to 60 µg mL−1. These concentrations are
comparable to those obtained in early studies by exfoliating graphite with a long sonication time [22,27].

CTAB seems to be an efficient dispersant at high concentrations (0.5, 1.0 mg mL−1). However,
high quantities of surfactant may have a significant impact on the electrical properties of graphene
because the residual surfactant is difficult to remove [28]. To circumvent this, we focus on graphene
dispersions obtained at the lowest concentration of CTAB (0.1 mg mL−1) and after 3 h of sonication.
Figure 1c shows the stability of graphene dispersions, at the lowest concentration of CTAB, obtained
from pretreated and pristine graphite. In both cases, graphene flakes are easy to precipitate, as the
storage time increases, however, it is noteworthy that the stability of graphene dispersion obtained from
pretreated graphite is higher than from pristine graphite within 12 weeks. These results corroborate the
importance of HT. The UV-visible absorption spectra of graphene dispersions, after 3 h of sonication
and different CTAB concentrations, are shown in Figure 1d. The spectra are featureless in the visible
region as expected for graphene. A prominent peak is found at ∼266 nm, corresponding to the π to π∗

transitions of graphene and graphite [29].
Previously, the transformation of the graphite (powder) structure, after heat-treatment in NMP,

was effectively demonstrated by SEM, Raman, and X-ray diffraction (XRD) measurements, i.e., the
increased interlayer spacing of graphite as a direct consequence of increasing the heat [15]. In Figure 2,
we confirm this fact by scrutinizing the morphology of pretreated (natural) graphite flakes considering
the different amounts of CTAB.
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Figure 1. Concentration of dispersed graphene as a function of three different
hexadecyltrimethylammonium bromide (CTAB) concentrations (0.1, 0.5, 1.0 mg/mL−1) at three different
sonication times, from (a) pristine (untreated) graphite and (b) treated graphite by the hydrothermal
treatment (HT). (c) Stability of the graphene dispersion in 0.1 mg/mL−1 of the CTAB aqueous solution
as a function of the storage time, considering pristine and pretreated graphite source. (d) UV-visible
spectra of exfoliated graphene in the three different CTAB concentrations after HT and 3 h of sonication.
Optical photos of pristine graphite (a, inset) and pretreated graphite (b, inset).

Independently of the CTAB concentration (0.1, 0.5 and 1.0 mg mL−1), as shown in Figure 2a–c,
HT also increases the interlayer spacing of graphite which is stabilized by surfactant. Therefore,
the resulting pretreated graphite is called hydrothermally expanded graphite (HEG). At the highest
concentration of CTAB, in Figure 2a, we show the surfactant intercalation (green arrows) and the HEG
surface coated by the surfactant molecules (green dashed circle). After 3 h of sonication in the three
different CTAB concentrations, Figure 2d–f demonstrate that graphene dispersions are composed of
smaller and thinner layers.

These layers seem to be semitransparent and surfactant-free, which is interpreted as an important
result for future applications in electronic devices. However, by scrutinizing the morphology of
layers at the highest concentration of CTAB and by changing the accelerating voltage from 5 to 30 kV,
in Supplementary Figure S3, we observe the presence of surfactant which corroborates the statement
about the difficulty of the residual surfactant removal and the need to use the proposed method at the
lowest concentration of CTAB in order to prevent the intrinsic properties of the obtained layers.
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Figure 2. Scanning electron microscopy (SEM) morphology of pretreated natural graphite in (a) 1.0 mg
mL−1, (b) 0.5 mg mL−1, and (c) 0.1 mg mL−1 of CTAB aqueous solution. (d–f) Semitransparent layers
obtained from supernatant after 2000 rpm centrifugation for 90 min, subject to 3 h of sonication in the
three different CTAB concentrations.

The Raman spectrum of graphite and dispersed graphene (at the lowest concentration of CTAB,
after HT and 3 h of sonication) are reported in Figure 3. We detect the three major peaks, i.e., the D peak
at ∼1340 cm−1, the G peak at ∼1580 cm−1 (∼572 cm−1), and the 2D peak at ∼2719 cm−1 (∼2711 cm−1).
The D peak and G peak are attributed to the edge/basal defects and the ordered sp2-hybridized carbon
bonds in the graphene/graphite lattice, respectively. In dispersed graphene, the peak ratio between
the intensity of D and G peaks (ID/IG) is 0.28, indicating that some edge/basal defects are induced
during the process of ultrasonication [30]. Probably, the small size and folded edge of graphene layers
(Figure 2d–f), contributes significantly to the observed D peak, although we cannot completely rule
out the presence of in-plane defects.

The structure of G peak observed in the dispersed graphene at ∼1572 cm−1 appears to be slightly
affected by the presence of D’ peak, however, the D’ peak usually is present when there are surface
defects, such as charging or other impurities adsorbed onto the surface [31]. The latter here is attributed
to the remaining surfactant as observed in Supplementary Figure S3 at the highest concentration
of CTAB, which strongly confirms the need to use our method at low concentrations of surfactant.
Interestingly enough, the D and G (G and D’) peaks of our graphene sample are well separated from
each other and are distinctly different from those of graphene oxide, in which case the D and G peaks
are broad and overlap. This fact suggests that our dispersed graphene did not undergo severe in-plane
disruption as in the case of graphene oxide [30].

The peak is slightly broader between 2625 and 2700 cm−1 and it is commonly used to estimate the
number of layers in obtained graphene [32]. However, the intensity of the 2D peak depends on the
excitation laser frequency, and therefore cannot be solely relied upon [31]. In this context, we use the
full width at half maximum (FWHM) to evaluate the 2D peak, which is found to be a qualitative guide
to distinguish the number of layers from single- to five-layer graphene [33]. By fitting the 2D peak with
two Lorentzian functions, the intensity of the 2D1A peak (detected at∼2683 cm−1) increases in dispersed
graphene, with respect to the intensity of the 2D1A peak (at ∼2676 cm−1) in pristine graphite. Most
importantly, in Supplementary Figures S4 and S5, we report the FWHM of 2D1A = 68.3 ± 1.6 cm−1,
2D2A = 36.9 ± 1.0 cm−1, and 2D = 68.7 ± 1.1 cm−1, respectively. These values are in good agreement
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with previous reports for tri-, four-, and five-layer graphene [33]. Furthermore, the 2D peak became
more symmetrical in dispersed graphene, after HT and sonication, indicating the presence of FLG in
obtained graphene dispersions.
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Figure 3. Raman spectra of (a) dispersed graphene after hydrothermal treatment and 3 h of sonication
in 0.1 mg mL−1 CTAB aqueous solution, fabricated by drop casting of dispersion, and (c) pristine
graphite. (b–d) Fitting of the 2D peaks with two Lorentzian functions. The intensity was normalized
by the G peak.

4. Conclusions

In this study, a simple method to prepare graphene dispersions has been demonstrated. Natural
graphite flakes were effectively exfoliated into FLG under HT and liquid-phase exfoliation in a
surfactant aqueous solution. The cationic surfactant, CTAB, was used as a dispersant and a stabilizer.
First, pristine graphite was hydrothermally expanded in the CTAB aqueous solution reacted at 180 ◦C
for 15 h. Subsequently, pretreated graphite (denominated as hydrothermally expanded graphite, HEG)
was exfoliated into FLG by sonication for 3 h, producing stable and well-dispersed graphene dispersions.
The expansion of interlayer spacing of graphite was demonstrated using SEM measurements. The
efficiency of HT was estimated by measuring the concentration of the dispersed graphene which
was shown to be comparable to graphene dispersions reported with a long sonication time [22,27].
Depending on the amount of the CTAB, sonication time, and HT, the concentration of dispersed
graphene ranged from 40 µg mL−1 to 60 µg mL−1. The obtained graphene dispersions from pretreated
graphite were shown to have good stability within 12 weeks. Using Raman analyses, the obtained
FLG presented lower (edge/basal) defects, and most importantly, based on the FWHM analysis, we
confirmed the presence of FLG, likely, no more than five layers. This novel approach (but non-optimized)
may be explored in the future for cationic/anionic surfactants (or biosurfactants) in order to improve
its efficiency.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/12/2539/s1,
Figure S1: Obtained graphene dispersions (12 weeks stored) after hydrothermal treatment (HT), 3 h of sonication
and centrifugation, in the three different concentrations of CTAB (0.1, 0.5, and 1.0 mg mL−1) reported in the main
text. After sonication, the obtained suspensions were left to stand overnight and then centrifugated for 90 min at
2000 rpm., Figure S2: Schematic route of the preparation process for FLG dispersions. Natural graphite flakes
are added into CTAB aqueous solution (at different surfactant concentrations: 0.1, 0.5, and 1.0 mg mL−1). The
resulting mixture is reacted at 180 ◦C for 15 h. The obtained pretreated graphite is immediately dispersed in the
very same CTAB aqueous solution by sonication, Figure S3: Scanning electron microscopy (SEM) morphology of
dispersed graphene layer in 1.0 mg mL−1 of CTAB aqueous solution, by changing the accelerating voltage from 5
to 30 kV. Semitransparent layer extracted from supernatant after HT, 3 h of sonication, centrifugation for 90 min at
2000 rpm, and dried at 235 ◦C, Figure S4: Raman spectrum of the 2D peak of dispersed graphene in 0.1 mg mL−1

of CTAB aqueous solution and fitting of the 2D peaks with two Lorentzian functions. The w values represent the
respective full width at half maximum (FWHM) values, Figure S5: Raman spectrum of the 2D peak of dispersed
graphene in 0.1 mg mL−1 of CTAB aqueous solution and fitting of the 2D peaks with one Lorentzian function. The
w value represents the respective FWHM value.
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