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Abstract: Face attributes prediction has an increasing amount of applications in human–computer
interaction, face verification and video surveillance. Various studies show that dependencies exist
in face attributes. Multi-task learning architecture can build a synergy among the correlated tasks
by parameter sharing in the shared layers. However, the dependencies between the tasks have been
ignored in the task-specific layers of most multi-task learning architectures. Thus, how to further
boost the performance of individual tasks by using task dependencies among face attributes is quite
challenging. In this paper, we propose a multi-task learning using task dependencies architecture
for face attributes prediction and evaluate the performance with the tasks of smile and gender
prediction. The designed attention modules in task-specific layers of our proposed architecture are
used for learning task-dependent disentangled representations. The experimental results demonstrate
the effectiveness of our proposed network by comparing with the traditional multi-task learning
architecture and the state-of-the-art methods on Faces of the world (FotW) and Labeled faces in the
wild-a (LFWA) datasets.

Keywords: multi-task learning; task dependencies; attention; face attributes prediction; deep
convolutional neural network

1. Introduction

Face attributes are useful to achieve detailed description of human faces (e.g., smile, gender, age,
etc.). Face attributes prediction has applications in human–computer interaction, face verification [1,2]
and video surveillance [3,4]. Face variations in pose, illumination, scale and occlusion increase the
difficulty of face attributes prediction. The performance of face attributes prediction has been improved
by using deep convolutional neural networks (DCNNs) [5–10]. Face attributes prediction is trained
separately in these networks, but the inherent correlation between the face attributes has been ignored.

Various studies show that dependencies exist in face attributes [11–15]. Multi-task learning
networks can improve the performance of individual tasks by jointly learning correlated tasks.
In traditional multi-task learning architectures, the shared layers learn general representations for
all the tasks by parameter sharing while the following task-specific representations are learned in
the task-specific layers. However, the dependencies between the tasks have been ignored in the
task-specific layers. Accordingly, further improving the performance of individual tasks by using task
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dependencies among face attributes in the task-specific layers of the multi-task learning architecture is
a challenge problem.

We propose a multi-task learning using task dependencies architecture for face attributes
prediction and evaluate the performance with the tasks of smile and gender prediction. Our proposed
architecture splits into two task-specific branches after the shared layers. In the task-specific
branches, we establish the task dependencies in the task-specific layers by incorporating attention
mechanism. The fully connected layers in the task-specific layers are transformed by using the
designed attention modules for learning task-dependent disentangled representations, where the
task-dependent disentangled representations denote the representations [16,17] of one task that are
disentangled [18] by depending on another task. The transformed fully connected layers that contain
task-dependent disentangled representations are fed into softmax layers to predict the final face
attributes. In experiments, we demonstrate the effectiveness of our proposed network by comparing
with the traditional multi-task learning architecture and the state-of-the-art methods on FotW and
LFWA datasets.

The rest of this paper is organized as follows: Section 2 briefly reviews related works. Section 3
describes the proposed multi-task learning using task dependencies architecture in detail. Section 4
describes the experimental configuration; the results on FotW and LFWA datasets are also presented
and discussed in Section 4. Section 5 concludes the paper.

2. Related Work

Multi-task learning. Caruana [19] first analyzed multi-task learning in detail. Since then,
multi-task learning has been adopted for solving different computer vision problems. Gkioxari et al.
used a convolutional neural network (CNN) for pose prediction and action classification of people in
unconstrained images [20]. Eigen et al. proposed a multi-scale convolutional architecture for predicting
depth, surface normals and semantic labels [21]. Misra et al. presented cross-stitch units to learn
shared representations for multi-task learning in ConvNets [22]. Kokkinos et al. presented a CNN
that jointly handles low-, mid-, and high-level vision tasks in a unified architecture [23]. Mallya et al.
studied a method for performing multiple tasks in a single deep neural network by iteratively pruning
and packing the network parameters [24]. Kim et al. proposed a novel architecture containing multiple
networks of different configurations termed deep virtual networks with respect to different tasks and
memory budgets [25]. Recently, multi-task learning with DCNNs have also been studied and applied
to face attributes prediction. Levi et al. used a deep convolutional neural network(DCNN) for age
and gender classification [26]. Liu et al. proposed a novel deep learning framework for attribute
prediction in the wild [27]. Ranjan et al. presented a DCNN for face analysis utilizing transfer learning
from a face recognition model [28]. Hyun et al. proposed a method to multi-attribute recognition
of facial images based on a deep learning network that automatically learns the exclusive and joint
relationship among attribute recognition tasks [29]. In multi-task learning, when the prediction of one
task which will be used as condition is accurate, other tasks can be formulated by using conditional
probability. For example, in [30], the experimental results on the MORPH-II dataset show that the
multitask method achieves 98% gender recognition accuracy, thus the age probability P(A(X) = a)
can be calculated using the gender-conditioned probability P(A(X) = a | G(X) = g) and the marginal
gender probability P(G(X) = g) in their proposed conditional multitask learning method. However,
the error predicted gender G(X) = g will lead to incorrect calculation of P(A(X) = a | G(X) = g)
and P(G(X) = g); therefore, their method cannot be used when the multitask method cannot predict
gender accurately on other datasets.

Attention mechanism. Human perception is similar to the attention mechanism that selects
specific parts of the input information, rather than using all input information. In neural networks,
attention mechanism can be used as feature selectors that can determine the importance of each feature
for the particular task. The attention mechanism has been studied and applied to recurrent neural
networks (RNNs) and long short term memory (LSTM) for sequential tasks [31–33]. The attention



Appl. Sci. 2019, 9, 2535 3 of 13

mechanism with DCNNs have been applied to vision-related tasks. Tang et al. proposed a
deep-learning based generative framework with visual attention [34]. Xiao et al. applied visual
attention to fine-grained classification task using DCNN [35]. Xu et al. presented an attention based
model that automatically learns to describe the content of images [36]. Zhao et al. proposed a
diversified visual attention network for fine-grained object classification [37]. Inspired by the attention
mechanism, we propose a multi-task learning using task dependencies architecture for face attributes
prediction in this paper.

The main contributions of this paper are summarized as follows:

1. A multi-task learning using task dependencies architecture for face attributes prediction in
end-to-end manner. The designed attention modules in our proposed architecture are used for
learning task-dependent disentangled representations. We evaluate the performance with the
tasks of smile and gender prediction.

2. We present experimental results which demonstrate that our proposed architecture outperforms
the traditional multi-task learning architecture and show the effectiveness in comparison with the
state-of-the-art methods on FotW and LFWA datasets.

3. Proposed Method

3.1. Modeling

Formally, the smile/non-smile prediction of the input face X is defined as S(X). The expected
smile/non-smile prediction of the input X is defined as follows:

E[S(X)] = ∑
s∈S

s · P(S(X) = s), (1)

where P(S(X) = s) is the probability that the smile/non-smile prediction of the input X is s, where s ∈
S. We define S = {‘non-smile’, ‘smile’}.

Figure 1. Comparison of traditional multi-task learning and our proposed multi-task learning
architecture. (a) traditional multi-task learning; (b) our proposed multi-task learning.

We assume that the predicted smile/non-smile is dependent on the gender of the input X.
Compared to the traditional multi-task learning architecture as shown in Figure 1a, the FCS layer has
been transformed into FCS|CG

layer in the multi-task learning architecture we proposed (shown
in Figure 1b). FCS denotes the fully connected layer that contains K(K ∈ N) smile/non-smile
representation units. FCS|CG

denotes the transformed gender dependent fully connected layer that
contains K gender dependent smile/non-smile representation units, where CG is the gender context.
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We feed the transformed FCS|CG
layer into the softmax layer to predict the final smile/non-smile.

The probability P(S(X) = s) in Equation (1) can be modeled as follows:

P(S(X) = s) = so f tmax(FCS|CG
(X)). (2)

The gender context CG contains K gender context units CGi, where CGi is the i-th (i = 1, 2, . . . K)
gender context unit that is automatically chosen from the gender representation units in the FCG layer.
FCG denotes the fully connected layer that contains K gender representation units.

The dependency score function score(xS j, CGi) that takes a conjunction of the j-th(j = 1, 2, . . . K)
input smile/non-smile representation unit xS j from the FCS layer and the i-th gender context unit CGi
from the FCG layer to score the dependency between xS j and CGi. The dependency score function can
be formulated as follows:

score(xS j, CGi) = tanh(WSxS j + WGCGi). (3)

The probability P(d = j | xS, CGi) reveals the relative importance of xS j based on CGi, where d
indicates which input smile/non-smile representation unit in xS is important based on CGi, where xS

contains K input smile/non-smile representation units. The probability P(d = j | xS, CGi) can be
calculated using the dependency score function as follows:

P(d = j | xS, CGi) =
exp(score(xS j, CGi))

K
∑

j=1
exp(score(xS j, CGi))

. (4)

The importance probability distribution P(d | xS, CGi) is defined as follows:

P(d | xS, CGi) = [P(d = j | xS, CGi)]
K
j=1. (5)

The gender dependent smile/non-smile representation units in the transformed FCS|CG
layer can

be defined as follows:

Ŝi = ExS∼P(d|xS ,CGi)
(xS) =

K

∑
j=1

P(d = j | xS, CGi)xS j, (6)

where Ŝi is the i-th (i = 1, 2, . . . K) gender dependent smile/non-smile representation unit that is
the weighted average of the input smile/non-smile representation units. Ŝi can be formulated as the
expectation of xS according to the importance probability distribution P(d | xS, CGi). The transformed
FCS|CG

layer is generated by concatenating K gender dependent smile/non-smile representation units.
The gender prediction of the input face X is defined as G(X). The expected gender prediction is

defined as follows:
E[G(X)] = ∑

g∈G
g · P(G(X) = g), (7)

where P(G(X) = g) is the probability that the gender prediction of the input X is g, where g ∈ G.
We define G ={‘male’, ‘female’}.

We also assume that the predicted gender is dependent on the smile/non-smile of the input X.
The probability P(G(X) = g) in Equation (7) can be modeled as follows:

P(G(X) = g) = so f tmax(FCG|CS
(X)), (8)

where FCG|CS
denotes the transformed smile/non-smile dependent fully connected layer that contains

K smile/non-smile dependent gender representation units, where CS is the smile/non-smile context
chosen from the smile/non-smile representation units in the FCS layer.
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The calculation of the smile/non-smile dependent gender representation units in the transformed
FCG|CS

layer is similar to calculating the gender dependent smile/non-smile representation units in
the transformed FCS|CG

layer. The smile/non-smile dependent gender representation units can be
calculated using Equations (9)–(12) as follows:

score(xG j, CSi) = tanh(WGxG j + WSCSi), (9)

P(d = j | xG, CSi) =
exp(score(xG j, CSi))

K
∑

j=1
exp(score(xG j, CSi))

, (10)

P(d | xG, CSi) = [P(d = j | xG, CSi)]
K
j=1, (11)

Ĝi =ExG∼P(d|xG ,CSi)
(xG)=

K

∑
j=1

P(d= j | xG, CSi)xG j. (12)

3.2. Network Architecture

The multi-task learning architecture we proposed is shown in Figure 2. The ResNet50 [38] Network
is adapted as the baseline architecture. We share the parameters from its first 46 layers for all the tasks.
We evaluate our proposed architecture with the tasks of smile and gender prediction. Thus, the network
splits into two task-specific branches corresponding to smile and gender prediction. We attach a fully
connected layer FCS that contains 64 smile/non-smile representation units and a fully connected layer
FCG that contains 64 gender representation units respectively to ‘res5c1’ and ‘res5c2’, where ‘res5c1’
and ‘res5c2’ are residual blocks in ResNet50. The smile/non-smile representation units in FCS layer
and the i-th (i = 1, 2, . . . 64) gender context unit CGi are fed into the i-th (i = 1, 2, . . . 64) gender
context attention module Att_CGi (shown in Figure 3), where Att_CGi is designed to learn the i-th
(i = 1, 2, . . . 64) gender dependent smile/non-smile representation unit Ŝi by using Equations (3)–(6).
The transformed FCS|CG

layer is generated by concatenating 64 gender dependent smile/non-smile
representation units. We feed the transformed FCS|CG

layer into the softmax layer to predict the
final smile/non-smile. The procedure of predicting the final gender is similar to that of predicting
the final smile/non-smile in our proposed architecture. The i-th (i = 1, 2, . . . 64) smile/non-smile
context attention module Att_CSi (shown in Figure 4) is designed to learn the i-th (i = 1, 2 . . . 64)
smile/non-smile dependent gender representation unit Ĝi by using Equations (9)–(12).

Figure 2. The architecture of the proposed multi-task learning convolutional neural network.
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Figure 3. The designed gender context attention module.

Figure 4. The designed smile/non-smile context attention module.

3.3. The Model Objective

We use the cross-entropy loss for training the smile prediction task. The loss function LS is
formulated as follows:

LS = −s · log(ps)− (1− s) · log(1− ps), (13)

where s = 1 for a smiling face and s = 0, otherwise. ps is the final predicted probability that the input
is a smiling face.

We also use the cross-entropy loss for training the gender prediction task. The loss function LG is
formulated as follows:

LG = −g · log(pg)− (1− g) · log(1− pg), (14)



Appl. Sci. 2019, 9, 2535 7 of 13

where g = 0 if the gender is male and g = 1 if the gender is female. pg is the final predicted probability
that the input face is a female.

The total loss L is the weighted sum of the individual losses. L is defined as follows:

L = λs · LS + λg · LG, (15)

where λs and λg are weight parameters corresponding to smile and gender prediction task, respectively.

4. Experiments

The proposed multi-task learning using task dependencies architecture is evaluated with the
tasks of smile and gender prediction. The architecture in which we feed FCS and FCG layers
directly into softmax layers to predict the final smile/non-smile and gender respectively as shown
in Figure 1a is called TMTL (Traditional Multi Task Learning). We select TMTL architecture as the
comparison baseline.

4.1. Datasets

We evaluate the smile and gender prediction performance on Faces of the World (FotW) [39] and
Labeled Faces in the Wild-a (LFWA) [40] datasets. Both FotW and LFWA datasets cover large variations
in pose, illumination and scale of faces. The FotW dataset contains 9130 images, each of which is
labeled with non-smile/smile and male/female. The FotW dataset has been split into 6078 images for
training and 3052 images for validation. The LFWA dataset contains 13,143 images, each of which is
labeled with non-smile/smile, male/female and thirty-eight other face attributes. The LFWA dataset
has been split into 6263 images for training and 6880 images for validation.

4.2. Experimental Configuration

For the FotW dataset, we crop the faces from the original images using the provided coordinates
of the bounding box and resize the cropped face images to 224× 224× 3. For the LFWA dataset,
we directly resize the face images to 224× 224× 3.

All the architectures are trained using the keras [41] framework. Data augmentation such as
horizontal flip, horizontal shift and vertical shift are adopted to prevent overfitting. We train all
the architectures using Adam with a mini-batch size of 64. The initial learning rate is set to 0.001.
The learning rate will decrease to 0.0001 after training 25 epochs. The weight parameters are decided
based on the importance of the task in the overall loss. We assume that the smile prediction task
and the gender prediction task have the same importance in our proposed architecture due to both
of the tasks being binary classification problems. Therefore, we set the weight parameters λs = 1,
λg = 1. For FotW dataset and LFWA datasets, we adopt he_normal as the weight initialization method
and train TMTL architecture 40 epochs (overfitting after 40 epochs) and 30 epochs (overfitting after
30 epochs), respectively. For all the datasets, we initialize our proposed architecture with trained
weights from TMTL architecture and train 30 epochs, respectively.

4.3. The Effectiveness of Multi-Task Learning Using Task Dependencies

We evaluate the contribution of multi-task learning using task dependencies. Disentangling
the underlying structure of representations into disjoint parts can benefit for solving a diverse set of
tasks in a data-efficient manner. The disentangled representations are vector representations with
respect to a particular decomposition of a group into subgroups using the group and representation
theory [42]. Table 1 shows that our proposed architecture in comparison with TMTL architecture
on FotW and LFWA datasets, respectively. Our proposed architecture produces performance gains
over TMTL architecture because our proposed architecture disentangles smile/non-smile and gender
representations into gender dependent smile/non-smile and smile/non-smile dependent gender
representations, respectively, by establishing the task dependencies between smile and gender



Appl. Sci. 2019, 9, 2535 8 of 13

prediction tasks in the task-specific layers. We combine (smile/non-smile × gender) into four
groups. For each of the groups, we randomly sample 100 images from the FotW validation dataset.
The t-distributed stochastic neighbor embedding (t-SNE) [43] on the sampled FotW validation dataset
show the distributions of the representations in FCS and FCG layers, respectively, in Figure 5a,c,
and show the distributions of the gender dependent smile/nonsmile and smile/non-smile dependent
gender representations in FCS|CG

and FCG|CS
layers, respectively, in Figure 5b,d. Clusters in Figure 5b,d

are disentangled by gender and smile/non-smile more explicitly compared to those in Figure 5a,c.
The procedure of achieving the sampled LFWA validation dataset is the same as that of achieving
the sampled FotW validation dataset. The t-SNE on the sampled LFWA validation dataset shows
the distributions of the representations in FCS and FCG layers, respectively, in Figure 6a,c, and show
the distributions of the gender dependent smile/nonsmile and smile/non-smile dependent gender
representations in FCS|CG

and FCG|CS
layers, respectively, in Figure 6b,d. Clusters in Figure 6b,d are

also disentangled by gender and smile/non-smile more explicitly compared to those in Figure 6a,c.

Table 1. Comparison results for smile and gender prediction on the FotW dataset and the LFWA dataset.

Dataset Architecture Smile Gender

FotW TMTL 86.83% 82.54%
Ours 88.53% 84.83%

LFWA TMTL 90.74% 91.80%
Ours 91.13% 92.49%

Figure 5. t-SNE visulization on the sampled FotW validation dataset. (a) t-SNE visualization of FCS;
(b) t-SNE visualization of FCS|CG

; (c) t-SNE visualization of FCG; (d) t-SNE visualization of FCG|CS
.
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Figure 6. t-SNE visulization on the sampled LFWA validation dataset. (a) t-SNE visulization of FCS;
(b) t-SNE visualization of FCS|CG

; (c) t-SNE visualization of FCG; (d) t-SNE visualization of FCG|CS
.

4.4. Comparison with Previous Approaches

We initialize our proposed architecture using the weights from ResNet50 pre-trained on
ImageNet [44]. Tables 2 and 3 compare our results with those of previous methods on FotW and LFWA
datasets, respectively. Our average accuracy is lower than SIAT_MMLAB on the FotW dataset and
LNets+ANet on the LFWA dataset. The SIAT_MMLAB architecture is composed of GNet for gender
classification and two SNets for smile classification. GNet and two SNets are trained with different face
cropping schemes for better performance. The SIAT_MMLAB architecture adopts the VGG-Faces [45]
model, which is pre-trained on a large-scale face identification dataset for face identification and face
verification. They use a general-to-specific fine-tuning scheme that fine-tunes the model three times on
CelebA [27] (with forty attribute annotations), CelebA (with smile and gender annotations) and FotW
(with smile and gender annotations) datasets, respectively. The LNets+ANet architecture integrates
two CNNs LNet and ANet, where LNet locates the entire face region and ANet extracts features for
attribute recognition. LNet is pre-trained on ImageNet and fine-tuned by image-level attribute tags.
ANet is pre-trained on the CelebA dataset and fine-tuned by attribute tags. Our proposed architecture
can perform smile and gender prediction tasks in the end-to-end manner using a single deep neural
network. The input face images are processed as mentioned in experimental configurations with no
extra face cropping and localization steps. We only use the weights from ResNet50 pre-trained on
ImageNet for weight initialization. The results also show the effectiveness of our proposed architecture
in comparison with previous state-of-the-art methods.
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Table 2. Performance comparison for smile and gender prediction on FotW datasets.

Architecture Smile Gender Average

SMILELAB NEU [39] 81.48% 89.99% 85.74%
DMTL [46] 87.30% 84.90% 86.10%

IVA_NLPR [47] 82.52% 91.52% 87.02%
SIAT_MMLAB [48] 89.34% 91.66% 90.50%

Ours 89.38% 87.48% 88.43%

Table 3. Performance comparison for smile and gender prediction on LFWA datasets.

Architecture Smile Gender Average

LNets+ANet(w/o) [27] 88% 91% 89.50%
PANDA-1 [49] 89% 92% 90.50%

MCFA [50] 88% 93% 90.50%
MNet [51] 89.49% 92.20% 90.85%

LNets+ANet [27] 91% 94% 92.50%
Ours 91.38% 92.50% 91.94%

5. Conclusions

In this paper, we have proposed a novel multi-task learning using task dependencies architecture
for face attributes prediction and evaluated the performance with the tasks of smile and gender
prediction. We transformed the fully connected layers by using the designed attention modules for
learning task-dependent disentangled representations. The transformed fully connected layers were
fed into softmax layers to predict the final face attributes. The experimental results demonstrate
the effectiveness of our proposed network by comparing with the traditional multi-task learning
architecture and the state-of-the-art methods on FotW and LFWA datasets. In the future, we will
evaluate the performance of our proposed architecture with more tasks of face attributes prediction.
We also plan to apply the attention module to more fully connected layers or convolution layers and
try to use dynamic weights for performing more face attributes’ prediction tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

DCNNs Deep convolutional neural networks
CNN Convolutional neural networks
DCNN Deep convolutional neural network
RNNs Recurrent neural networks
LSTM Long short term memory
TMTL Traditional multi task learning
FotW Faces of the world
LFWA Labeled faces in the wild-a
t-SNE T-distributed stochastic neighbor embedding
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