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Abstract: Hyperspectral image (HSI) restoration is an important task of hyperspectral imagery
processing, which aims to improve the performance of the subsequent HSI interpretation and
applications. Considering HSI is always influenced by multiple factors—such as Gaussian noise,
stripes, dead pixels, etc.—we propose an HSI-oriented probabilistic low-rank restoration method to
address this problem. Specifically, we treat the expected clean HSI as a low-rank matrix. We assume
the distribution of complex noise obeys a mixture of Gaussian distributions. Then, the HSI restoration
problem is casted into solving the clean HSI from its counterpart with complex noise. In addition,
considering the rank number need to be assigned manually for existing low-rank based HSI restoration
method, we propose to automatically determine the rank number of the low-rank matrix by taking
advantage of hyperspectral unmixing. Experimental results demonstrate HSI image can be well
restored with the proposed method.

Keywords: hyperspectral imagery; probabilistic model; hyperspectral image denoising; low-rank
data analysis

1. Introduction

Hyperspectral imagery (HSI) is 3D data containing both spatial and spectral information, which is
widely used for lots of remote sensing related applications [1–7]. However, HSI is unavoidably
influenced by multiple kinds of factors—including noise, stripe corruption, etc.—during imaging
and acquisition [8], which decrease the image quality. Thus, it increases the difficulty for people
interpretation or machine understanding [9–12], which makes HSI restoration an essential step for HSI
processing and analysis.

To date, lots of methods have been proposed for HSI denoising. According to the way how noise
and signal combines, typical HSI denoising methods can be categorized as signal-dependent-noise
and signal-independent-noise methods. As indicated by the name, signal-independent-noise method
assumes the generation of noise is independent of signals, while the generation of noise is related with
signals for signal-dependent-noise method. These two kinds of methods are proposed for different
HSI imaging mechanisms. For example, signal-independent-noise method is suitable to sensors where
the noise is mainly determined by electronic components, while signal-dependent-noise method can
be applied to the sensors where photon noise is dominated [13,14]. Both methods are research focuses
of HSI denoising. Thus, lots of algorithms are proposed in recent years [11,13]. We mainly focus on
signal-independent-noise method in this study. For signal-dependent-noise methods, we refer the
readers to [13].

For signal-independent-noise HSI denoising methods, the existing focuses are original-space based
methods, which includes total variation (TV) based, tensor based, local patch based, and low-rank
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based methods, etc. Low-rank based method has advantages to deal with missing data, which complies
with the fact that HSI is also influenced by deadlines. Thus, low-rank based method has garnered
significant attention in recent years for HSI denoising, which is also our focus in this paper. The
detailed description of signal-independent-noise method is given in Section 2.

Though some low-rank based methods have been proposed, the following two deficiencies limit
the usage of existing low-rank based methods. (1) In real applications, hyperspectral images will be
influenced by multiple kinds of noise such as Gaussian noise, sparse noise, stripe, dead lines, and
their combinations, which beyond the capability of the existing low-rank based methods. (2) The
rank numbers of all existing low-rank based methods need to be assigned manually, and an automatic
method to determine the rank number is desired.

To address those issues, we propose an HSI-oriented low-rank denoising method. Firstly,
considering the mixture of Gaussian distribution has advantage of depicting different kinds of
distributions, we propose to model noise with the mixture of Gaussian distributions. Thus, a
probabilistic low-rank model is proposed for HSI denoising, where the clean HSI to be estimated is
still considered as a low-rank matrix. Secondly, we find hyperspectral unmixing can provide prior
information for rank number initialization. However, it is neglected by existing low-rank methods.
In this paper, we propose to automatically determine the rank number via hyperspectral unmixing.
In summary, the proposed HSI-oriented low-rank denoising method can deal with multiple kinds of
noise as well as automatically determine the rank number. As a result, the proposed method has better
HSI restoration results compared with other methods. Experimental results on both simulated and real
datasets verify the effectiveness of the proposed method.

The paper is structured as follows. In Section 2, we briefly review the related work of HSI denoising.
In Section 3, we analyze how to cast HSI denoising into a low rank matrix analysis (LRMA) problem
and discuss how to initialize the rank number. In Section 4, we present the probabilistic low-rank based
HSI restoration method. In Section 5, the experimental setup and results are summarized. Finally, we
discuss the proposed method and conclude the paper in Sections 6 and 7.

2. Related Work

We mainly focus on HSI denoising method where noise is independent with signal. The related
works can be roughly divided into a transformation-space based method and an original-space based
one [15,16].

Transformation-space based method is adopted for HSI denoising in the early stage. The basic idea
of transformation-space based method is that the signal differs from the noise greatly when we transform
the HSI from spatial/spectral space into a new space. For example, in the wavelet transformation space,
the signal is sparse while the noise is non-sparse. Thus, signal can be separated from the noise by
exploiting such difference. [17–19]. Except wavelet transformation, other transformation methods such
as curvelet [20,21] can also be used for this purpose. The advantage of transformation-based method is
that it does not need to assign noise a specific category (e.g., Gaussian noise). However, artifacts such
as edge ringing and low-frequency noise are prone to be generated when using transformation-space
based methods [16].

In contrast, original-space (image space or spectral space) based methods denoise HSI directly on
spatial/spectral space. Since those methods do not influenced by artifacts and low-frequency noise,
they begin to the dominate HSI denoising methods in recent years.

Considering the HSI image is a data cube composing a set of 2D band images, a direct strategy for
original-space based method is to denoise each band image independently, which promotes some 2D
denoising method directly used for hyperspectral image denoising. However, HSI contains both spatial
and spectral information. Directly using 2D denoising methods for each band neglects the correlation
among images from different bands. Thus, one trend of the original-space based method is to utilize
both spectral and spatial information. Among those methods, total variation (TV) based [22–24], tensor
based [25–27], local patch based methods, and low-rank based methods are representative approaches.
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For TV based methods, considering the variations among neighboring pixels or spectra are smooth,
TV based HSI denoising methods are proposed by exploiting such kind of smoothness [22–24]. Since the
noise intensity of different bands may differ, spectral–spatial TV based methods consider the spectral
noise differences as well as the spatial information differences simultaneously [24]. Considering HSI is
a 3D data which can be naturally represented by 3D tensor, some tensor-based methods are proposed
accordingly. It is noticeable that commonly used tensor decomposition strategy includes Tucker
decomposition and PARAFAC decomposition [25–27]. For local patch-based method, it first divides
HSI into a group of overlapping (or non-overlapping) 2D patches or 3D blocks, and then generates
noiseless 2D patches or 3D blocks using collaborative filtering. Finally, it assembles those denoised
2D patches or 3D blocks to obtain the desired HIS [28–31]. Among which, video block-matching and
3D filtering (VBM3D) is a representative local patch/voxel based method. Though the advantages of
above introduced spectral–spatial TV based, tensor based and local patch-based methods have been
testified over traditional 2D approaches for HSI denoising, it is found that those methods are proposed
for complete HSI data. If the HSI is incomplete—e.g., dead lines or dead pixels appear in HSI—the
above methods cannot generate a complete HSI and their restoration results will be influenced greatly.

In recent years, low-rank based methods have been proposed for HSI denoising, which have the
merit to deal with incomplete data. The representative method is a LRMA method [11], which assumes
clean HSI is a low-rank matrix. Then, HSI restoration problem cast into recovering low-rank matrix
from original noisy HSI data, which is solved by Go Decomposition (Godec) approach [11]. Based
on [11], some other low-rank based methods are proposed by utilizing other characteristics of HSI for
denoising. He et al. combine the TV-regularization term with low-rank matrix representation [32].
Wang et al. combine the non-local similarity with LRMR and thus proposed a method named group
low-rank representation [33]. Superpixel segmentation is used together with low-rank representation
to improve the performance of image denoising results [34]. Wei et al. propose a structured low-rank
representation, which achieves the state-of-the-art denoising performance by utilizing the structure
among low-rank matrix [35].

Though these low-rank based methods have been proposed, two deficiencies limit the their usage.
1) In real applications, hyperspectral image will be influenced by multiple kinds of noise such as
Gaussian noise, sparse noise, stripe, dead lines, and their combinations. However, above mentioned
methods model noise deterministically, which can only handle one to two kinds of noise and lose
flexibility to handle complex noise. 2) The rank number of all existing low-rank based method need to
be assigned manually, and automatically method to determine the rank number is desired. To deal
with these two problems, we propose a new HSI-oriented denoising method in this paper.

3. Revisited Low-Rank based HSI Denoising from Linear Mixed Model Perspective

In this study, noisy HSI is denoted as X ∈ Rnr×nc×nb . nr, nc, and nb represent the height, width, and
bands of X, respectively. By vectorizing the image of each band of X we obtain a 2D matrix X ∈ Rnb×np ,
where np = nr × nc denotes the number of pixels. In X, each row represents the spectrum of one pixel,
while each column denotes the reflectance values of all pixels in one specific spectral band.

Suppose a noisy image X is consisted of a clean/noise-free image L ∈ Rnb×np and multiple kinds of
noise S ∈ Rnb×np , i.e.,

X = L + S, (1)

HSI restoration is to recover L from X.
Due to the low spatial resolution and materials mixture in remote sensing, the spectrum of each

pixel is always considered as the mixture of some spectral signatures of pure materials. The spectral
signatures of pure materials are termed as endmembers, while the proportion of each endmember for
mixing is termed as abundance. Thus, L can be decomposed into endmembers with an abundance
matrix as

L = MHT, (2)
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where M ∈ Rnb×ne is an endmember matrix, H ∈ Rnp×ne is an abundance matrix and ne is the number of
endmembers. Figure 1 illustrates above representation. Based on the abovementioned issues, we first
analyze why HSI denoising can be formulated as a LRMA problem. Then, we analyze how to use the
provided prior knowledge LMM to initialize the rank number of LRMA.
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3.1. Analyze HSI Restoration as a LRMA Problem

We use rank(•) to denote the rank number of a given matrix. It is realized that noise, i.e.
rank(S), is always a full matrix [29]. Since the row and column dimensionalities of S are np and nb,
rank(S) = min(nb, np).

Since L = MHT, the rank of noise-free HSI L, denoted as rank(L), is min(rank(M), rank(H)). ne

represents the number of endmembers, which is related with the materials captured in the HSI image.
Since there are always several materials in the HSI image [29], ne is far smaller than the number of
spectral bands nb or np, which is always more than one hundred or ten thousand for an HSI image.
Thus, rank(L) ≤ min(rank(M), rank(H)) ≤ ne.

The rank of X, denoted as rank(X), is no larger than rank(L) + rank(S) since X = L+ S. According
to the fact that ne is far smaller than np and nb, rank(L) << min(np, nb) = rank(S), which makes
rank(L) << rank(X) ≈ rank(S).

According to above analysis and the fact that only several endmembers are always contained in
one HSI in reality [29], HSI denoising can be casted into recovery a low-rank matrix L from X.

3.2. Analysis on the Rank Initialization for LRMA

Zhang et al. [11] first use the LRMA model for HSI restoration, which divides HSI into some
fixed-size subcubes, then adopt LRMA method to restore each subcube and assemble those restored
subcubes to obtain the final result. Rank number is manually initialized as the same value in [11]
for each subcube. Though this kind of initialization is simple, it ignores the rank difference among
different fixed-size subcubes in HSI. In other words, because the materials/endmembers falling into
a fixed-size subcube are related with its content, the number of endmembers is always varied with
different subcubes. Thus, the rank number should be varied according to rank(L) ≤ ne to fit the data
better. However, this characteristic has not been considered in [11] and its follow-up methods.

Based on the data structure of HSI, we analyze and find two kinds of rank number initialization
methods. Taking advantage of the number of endmembers, ne is an apparent clue/(prior knowledge)
for rank number initialization. The first method is a whole HSI entity-based method, i.e., all pixels in
HSI are used to estimate the rank number. The second method is a local region-based method. Similar
to Zhang et al in [11], homogeneous regions are adopted instead of using fixed-size subcubes [11].
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(1) Initialize the rank number using whole HSI entity

Since determining the number of endmembers in HSI is an important issue for hyperspectral
unmixing, the relative methods can be directly introduced for rank number initialization. Without
dividing HSI into some subcubes as Zhang et al in [11] does, those methods are based on all pixels
in HSI. The reason using all pixels to determine the number of endmembers is partially because the
parameters of those methods can be estimated more accurately with more pixels. Thus, we use whole
HSI entity to estimate the number of endmembers, and then use the estimated number to initialize the
rank number.

Information theoretic criteria including Akaike’s information criterion, minimum description
length can be used to determine the number of endmembers, which is based on the data
log-likelihood [35–37]. However, the prior knowledge of data log-likelihood function needs to be
provided. Incorrect prior knowledge will influence the accuracy of estimated number of endmembers.
On the contrary, geometry-based approaches can estimate the number of endmembers without knowing
the prior knowledge of likelihood function. GENE-AH [38], a typical geometry-based approach, was
proposed to estimate the number of endmembers. Since it assumes the observed pixels lie in the affine
hull of endmembers, GENE-AH has an advantage in estimating the number of endmembers in the
presence of noise, which promotes adopting GENE-AH to estimate the number of endmembers in
this study.

(2) Initialize the rank number with homogeneous regions in HSI

Dividing HSI into fixed-size subcubes will lead to variation of the rank number with different
subcubes [11]. Thus, assigning each subcube the same rank number is inappropriate. However,
from the perspective of segmentation, an image can be divided into many of homogeneous regions.
For hyperspectral image, the rank of the homogeneous region approximately equals to one because
those homogeneous regions are always defined as the combination of pixels with similar spectral. It
motivates us first segment/over-segment HSI into some local regions, then restore those local regions
with LRMA method.

4. Probabilistic LRMA Model for HSI Restoration

From above analysis, we can see that HSI restoration is to estimate low-rank matrix L from X
inversely in Equation (1). In this section, we first introduce how traditional methods estimate L from X,
and then give the details of how we solve this problem with the probabilistic model.

Without any prior knowledge on S, estimating L from X is ill-posed. Certain constraints or priors
on S are then needed to make L efficiently solvable. The original LRMA model assumes L and S are
low-rank matrix and sparse matrix, respectively, with which the estimation of L is modeled as

minL,Srank(L) + λ‖S‖0 s.t. X = L + S. (3)

The above formula is a nonlinear optimization problem, which is hard to solve. To make it
tractable optimized, Formula (3) is converted into

minL,S‖L‖∗ + λ‖S‖1 s.t. X = L + S (4)

by replacing L0 norm with L1 norm and replacing the rank with the nuclear norm. λ is a weight to
balance the importance of L and S [39,40].

Though the original LRMA model is suitable for incomplete data restoration, from the constraint
on S, we can see that the original LRMA model is only suitable for noise in a sparse form.

However, the degradation factors such as multiple kinds of noise, stripe corruption, and missing
data coexist in HSI, among which only few kinds of noise are sparse. This characteristic makes
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Equation (4) inappropriate to represent such kind of degradation in reality. In [11], the LRMA model is
remodeled as

X = L + S + N, (5)

where the new supplemented item N is a Gaussian-distributed noise. Then, L can be solved by

minL,S‖L‖∗ + λ‖S‖1 s.t. ‖X− L− S‖F ≤ δ, (6)

where δ is a constant [41].
Though [11] can deal with more kinds of noise by dividing the noise item into S and N, from

Equation (6) we can see the noise that [11] can essentially deal with is only Gaussian noise, sparse
noise, and their combinations, which is still insufficient for real applications.

4.1. Framework

Since modeling noise deterministically as Equation (1) or Equation (2) can only represent some
kinds of noise, we propose to model noise probabilistically. The basic assumption is that though
S is difficult to be modeled deterministically for multiple kinds of noise, it will be easier and more
flexible to be modeled from the probabilistic perspective. In addition, we can further initialize the rank
number by taking advantage of the linearly mixed model, as we analyzed in Section 3. With these
considerations, we propose a probabilistic LRMA based HSI restoration method, whose framework is
shown in Figure 2.
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It is commonly realized that mixture of Gaussian distribution can depict any continuous
distribution. Thus, we probabilistically model noise S in HSI with mixture of Gaussian as

si j ∼
∑K

k=1
ωkN(si j|µk, τ−1

k ). (7)

si j is the value in the j-th column and i-th row of S. K represents the number of Gaussian components.
Given the mean value µ and precision τ as µ = µk and τ = τk, respectively, N(si j|µk, τ−1

k ) depicts the
adopted k-th Gaussian distribution. ωk is the mixing proportion weight which satisfies ωk ≥ 0 and∑K

k=1 ωk = 1.
With such representation for S, likelihood between X and L obeys

p(X|L,ω,µ,τ) =
∏

(i, j)∈Ω

(∑K

k=1
ωkN(xi j|li j + µk, τ−1

k )
)
, (8)
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where li j and xi j represent the element in the i-th row and the j-th column of L and X, respectively.
Since K Gaussian distributions are adopted,ω = (ω1,ω2, · · · ,ωK) has K elements. Similarly, the mean
value µ = (µ1,µ2, · · · ,µK) and the precision value τ = (τ1, τ2, · · · , τK) also have K elements. (i, j) ∈ Ω
is a subset composed by all possible values of (i, j).

Denote θ as the parameter which controls the distribution of L ∈ Rnb×np . Choosing proper
distribution and parameter θ can guarantee that p(L|θ) is a low-rank matrix [42,43]. For a probabilistic
LRMA model, ifω, µ, τ, and θ are known in advance, restoration task turns to recover L from X as

Lopt = argmax
L

p(L|X) ∝ p(X|L,ω,µ,τ)p(L|θ). (9)

However,ω, µ, τ and θ are all unknown in reality. To make those parameters data-dependent,
they need to be estimated jointly with L as p(L,ω,µ,τ,θ|X), which can be seen from Section 4.2.

4.2. Clean HSI Estimation Method

Considering matrix decomposition has the advantage to represent a low-rank matrix both in
speed and scalability, it can be adopted to represent L. Specifically,

L = MHT =
∑R

r=1
m

.r
hT

.r. (10)

The r-th column of M and H is denoted as m.r and h.r, respectively. θ = (θ1,θ2, · · · ,θR) is
precision parameter. To guarantee the generated matrix L a low-rank matrix, M and H can be
probabilistically represented by Gaussian distributions [42] as

p(M|θ) ∼
R∏

r=1
N(m.r|0, θ−1

r Inb)

p(H|θ) ∼
R∏

r=1
N(h.r|0, θ−1

r Inp)
(11)

where Inp is an identity matrix in the size of np ×np. θr obeys Gamma distribution with hyperparameters
a0 and b0, viz. p(θr) = Gamma(θr|a0, b0). With such a matrix decomposition L = MHT, p(X|L,ω,µ,τ)
in Equation (9) turns to be

p(X|M, H,ω,µ,τ) =
∏

(i, j)∈Ω

(∑K

k=1
ωkN(xi j|mi.hT

j. + µk, τ−1
k )

)
, (12)

and p(L,ω,µ,τ,θ|X) turns to be p(M, H,ω,µ,τ,θ|X). It means instead of estimating L directly, we
need to estimate M and H first, and then obtain L using L = MHT.

According to the Bayesian rule, p(M, H,ω,µ,τ,θ|X) is proportional to p(M, H,ω,µ,τ,θ, X),
which can be further factorized into some simple distributions to guarantee the easier estimation from
the perspective of generative model. The above analysis on p(M, H,ω,µ,τ,θ|X) can be represented by

p(M, H,ω,µ,τ,θ|X) ∝ p(M, H,ω,µ,τ,θ, X)
= p(X|M, H,ω,µ,τ)p(ω)p(µ|τ)p(τ)p(M|θ)p(H|θ)p(θ)

(13)

Though the factorized items such as p(M|θ) and p(H|θ), etc., can facilitate the estimation of
unknown parameters {M, H,ω,µ,τ,θ}, directly estimating M and H using p(M, H,ω,µ,τ,θ, X) is
still intractable. To address this problem effectively, variational method or sampling-based method can
be used to calculate M and H. In this study, the variational method proposed in [42] is used for this
purpose. The basic idea of this method is given as follows.
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First, an intermediate variable ti j = (ti j1, · · · , ti jK) ∈ {0, 1}K, which satisfies a multinomial
distribution parameterized byω, is introduced to represent S as

si j ∼

K∏
k=1

N(si j|µk, τ−1
k )

ti jk

. (14)

Second, to guarantee Equation (12) tractable, we represent µk, τk and ω using the following
conjugate priors

p(τk) ∼ Gam(τk|c0, d0)

p(µk) ∼ N(µk|µ0, (β0τk)
−1)

p(ω) ∼ Dir(ω|α0)

(15)

where c0, d0, and α0 = (α01, · · · ,α0K) are the parameters of above distributions [42].
With above representations, we build a full probabilistic low-rank model, which is tractable.

Thus, the estimated parameters are transformed into {M, H, t,ω,µ,τ,θ} from {M, H,ω,µ,τ,θ}, where
t = {ti j}. For simplicity, we use Θ to denote all variables of {M, H, t,ω,µ,τ,θ} in the following.

Third, a new simple distribution q(Θ) is introduced to approximate p(Θ|X) as

KL(q||p) = −
∫

q(Θ) ln
{

p(Θ|X)
q(Θ)

}
dΘ, (16)

where KL(q||p) denotes the KL divergence between q(Θ) and p(Θ|X). Since minimizing KL divergence
between q(Θ) and p(Θ|X) can guarantee the estimation of Θ from q(Θ) is close to the one learned
from p(Θ|X), we estimate M, H together with other parameters by minimizing KL(q||p) iteratively.
The details can be seen from [42]. Here we only give the updating equation for mi.(the i-th row of
M) and h j. (the j-th row of H). By defining q(mi.) = N(mi.|µmi. , Σmi.) and q(h j.) = N(h j.|µh j. , Σh j.),

the parameters related with mi. and h j. can be inferred. µT
mi.

= Σmi. {
∑

k〈τk〉
∑

j

〈
ti jk

〉
(xi j −

〈
µk

〉
)
〈
h j·

〉
}
T

and µT
h j.

= Σh j. {
∑

k〈τk〉
∑

i

〈
ti jk

〉
(xi j −

〈
µk

〉
)〈mi·〉}

T
are the mean vectors for mi. and h j., while Σmi. =

{
∑

k〈τk〉
∑

j

〈
ti jk

〉〈
hT

j·h j·
〉
+ Γ}

−1
and Σh j. = {

∑
k〈τk〉

∑
i

〈
ti jk

〉〈
mT

i·mi·
〉
+ Γ}

−1
are the covariance matrices for

mi. and h j.. Γ = diag(θ).
When the stop criterion is satisfied, the optimized mi. and h j. are denoted as mi.

∗ and h j.
∗. Then

each element in the denoised HSI image L can be calculated by li j = mi.
∗
× (h j.

∗)T.

4.3. Initialization of the Rank Number

Though the above introduced probabilistic low-rank method can represent the complex noise
with the mixture of Gaussian strategy, one of the most important parameters, rank number R, has to be
assigned manually. Fortunately, as we analyzed in Section 3, the number of endmembers ne can be
used to determine R. Thus, we use an affine hull based method (named as GENE-AH [38]) to estimate
the number of endmembers in this study, which can be used to initialize the rank number.

Suppose HSI X ∈ Rnb×np has np pixels. Each pixel is denoted as xn ∈ Rnb , where 1 ≤ n ≤ np. It
is assumed that the spectral of all pixels lie in an affine hull for GENE-AH method. We denote the
estimated noise covariance matrix as D̂Nc . The parameter of affine set fitting parameter (d̂Af , ĈAf ) can
be represented by

d̂Af =
1
np

np∑
n=1

xn, ĈAf =
[
q(Af)

1 (UAfUAf
T
− npD̂Nc), . . . , q(Af)

Nmax−1(UAf UAf
T
− npD̂Nc)

]
. (17)
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UAf = [x1 − d̂Af , . . . , xnp − d̂Af ] ∈ Rnb×np is the mean removed data matrix, q(Af)
i (UAf UAf

T
− npD̂Nc)

represents the unit-norm eigenvector related with the i-th principal eigenvalue of the matrix (UAfUAf
T
−

npD̂Nc), Nmax denotes the maximum number of endmembers.
With above defined (d̂Af ,ĈAf ), the method determines the number of endmembers as follows.
Step 1: Calculate d̂Af and ĈAf from all np pixels in X.
Step 2: Obtain the first pixel index u[1] from all pixels in X using p-norm based pure pixel

identification (TRI-P) method [38]. Then, normalize the corresponding pixel using d̂Af and ĈAf .
Step 3: Obtain the second pixel index u[2] from the remaining pixels in X using p-norm based

pure pixel identification (TRI-P) method [38]. Then, normalize the corresponding pixel using d̂Af and
ĈAf , and assemble all obtained normalized pixels into a new matrix.

Step 4: Fit all obtained normalized pixels into affine hull model with a constraint least squares
strategy. If the fitting error is larger than a predefined false alarm probability PFA, we sequentially
repeat the same operation as Step 3 and Step 4 do to select the next pixel.

Once the fitting error is smaller than PFA, the pixel selection process is stopped. The number of
chosen pixels is exactly the number of endmembers. We refer the readers to [38] for details.

5. Experimental Results and Analysis

5.1. Experimental Setup

Data sets: In this study, Washington DC Mall dataset, urban image dataset and terrain dataset
are utilized to verify the effectiveness of the proposed method. Washington DC Mall dataset has 191
spectral bands and 1208 × 307 pixels. In the experiment, we crop a sub-image in size of 256 × 256 × 191
for validation, which is same as [11] does. The urban image has 307 × 307 pixels and 210 bands. A
sub-image of size 307 × 180 × 210 is cropped for the experiment. The terrain dataset contains 307 × 500
pixels and 210 bands. The entire image of terrain dataset is used for the experiment.

Comparison methods and parameter setup: We term the proposed method as ‘low-rank’ in this
study. We compare it with several spectral–spatial methods including video block matching 3-D filtering
(VBM3D) based method (a representative local patch-based method), and two low-rank based methods.
One low-rank based method is Godec the (low-rank based method proposed in [11]). The other
low-rank based method is structured low-rank based method (termed as SLrank for simplification [35]),
which is recently proposed and obtains the state-of-the-art performance compared with other competing
low-rank based method for HSI denoising. In the experiments, the noise variation is set as 15 for
VBM3D method. The parameter is optimally assigned according to [11,41] for Godec method. For the
proposed low-rank method, we set µ0 as 0. Other parameters including a0, b0, c0, d0 in addition with
the component of α0 are set as 10−5.

Evaluation measures: We adopt two commonly used measures including peak signal-to-noise
ratio (PSNR) and structure similarity (SSIM) to measure the quality of the denoising effect.

Given two images A and B whose sizes are M × N, PSNR can be calculated by

PSNR = 10× log10
M×N∑M

x=1
∑N

y=1[A(x, y) −B(x, y)]
2 . (18)

A(x, y) represents the elements in image A. Denote the mean value and variance of A as µA and σA,
respectively. Similar, µB and σB is the mean value and variance of B, respectively. C1 and C2 are two
small numbers which ensure the denominator is not equal to 0. SSIM can be calculated as

SSIM =
(2µAµB + C1)(2σAσB + C1)

(µA
2 + µB

2 + C1)(σA
2 + σB

2 + C1)
. (19)
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5.2. Performance Evaluation on Simulated Noisy Dataset

When we apply HSI restoration methods on real noisy data, we can only evaluate the performance
qualitatively since the noise-free images are always absent in reality, i.e., we evaluate the restoration
results by the visual effect.

To obtain both the quantitative and qualitative results, we use the simulate dataset Washington
DC Mall as the simulated noise-free image in this study as [11] does. For evaluation purpose, three
kinds of common noise are added into this dataset. First, zero-mean Gaussian noise is added into all
bands of HSI. Considering the intensity of noise is varied for different bands, we add different bands
with different noise intensities. The SNR of the resulted band is ranging from 10db and 20db. Second,
we added into HSI uniform noise. Third, we add dead lines, whose width varied from two to three
lines, into the bands of 70th to 73rd. For fair comparison, before adding noise into the original HSI, we
normalize the gray values of each band between (0, 1)first. Then, we add noise into the normalized
image. Finally, the gray values of the denoised image are stretched to the level of original HSI.

Figures 3 and 4 illustrate the experimental results on bands 2 and 100, where two areas of interest
are zoomed for a detailed comparison. Those two bands are influenced by Gaussian noise as well
as uniform noise. Original clean/noise-free band and the noisy band are shown in (a) and (b). The
restoration results via VBM3D, Godec, SLrank, and low-rank methods are given in (c)–(f). By comparing
the visual results, it can be seen that the proposed low-rank method has best restoration result among
those four methods. The results of Godec based and SLrank based method are oversmoothed and
some noise still exists in the denoised image by VBM3D method. This demonstrates that the proposed
method functions well for the noisy image. For SLrank based method, its denoising performance is
inferior to the proposed method. The reason is given as follows. SLrank based method pays attention
on how to accurately recovery image from Gaussian noise or sparse noise polluted images, while the
proposed method focuses on a totally new perspective (i.e., how to deal with more kinds of noise) of
HSI denoising, which is seldom considered but different with the conditions that SLrank obeys.

Appl. Sci. 2019, 9, x FOR PEER REVIEW  10 of 19 

When we apply HSI restoration methods on real noisy data, we can only evaluate the 
performance qualitatively since the noise-free images are always absent in reality, i.e., we evaluate 
the restoration results by the visual effect. 

To obtain both the quantitative and qualitative results, we use the simulate dataset Washington 
DC Mall as the simulated noise-free image in this study as [11] does. For evaluation purpose, three 
kinds of common noise are added into this dataset. First, zero-mean Gaussian noise is added into all 
bands of HSI. Considering the intensity of noise is varied for different bands, we add different bands 
with different noise intensities. The SNR of the resulted band is ranging from 10db and 20db. Second, 
we added into HSI uniform noise. Third, we add dead lines, whose width varied from two to three 
lines, into the bands of 70th to 73rd. For fair comparison, before adding noise into the original HSI, 
we normalize the gray values of each band between (0, 1)first. Then, we add noise into the normalized 
image. Finally, the gray values of the denoised image are stretched to the level of original HSI. 

Figures 3–4 illustrate the experimental results on bands 2 and 100, where two areas of interest 
are zoomed for a detailed comparison. Those two bands are influenced by Gaussian noise as well as 
uniform noise. Original clean/noise-free band and the noisy band are shown in (a) and (b). The 
restoration results via VBM3D, Godec, SLrank, and low-rank methods are given in (c)–(f). By 
comparing the visual results, it can be seen that the proposed low-rank method has best restoration 
result among those four methods. The results of Godec based and SLrank based method are 
oversmoothed and some noise still exists in the denoised image by VBM3D method. This 
demonstrates that the proposed method functions well for the noisy image. For SLrank based method, 
its denoising performance is inferior to the proposed method. The reason is given as follows. SLrank 
based method pays attention on how to accurately recovery image from Gaussian noise or sparse 
noise polluted images, while the proposed method focuses on a totally new perspective (i.e., how to 
deal with more kinds of noise) of HSI denoising, which is seldom considered but different with the 
conditions that SLrank obeys. 

 
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Visual comparison on band 2 of Washington dataset: (a) Clean/noise-free image band,
(b) Noisy band, (c) Restoration result from VBM3D, (d) Restoration result from Godec, (e) Restoration
result from SLrank, (f) Restoration result from the proposed method.
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Figure 4. Visual comparison on band 100 of Washington dataset: (a) Clean/noise-free image band,
(b) Noisy band, (c) Restoration result from VBM3D, (d) Restoration result from Godec, (e) Restoration
result from SLrank, (f) Restoration result from the proposed method.

Figures 5 and 6 illustrate the restoration results of incomplete bands 70 and 72, which is influenced
by uniform noise, Gaussian noise, and dead pixels. The restoration results via VBM3D, Godec, SLrank,
and low-rank method are given in (c)–(f). In these figures, two areas of interest are zoomed for a
detailed comparison. From the visual results of different methods, it can be seen the results on those
two noisy incomplete bands are similar to those in Figures 3 and 4. Noise still obviously exists in the
results of VBM3D method. Though Godec based method has comparable restoration results with the
proposed low-rank method, some band (band 70) is oversmoothed. Since low-rank matrix analysis is
capable of handling the missing data, it can be seen that Godec based, SLrank based, and the proposed
low-rank methods simultaneously fill the missing values as well as remove the noise. On the contrary,
the dead lines still exist for VBM3D based methods.
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(b) Noisy band, (c) Restoration result from VBM3D, (d) Restoration result from Godec, (e) Restoration
result from SLrank, (f) Restoration result from the proposed method.
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Table 1 and Figure 7 give the PSNR and SSIM values. Those values are calculated with all original
clean image band and the noisy image band. Figure 7 illustrates the PSNR and SSIM values varied
with different bands for different restoration methods, where the vertical axis denotes the PSNR/SSIM
values and the horizontal axis denote the band number. In Figure 7, the curves colored with red,
blue, green, and black represent the results of VBM3D, Godec, SLrank, and the proposed low-rank,
respectively. It can be seen from Figure 7 that the proposed low-rank method has highest PSNR and
SSIM value among all competing methods in most bands. The average PSNR and SSIM for all bands
are given in Table 1, from which we can see the proposed method obtains better PSNR/SSIM compared
with any other competing methods.

Table 1. Average peak signal-to-noise ratio (PSNR) and structure similarity (SSIM)for different
restoration methods.

VBM3D Godec SLrank Low-Rank

PSNR 13.57 11.87 13.12 16.13

SSIM 0.77 0.79 0.83 0.95
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5.3. Evaluation on Real Dataset

We further verify the proposed method on real data. Specifically, we use terrain and urban
datasets in the experiments, which can be downloaded from http://www.tec.army.mil/hypercube.

We restore terrain data on all bands with VBM3D, Godec, SLrank, and the proposed low-rank
based method. Figures 8 and 9 illustrate the experimental results on bands 1 and 4, where two areas of
interest are zoomed. These bands are influenced by Gaussian noise, stripes and dead lines. The real
image band is given in (a). The restoration results of VBM3D, Godec, SLrank, and the proposed method
are illustrated in (b)–(e). It can be seen that the proposed low-rank method has better performance
compared with other competing methods. The stripes and dead lines are well addressed and the
details of HSI are well preserved. The dead lines and stripes still remains for VBM3D based method.
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6. Discussion

In this paper, an HSI-oriented low-rank denoising method is proposed. According to the
experimental results, we can see that:

(1) Low-rank based methods including the proposed, Godec based and SLrank based ones can
function better compared with VBM3D based method, especially when confronting with missing values
(e.g., dead lines or dead pixels, see from Figure 5 to Figures 6 and 8, Figures 9–11). This phenomenon
implies that low-rank property is a powerful constraint for HSI restoration. In addition, the result is
consistent with the fact that clean/noise-free HSI is a low-rank matrix but the noisy and incomplete
HSI is not, thus low-rank property can be used to remove the noise as well as fill in the missing values.

(2) Compared with Godec based method which uses a sparsity item and a Gaussian item to
represent noise, mixture of Gaussian distribution introduced in the proposed method is more powerful
to represent complex noise since it models each pixel independently. Thus, it guarantees the proposed
method is more suitable for HSI restoration (e.g., noise varies across band) and obtains better restoration
performance, which can be seen from Figures 3–11 and Table 1.
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(3) Considering the clean image can be decomposed into the multiplication of two matrices which
has lower dimensionality than the original clean image, an endmember determination method is used
to automatically determine the rank. It can facilitate the parameter initialization of the low-rank based
method, whereas Godec based and SLrank methods need to assign the rank number manually.Appl. Sci. 2019, 9, x FOR PEER REVIEW  16 of 20 
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7. Conclusions

We propose an HSI-oriented low-rank denoising method in this paper. Considering the
clean/noisy-free HSI has a low-rank property and HSI is degraded by multiple kinds of noise,
HSI restoration is modeled as a low-rank matrix analysis problem. Specifically, we use the mixture
of Gaussian to represent multiple kinds of noise and treat clean HSI as a low-rank matrix. A
Bayesian low-rank matrix recovery method is then introduced to infer the low-rank denoised HSI from
multi-factor affected incomplete HSI. Considering endmember is an important clue to determine the
rank number, a geometry-based endmember determination method is further used to initialize the rank
number. The proposed method can address complex noise well and restore the missing data effectively.
Experimental results verify the superiority of the proposed method on both simulated and real data.
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