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Abstract: Recently, the mobile wheeled inverted pendulum (MWIP) has gained an increasing
interest in the field of robotics due to traffic and environmental protection problems. However,
the MWIP system is characterized by its nonlinearity, underactuation, time-varying parameters,
and natural instability, which make its modeling and control challenging. Traditionally, sliding
mode control is a typical method for such systems, but it has the main shortcoming of a “chattering”
phenomenon. To solve this problem, a super-twisting algorithm (STA)-based controller is proposed
for the self-balancing and velocity tracking control of the MWIP system. Since the STA is essentially
a second-order sliding mode control, it not only contains the merits of sliding mode control
(SMC) in dealing with the uncertainties and disturbances but can also be effective in chattering
elimination. Based on the STA, we develop an adaptive gain that helps to learn the upper bound of
the disturbance by applying an adaptive law, called an adaptive super-twisting control algorithm
(ASTA). The stability of the closed-loop system is ensured according to the Lyapunov theorem.
Both nominal experiments and experiments with uncertainties are conducted to verify the superior
performance of the proposed method.

Keywords: mobile wheeled inverted pendulum; super-twisting algorithm; chattering elimination

1. Introduction

Mobile robots are widely used in various fields. As a special kind of mobile robot, the mobile
wheeled inverted pendulum (MWIP) has attracted more and more attention thanks to its compact size,
strong mobility, and high flexibility [1]. However, the control of the MWIP system still remains a very
challenging problem because of its natural instability, underactuation, nonlinearity, time variability,
and strong coupling.

So far, a plurality of methods have been studied based on the MWIP system. These methods
are divided into two categories: model-free algorithms and model-based algorithms. The model-free
ones are applicable to general systems, but the control accuracy demands of physical applications
are often difficult to meet due to the lack of system information. Moreover, these algorithms, such
as PID control, largely rely on well-tuned parameters, and it is difficult to guarantee the stability of
the closed-loop system without the mathematical model. Another branch of the model-free approach
is neural network (NN)-based approximation. The NN training method requires a large amount
of data, and the corresponding parameters are adjusted through the neurons, which cause a heavy
computational burden [2]. In addition, fuzzy logic control, a widely used strategy, suffers from a slow
response time and a serious dependence on the experience of selecting suitable member functions and
rules [3,4]. For the model-based algorithms, we have to get the dynamic model of the system first,
which might be controlled by the method of feedback linearization, traditionally. In practice, however,
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accurate models are often hard to come by, which requires the model-based approaches to have the
capacity of handling uncertainties. Although the feedback linearization controller can be directly
applied to the nonlinear dynamics without linear approximation, the controller contains high-order
derivative terms and is very sensitive to noises and uncertainties. In addition, the nonlinearity of the
system cannot be easily canceled out, especially for the underactuated system, whose dynamics are
not invertible [5].

Sliding mode control (SMC) appears to be one of the most promising robust nonlinear control
techniques for systems with parameter variations and external disturbances [6]; it can keep the system
states sliding on the sliding surface and ensure the stability of the closed-loop system. Therefore,
SMC has been extensively studied and applied [7–9]. However, one serious disadvantage of SMC is
the “chattering” phenomenon, which is harmful to the mechanical systems. There are two main causes
for the occurrence of the chattering phenomenon. One is the discontinuous switching function in the
controller. The other one stems from the switching gain of the SMC, which must be designed to be
greater than the bound of the disturbance [10].

Therefore, many researchers have tried to reduce the chattering in the conventional SMC for
MWIP systems. In [11], Pupek replaced the sign function with the saturation function on two-wheeled
self-balancing mobile robots, which is the most direct way to reduce the chattering. However,
the chattering-reduction effect of this method is limited. The saturation function only transforms the
discontinuous switching function into a continuous proportional function in the saturated region;
therefore, the controller will fail once it leaves the boundary layer. Furthermore, the determination of
the boundary layer also remains an ambiguous problem.

The chattering can also be reduced by combining the disturbance observer (DO) and the
SMC [12–14]. Huang has successfully designed a systematic method of a high-order disturbance
observer-based sliding mode control for a class of underactuated robotic systems [15]. The estimation
of the disturbance can be used as a feed-forward compensation to the controller such that the switching
gain of SMC is only required to be designed greater than the bound of the disturbance estimation error.

High-order sliding mode-based control strategies are also significant ways to deal with the
chattering elimination problem. Among them, second-order sliding mode (SOSM) control is promising,
and it has been widely used in various applications, such as the regulation problem of a buck
converter [16,17], rigid spacecraft attitude control [18], and so on. The super-twisting algorithm,
known as a kind of second-order sliding mode control, retains all the advantages of sliding mode and
effectively reduces the chattering [19,20]. By adding an integrator to the control input, the actual control
signal and its derivative can be obtained explicitly. Instead of acting on the first-order sliding manifold
time derivative, the discontinuous term proceeds on its second-order time derivative. Consequently,
the actual control law will be a continuous integration of its derivative, and the chattering phenomenon
can be eliminated. However, for most SMC-based methods, with respect to disturbances, a common
assumption is that the disturbances are bounded by an unknown constant [21,22], which is directly
utilized in the controller. However, the disturbance bounds are often not easy to determine in real
systems. Therefore, in this paper, we use an adaptive gain on the basis of the super-twisting algorithm,
which helps to learn the upper bound of the disturbance by the adaptive law. As a result, the upper
bound of the disturbance learned by the adaptive law will be close enough to the real bound of the
disturbance to make the gain of the controller as small as possible, which further reduces the chattering.

The main contributions of this paper are as follows:
(1) The proposed adaptive super-twisting algorithm is capable of reducing the chattering

phenomenon and noise amplification.
(2) The stability analysis of the closed-loop system and convergence of the adaptive parameters

are guaranteed by the Lyapunov theorem.
(3) Experiments on a real MWIP system are conducted to show the effectiveness of the proposed

method. It might be the first attempt to employ the adaptive STA to a real MWIP system.
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The rest of the paper is organized as follows. The MWIP system is modeled in Section 2.
In Section 3, the controller based on adaptive STA for the MWIP system is proposed. Experiments
are presented to demonstrate the effectiveness and robustness of the strategy in Section 4. Finally,
a conclusion is given in Section 5.

2. Modeling of MWIP System

The profile of the MWIP system is shown in Figure 1, in which the specific parameters are
indicated in the corresponding positions. ψl and ψr are the rotation angles of the left and right wheels,
respectively, and α is the yaw angle of the MWIP system. θ is the inclination angle of the body.
mb, mw are the masses of the body and a wheel, Iby, Ibz are the moments of inertia of the body about
the Y axis and Z axis. Iwa, Iwd are the moments of inertia of a wheel about its axis and a diameter, l is
the length between the wheel axle and the center of gravity of the body. r is the radius of the wheel,
and 2b is the distance between two wheels. Db is used to denote the viscous resistance in the driving
system, and Dw is the viscous resistance of the ground. ur, ul are the rotation torques generated by the
right and left motors coaxial with the wheels. τext is used to denote the external disturbance.

Figure 1. The mobile wheeled inverted pendulum (MWIP) system.

The dynamic model of the MWIP system derived from Lagrange functions is given by [23]:

m11ψ̈ + m12 cos (θ) θ̈

= m12 sin (θ)
(
θ̇2 + α̇2)− 2Dwψ̇

+ 2Db
(
θ̇ − ψ̇

)
+ ur + ul + τext1

m12 cos (θ) ψ̈ + m22θ̈

= Ibl sin (θ) cos (θ) α̇2+Gb sin (θ)

− 2Db
(
θ̇ − ψ̇

)
− ur − ul + τext2(

Ibl sin2 (θ) + m33
)

α̈

= −2Ibl sin (θ) cos (θ) α̇θ̇ −m12 sin (θ) α̇ψ̇

− 2b2

r2 (Db + Dw) α̇ +
b
r
(ur − ul) + τext3

, (1)
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where 

ψ =
1
2
(ψr + ψl)

m11 = (mb + 2mw) r2 + 2Iwa

m12 = mblr
m22 = mbl2 + Iby
Ibl = Ibz + mbl2

Gb = mbgl

m33 = 2Iwd +
2b2

r2

(
Iwa + mwr2

)
.

To simplify the denotation, we rewrite (1) in vector form:

M (q) q̈ + N (q, q̇) + O (q̇) = τ + τext, (2)

where
q = [q1 q2 q3]

T = [ψ θ α]T ,

M (q) =

 m11 m12 cos (q2) 0
m12 cos (q2) m22 0

0 0 Ibl sin2 (q2) + m33

 ,

N (q, q̇) =

 −m12 sin (q2)
(
q̇2

2 + q̇2
3
)

−Ibl sin (q2) cos (q2) q̇2
3 − Gb sin (q2)

2Ibl sin (q2) cos (q2) q̇2q̇3 + m12 sin (q2) q̇1q̇3

 ,

O (q̇) =



2Dw q̇1 − 2Db (q̇2 − q̇1)

2Db (q̇2 − q̇1)

2b2

r2 (Db + Dw) q̇3

 ,

τ =


ur + ul
−ur − ul

b
r
(ur − ul)

 , τext =

 τext1
τext2
τext3

 .

Since the model process is always subject to noises and measurement errors, the disturbances
could not be avoided. It is impossible to get a completely accurate dynamic model. Therefore,
we rewrite (2) based on the nominal model of the MWIP system, as shown in Equation (3), where M̂ (q),
N̂ (q, q̇), and Ô (q̇) are used to represent the nominal values in the dynamic model. In the following, (·̂)
denotes the nominal value of (·). ∆M(q), ∆N(q, q̇), ∆O(q̇) serve as the bias parts to denote the model
uncertainties, and all the model uncertainties and external disturbances are assumed to lump into a
single disturbance vector τ∗d .

M̂ (q) q̈ + N̂ (q, q̇) + Ô (q̇) = τ + τ∗d , (3)

where 

M̂ (q) = M (q)− ∆M (q)
N̂ (q, q̇) = N (q, q̇)− ∆N (q, q̇)
Ô (q̇) = O (q̇)− ∆O (q̇)
τ∗d =

[
τ∗d1 τ∗d2 τ∗d3

]T

= τext − ∆M (q) q̈− ∆N (q, q̇)− ∆O (q̇) .

(4)
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To facilitate the design of the controller, we multiply both sides of this equation with the inverse
of M̂ (q) and rewrite Equation (3) as follows. q̈1

q̈2

q̈3

=F + G

[
uA
uB

]
+ τd, (5)

where

F =

 f1

f2

f3

 , G =

 g1 0
g2 0
0 g3

 ,


τd1 = ∆−1

1
{

m̂22τ∗d1 − m̂12 cos (q2) τ∗d2
}

τd2 = ∆−1
1
{

m̂11τ∗d2 − m̂12 cos (q2) τ∗d1
}

τd3 = ∆−1
2 τ∗d3,

f1 = ∆−1
1
{

m̂12m̂22 sin (q2)
(
q̇2

2 + q̇2
3
)

−m̂12 Îbl sin (q2) cos2 (q2) q̇2
3

− m̂12Ĝb sin (q2) cos (q2)

+2 (m̂22 + m̂12 cos (q2)) D̂ b (q̇2 − q̇1)− 2m̂22D̂w q̇1
}

g1 = ∆−1
1 {m̂22 + m̂12 cos (q2)}

f2 = ∆−1
1
{

m̂11 Îbl sin (q2) cos (q2) q̇2
3 + m̂11Ĝb sin (q2)

− m̂2
12 sin (q2) cos (q2)

(
q̇2

2 + q̇2
3
)

−2 (m̂11 + m̂12 cos (q2)) D̂b (q̇2 − q̇1)

+2m̂12 cos (q2) D̂w q̇1
}

g2 = ∆−1
1 {−m̂11 − m̂12 cos (q2)}

f3 = ∆−1
2
{
−2 Îbl sin (q2) cos (q2) q̇2q̇3 − m̂12 sin (q2) q̇1q̇3

−2b̂2

r̂2

(
D̂b + D̂w

)
q̇3

}
g3 = ∆−1

2
b̂
r̂

∆1 = m̂11m̂22 − m̂2
12 cos2 (q2)

∆2 = m̂33 + Îbl sin2 (q2)

uA = ur + ul
uB = ur − ul .

In addition, we give the following hypothesis about the lumped disturbances.

Assumption 1. The disturbances τd1, τd2, τd3 are bounded.

‖τd‖ ≤ µ, (6)

where µ is a positive number to represent the bounds of the disturbances.

3. Design of the Adaptive Super Twisting Controller

In this section, we present the controller design based on the adaptive super-twisting algorithm.
The first procedure of the adaptive super-twisting controller design is to define the sliding surface,
which is similar to the SMC. Obviously, the MWIP system is an underactuated system. According to
the first two equations of the dynamics (5), q1 and q2 are coupled. Therefore, we need to define the first
sliding manifold that contains both q1 and q2 to obtain a relative degree one for uA. Then, the second
sliding manifold contains q3. The design of the sliding surface is shown in (7).
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σ =

[
σ1

σ2

]
=

[
ė2 + λ1e2 + λ2 ė1

ė3 + λ3e3

]
, (7)

where e =
[

e1 e2 e3

]
=
[

q1 − q1d q2 − q2d q3 − q3d

]
, and qd =

[
q1d q2d q3d

]
represents

a fixed equilibrium point corresponding to a particular task. λi(i = 1, 2, 3) are positive coefficients,
and they are designed to satisfy the following constraints:

λ1 > 0, λ2 > 0, λ2z∗2 − z∗1 < 0, (8)

where z∗1 = m̂11 + m̂12, z∗2 = m̂22 + m̂12.
q2d, q̇1d, and q3d represent the desired inclination angle, the desired velocity, and the desired yaw

angle, respectively. Equation (7) also indicates that σ1 has relative degree one with respect to uA and σ2

has relative degree one with respect to uB. This makes it possible to achieve the second-order sliding
mode σ=σ̇=0.

The derivative of the sliding surface is described as

σ̇ =

[
σ̇1

σ̇2

]
=

[
−K1|σ1|

1
2 sgn(σ1) + v1

−K2|σ2|
1
2 sgn(σ2) + v2

]
, (9)

where K1, K2 are arbitrary positive constants and v1, v2 are auxiliary variables. The auxiliary variables
are exploited to include the integration of the sliding mode variable, which is used to reduce the
chattering phenomenon caused by the fast switching of the sign function. The derivative of the
auxiliary variables is defined as

v̇ =

[
v̇1

v̇2

]
=

[
−Γ1sgn(σ1)

−Γ2sgn(σ2)

]
. (10)

Γ1, Γ2 are adaptive coefficients of the sliding surface. The adaptive law can be chosen as

Γ̇ =


Γ̇1 =

{
1
∂1
|σ1|, |σ1| ≥ ε

0, |σ1| < ε

Γ̇2 =

{
1
∂2
|σ2|, |σ2| ≥ ε

0, |σ2| < ε

, (11)

where ∂1, ∂2 are arbitrary positive constants as well. ε is a boundary layer of σ, which is introduced
for the practical implementation of the controller. The initial value of Γ satisfies 0 ≤ Γ(0) < Γ̂. Γ̂ is
a constant vector, which is clearly defined in Remark 1. Γ(0) will be selected to be small enough or
even equal to zero. In the experimental section, Γ(0) is appropriately selected to increase the initial
responses of the system.

Based on the above analysis, we can conclude the adaptive STA controller by the
following theorem.
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Theorem 1. The achievement of a sliding motion on the surface (7) can be guaranteed by the selection of the
control law 

uA = 1
g2+λ2g1

[− f2 − λ2 f1 − λ1q̇2

−K1|σ1|
1
2 sgn(σ1) + v1]

= 1
g2+λ2g1

[− f2 − λ2 f1 − λ1q̇2 − K1|σ1|
1
2 sgn(σ1)

−Γ1
∫ t

0 sgn(σ1(τ))dτ]

uB = 1
g3
[− f3 − λ3q̇3 − K3|σ2|

1
2 sgn(σ2) + v2]

= 1
g3
[− f3 − λ3q̇3 − K3|σ2|

1
2 sgn(σ2)

−Γ2
∫ t

0 sgn(σ2(τ))dτ]

, (12)

where fi(i = 1, 2, 3) and gi(i = 1, 2, 3) are the parts of the dynamic model, which are depicted in Section 2.
In Assumption 1, the lumped disturbances are assumed to be bounded; then the following inequality holds:{

||τd2 + λ2τd1|| ≤ Γ̂1

||τd3|| ≤ Γ̂2
. (13)

Remark 1. Γ̂1, Γ̂2 are used to represent the actual bounds of the two kinds of disturbances in (13), respectively.
It is worth noting that we are just assuming the disturbance is bounded, while we don’t require the knowledge
of the upper bound. This unknown upper bound has not been exploited in the design of the controller. It is
adaptively learned by (11). We define Γ̃ = Γ− Γ̂. It represents the error between the bound obtained by the
adaptive law and the actual bound. We will prove below that Γ will converge to Γ̂ by the rendered adaptive law.

Proof. Consider the Lyapunov function

V =
1
2

(
σ2

1 + σ2
2

)
+

1
2
(∂1Γ̃2

1 + ∂2Γ̃2
2). (14)

Obviously, it is positive definite. Taking the first time derivative of the defined Lyapunov
function yields

V̇ = σ1σ̇1 + σ2σ̇2 + ∂1(Γ1 − Γ̂1)Γ̇1 + ∂2(Γ2 − Γ̂2)Γ̇2. (15)

From (5), (11), and (12), it follows that

σ̇1 = q̈2 + λ1q̇2 + λ2q̈1

= ( f2 + g2uA) + τd2 + λ1q̇2 + λ2( f1 + g1uA + τd1)

= f2 + λ2 f1 + λ1q̇2 + (g2 + λ2g1)uA + τd2 + λ2τd1,
(16)

σ̇2 = q̈3 + λ3q̇3

= f3 + g3uB + τd3 + λ3q̇3,
(17)

∂1
˙̃Γ1 = ∂1(Γ̇1 − ˙̂Γ1) = ∂1

1
∂1
|σ1| = σ1sgn(σ1), (18)

∂2
˙̃Γ2 = ∂2(Γ̇2 − ˙̂Γ2) = ∂2

1
∂2
|σ2| = σ2sgn(σ2). (19)

Then the derivative of the Lyapunov function can be written as

V̇ = σ1σ̇1 + σ2σ̇2 + ∂1Γ̃1
˙̃Γ1 + ∂2Γ̃2

˙̃Γ2

= σ1( f2 + λ2 f1 + λ1q̇2 + (g2 + λ2g1)uA + τd2 + λ2τd1)

+σ2( f3 + g3uB + λ3q̇3 + τd3) + (Γ1 − Γ̂1)σ1sgn(σ1) + (Γ2 − Γ̂2)σ2sgn(σ2).
(20)
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Substituting the control laws proposed in (12) into (20), we can obtain

V̇ = σ1σ̇1 + σ2σ̇2 + ∂1Γ̃1
˙̃Γ1 + ∂2Γ̃2

˙̃Γ2

= σ1( f2 + λ2 f1 + λ1q̇2 + (g2 + λ2g1)uA + τd2 + λ2τd1) + σ2( f3 + g3uB + λ3q̇3 + τd3)

+∂1(Γ1 − Γ̂1)Γ̇1 ++∂2(Γ2 − Γ̂2)Γ̇2

= σ1(−K1|σ1|
1
2 sgn(σ1)− Γ1

∫ t
0 sgn(σ1)dτ + τd2 + λ2τd1) + σ2(−K2|σ2|

1
2 sgn(σ2)

−Γ2
∫ t

0 sgn(σ2)dτ + τd3) + (Γ1 − Γ̂1)|σ1|+ (Γ2 − Γ̂2)|σ2|
= −K1|σ1|

3
2 − Γ1|σ1|+ σ1(τd2 + λ2τd1)− K2|σ2|

3
2 − Γ2|σ2|+ σ2τd3

+Γ1|σ1| − Γ̂1|σ1|+ Γ2|σ2| − Γ̂2|σ2|
= −K1|σ1|

3
2 − K2|σ2|

3
2 + σ1(τd2 + λ2τd1)− Γ̂1|σ1|+ σ2τd3 − Γ̂2|σ2|

≤ −K1|σ1|
3
2 − K2|σ2|

3
2 .

(21)

It is clear that V̇ is negative definite. Therefore, the trajectory of the system reaches the manifold
S = 0 by using the control law, and the variable q3 can converge to q3d.

After reaching the sliding surface, the second phase of the sliding mode control, i.e., the sliding
phase, needs to be guaranteed. The trajectory is expected to move towards the equilibrium point while
sliding on the sliding surface. From (3) and (7), the motion of the system on the sliding surface can
be obtained:

z1q̈1 + z2q̈2 = m̂12 sin (q2) q̇2
2 + Ĝb sin (q2) + τ∗d1 + τ∗d2, (22)

q̇2 + λ1 (q2 − q2d) + λ2 (q̇1 − q̇1d) = 0. (23)

From (23), q̇1 and q̈1 can be described as (24) and (25), respectively.

q̇1 =
−q̇2 − λ1(q2 − q2d) + λ2q̇1d

λ2
(24)

q̈1 =
−q̈2 − λ1q̇2

λ2
(25)

Substituting (25) into (22) and introducing a new state vector x = [x1,x2] = [q2,q̇2], a new system
is derived, which is equivalent to (22) and (23) in the view of stability:

ẋ = Φ(x), (26)

where

Φ(x) =

[
Φ1(x)
Φ2(x)

]
, Φ1(x) = x2,

Φ2(x) =
1

λ2z2 − z1
(λ2(m̂12 sin (x1) x2

2 + Ĝb sin (x1) + τ∗d1 + τ∗d2) + z1λ1x2).

The equilibrium of (26) is denoted by x∗= [x∗1 ,x∗2 ] = [0, 0]. We linearize (26) at the equilibrium
x∗ to establish the linear stability criteria that guarantees local exponential stability of the nonlinear
system. The linearized system is described by

ẋ = A · (x− x∗) , (27)

where

A =
∂Φ
∂x

∣∣∣∣
x∗

=

[
0 1

∆1 ∆2

]
, (28)

∆1 =
∂Φ2

∂x1

∣∣∣∣
x∗

=
λ2Ĝb

λ2z∗2 − z∗1
, ∆2 =

∂Φ2

∂x2

∣∣∣∣
x∗

=
λ1z∗1

λ2z∗2 − z∗1
.
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According to the Hurwitz stability criteria, the closed-loop system is asymptotically stable around
the equilibrium when the following condition is satisfied:

∆1, ∆2 < 0. (29)

It is obvious that the inequality (29) holds when the sliding mode coefficients satisfy the
constraint (8).

Then, we can conclude that the global stability of the closed-loop system can be guaranteed.
This completes the proof.

Remark 2. In this paper, by conducting the super-twisting controller, the system motion consists of two phases.
The first phase is the reaching phase, in which the trajectory of the system moves towards the manifold σ = 0
and reaches the manifold in finite time. The second is the sliding phase, in which the dynamics of the system are
represented by the reduced-order model σ = 0. When the system’s trajectories slide on the sliding surface σ = 0,
the selection of sliding surface can ensure the system’s trajectories arrive at the equilibrium point. In order to
verify that the equilibrium point is stable, we linearize the system around the equilibrium point, which turns out
to be a stable saddle point. Consequently, combining the super-twisting controller and the stable equilibrium,
the closed-loop system is asymptotic stable.

The diagram of the control strategy is shown in Figure 2.

Figure 2. The diagram of the control strategy. STA—super-twisting algorithm.

4. Experimental Studies

4.1. Experimental Setup

The physical MWIP system of the experiment is shown in Figure 3a. The hardware of the
system is comprised of a main control circuit board (LM3S2965, Texas Instruments, Austin, TX,
USA), an accelerometer, a three-axis gyro, and two encoders. The angle information is provided by
the accelerometer and gyroscope, and the speed information is provided by the encoder. All the
information is sent to the main control board, in which the information is processed, then the control
algorithm is completed to generate the control signal. The control signal modulates a pulse signal of a
certain width to control the motor speed after each sampling. The sampling period is set as 5 ms.
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(a) (b)

Figure 3. The real MWIP system. (a) Case 1: the nominal MWIP system; (b) Case 2: the MWIP system
with model uncertainties.

In this section, the effectiveness of the proposed adaptive STA (ASTA) controller will be verified
by experiments. The adaptive SMC (ASMC) with the same adaptive law is compared with the adaptive
STA to highlight the advantages of the proposed method. The real parameters and nominal parameters
of the MWIP system are shown in Tables 1 and 2. It is worth noting that the dynamic model of the
MWIP system is established based on real parameters (Table 1), while the design of the controller is
based on nominal parameters (Table 2).

Table 1. Real parameters of the MWIP system.

Parameter Value Parameter Value

mb 2.58 [Kg] mw 0.14 [Kg]

Iby 1.77 × 10−3 [Kg·m2] l 0.0622 [m]

Ibz 1.77× 10−3 [Kg·m2] b 0.15 [m]

Iwa 1.4× 10−4 [Kg·m2] r 0.04 [m]

Iwd 8.4× 10−4 [Kg·m2] Db 0.5 [N· s/m]

Dw 0.8 [N · s/m]

Table 2. Nominal parameters of the MWIP system.

Parameter Value Parameter Value

m̂b 2.50 [Kg] m̂w 0.12 [Kg]

Îby 1.57× 10−3 [Kg·m2] l̂ 0.0582 [m]

Îbz 1.57× 10−3 [Kg·m2] b̂ 0.14 [m]

Îwa 1.2× 10−4 [Kg·m2] r̂ 0.03 [m]

Îwd 8.1× 10−4 [Kg·m2] D̂b 0.4 [N· s/m]

D̂w 0.6 [N·s/m]

It is well known that maintaining balance is a basic requirement for the naturally unstable MWIP
system. Owing to this, we just consider the experiment on balance control. The control goal is to adjust
the MWIP system from an initial state with a certain inclination angle error to the upright state and



Appl. Sci. 2019, 9, 2508 11 of 17

then maintain the upright state on flat ground. This means that the desired inclination angle, speed,
and yaw angle should be set as zero. Thus, the sliding surface can be simplified and rewritten as

σ =

[
σ1

σ2

]
=

[
q̇2 + λ1q2 + λ2q̇1

q̇3 + λ3q3

]
. (30)

The acceptable initial error of inclination angle is discussed in Remark 3.
The whole experiment is divided into two cases, one of which is the nominal case, and the other

adds uncertainties to the system. The corresponding MWIP systems under these two cases are shown
in Figure 3a,b, respectively.

Remark 3. The MWIP system is a peculiar and complex underactuated system. Due to its nonlinear coupling,
as depicted in (22), we cannot get a feasible set of initial errors. However, we only need to consider a relatively
small initial error of angle. This makes sense in physical applications, since too large an initial error may lead to
overshoot, thereby causing unsafe factors. Moreover, in other studies on MWIP systems, the significant initial
errors are not taken into account [1,24–26]. Especially, in [26], there exists a support frame to guarantee a small
initial error, which ensures a smooth start for the MWIP.

In addition, we conducted simulations with various initial errors, which prove that the MWIP system is
under control as long as the controller is non-singular. The feasible range of the inclination angle is (−84.27◦,
−84.27◦). As for the experiment, the feasible initial error is limited by many other physical factors, such as
the modeling error and external disturbances. We cannot expect to obtain a specific acceptable initial error
range. Through a number of experimental trials, we get a range of (−56.17◦, 55.28◦) as the initial error of the
inclination angle, and this range is adequate for practical applications.

For the sake of fairness, we preset the same initial conditions for each experimental scenario.
The initial condition is set as 

q1 (0) = 0, q̇1 (0) = 0
q2 (0) = −π/18 (rad) , q̇2 (0) = 0
q3 (0) = 0, q̇3 (0) = 0

.

In addition, the two control techniques, adaptive SMC and adaptive STA, are based on the same
sliding surface and control parameters. They are selected as follows:

λ1 = 10, λ2 = 0.3, λ3 = 3, (31)

K1 = 10, K2 = 10, Γ1 = 5, Γ2 = 5. (32)

According to the values defined in (31) and Table 2 , the denominator term g2 + λ2g1 will always
be non-negative during the experimental process, which means the design of the controller is feasible.

4.2. Experimental Results

In balance control, the desired inclination angle and velocity are set as zero.

4.2.1. Case1: Regardless of Disturbances

In this case, no additional disturbances are considered. The experimental system in this case is
shown in Figure 3a.

The experimental results of the adaptive STA and adaptive SMC are illustrated in Figures 4–7.
Figure 4 compares the inclination angle of the MWIP system by employing the adaptive SMC and
adaptive STA, and Figure 5 depicts the value of the sliding surface. One can conclude from the above
observation that both strategies can balance the MWIP system effectively. It can be seen from Figure 4
that the variation in the inclination is obviously large when the adaptive SMC algorithm is employed,
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while the inclination angle is relatively stable and stays near zero when the adaptive STA algorithm is
applied. From the perspective of the sliding surface, as shown in Figure 5, both the adaptive SMC and
adaptive STA can drive the system’s states to slide on the sliding surface. Moreover, the adaptive STA
effectively suppressed the occurrence of chattering better than the adaptive SMC. Figure 6 shows the
variations in the adaptive coefficients of the adaptive SMC and the adaptive STA, respectively. It can
be seen that the adaptive coefficient changes greatly at the initial stage, and its rate of change gradually
decreases until it reaches a suitable value, which indicates that the parameters are sufficient to stabilize
the system. Additionally, we plotted the control torque in Figure 7. The control torque of the adaptive
STA turns out to have a smaller amplitude and lower frequency than that of the adaptive SMC.
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Figure 4. Comparison of the angles in Case 1.
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Figure 5. Comparison of the sliding mode variables in Case 1.
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Figure 6. Comparison of the adaptive gains in Case 1.
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Figure 7. Comparison of the control torque in Case 1.

The experimental results prove that it is effective to turn discontinuous control into continuous
control by hiding the high-frequency switch as the second derivative of the sliding mode variable.
At the same time, adaptive gains are used to precisely learn the disturbance bound. As a result,
the chattering caused by excessive gain is significantly reduced.

More quantitatively, we compared the RMS (root mean square) errors of the inclination angle and
sliding mode variable. We ignored the first two seconds for the adjustment of the adaptive gains and
calculated the RMS errors for the next eight seconds:

D(xi) =

√√√√√ n=1000
∑

n=201
x(n)2

800
, (33)

where x = [q2, S1]. The RMS error of the inclination angle indicates the equilibrium performance of
the MWIP system, and the RMS error of the sliding mode variable is used to describe the chattering
degree of the system. The results of the comparison are shown in Table 3.
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Table 3. Root mean square (RMS) errors in Case 1.

D(xi) ASMC ASTA

Angle error (q2) 0.0138 0.0087

Sliding mode variable error (S1) 0.4184 0.3546

4.2.2. Case2: Considering the Disturbance

Since the SMC is insensitive to parameter uncertainties and external disturbances, we wanted
to verify the relevant features of the STA, which is a special form of second-order SMC. Moreover,
we used adaptive gain, whose effects also need to be verified. To this end, we added a board on the
nominal MWIP system to greatly increase the uncertainty of the system. The system is shown in
Figure 3b, in which the height of the MWIP system is increased by 10 cm and the weight is increased
by 0.5 kg. The parameters of the controller remain the same as in the previous case.

The experimental results are shown in Figures 8–11. It turns out that the MWIP system can still
be balanced on flat ground. The figures show that the stability of the system can be guaranteed despite
the increase in external disturbances. Compared with the previous case, the adaptive coefficients
obviously increased faster, and finally reached a relatively large value. This result is consistent with
the fact that large values of the switching gains can keep the states of the system sliding on the sliding
surface, but it leads to serious chattering at the same time for the SMC-based strategy. From Figure 9,
we see that the amplitude of the sliding surface also increases. The inclination angle can still be
maintained at zero, as shown in Figure 8. This proves that the adaptive parameters of the algorithm are
adjusted effectively according to the disturbance, and the proposed algorithm is robust to large model
uncertainties. The control torque shown in Figure 11 concurs with the analysis of other variables,
which further supports our conclusion. The comparison of RMS error in this case provides more
support for our conclusion, as shown in Table 4.
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Figure 8. Comparison of the angles in Case 2.
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Figure 11. Comparison of the control torque in Case 2.

Table 4. RMS errors in Case 2.

D(xi) ASMC ASTA

Angle error (q2) 0.0176 0.0154

Sliding mode variable error (S1) 0.8317 0.4769

5. Conclusions

This paper presented an adaptive super-twisting algorithm for MWIP systems. The stability of the
closed-loop system is ensured according to the Lyapunov theorem. Comparison experiments of balance
control with uncertainties are conducted. The experimental results on a real MWIP system show that
the adaptive gains can effectively learn the disturbance bound so that the switching coefficients of
the sliding mode surface is small enough. Moreover, the proposed adaptive STA algorithm shows a
superior performance of balance control and capacity to reduce chattering.
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