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Abstract: Recently, pneumatic artificial muscles (PAMs), a lightweight and high-compliant actuator,
have been increasingly used in assistive rehabilitation robots. PAM-based applications must overcome
two inherent drawbacks. The first is the nonlinearity due to the compressibility of the air, and the
second is the hysteresis due to its geometric construction. Because of these drawbacks, it is difficult
to construct not only an accurate mathematical model but also a high-performance control scheme.
In this paper, the discrete-time fractional order integral sliding mode control approach is investigated
to deal with the drawbacks of PAMs. First, a discrete-time second order plus dead time mathematical
model is chosen to approximate the characteristics of PAMs in the antagonistic configuration.
Then, the fractional order integral sliding mode control approach is employed together with a
disturbance observer to improve the trajectory tracking performance. The effectiveness of the
proposed control method is verified in multi-scenario experiments using a physical actuator.
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1. Introduction

In recent years, high-compliant and low-cost pneumatic artificial muscles (PAMs) have been
widely implemented in rehabilitation systems [1–4]. PAMs are shortened in the longitudinal direction
and enlarged in the radial direction when being inflated, and they will turn back to their initial form
when being completely deflated. PAMs act similar to the human muscle, e.g., the longer muscles
produce bigger force and vice versa. Furthermore, these pneumatic muscles are also inherently
compliant, which makes them suitable for applying in human-robotic systems. In comparison with the
motorized actuators, PAMs are lightweight and have a high power-to-weight ratio. In addition to the
aforementioned advantages, the PAM-based applications also have inherent drawbacks, such as very
high nonlinearity and uncertainty, and slow response in force generation. These drawbacks make it
difficult to model and control PAMs.

Using a nonlinear mathematical model to describe the nonlinear characteristic of the PAMs is the
most common choice of researchers. In 2003, D. B. Reynolds et al. introduced a three-elements model
of PAM, which consists of a contractile (force-generating) element, spring element, and damping
element in parallel [5]. Using this type of model, K. Xing et al. developed the sliding mode control
(SMC) based on a nonlinear disturbance observer to improve the tracking performance of a single
PAM-mass system [6]. A boundary layer augmented SMC and its modified versions have also been
developed for both antagonistic configuration of PAMs and robot orthosis actuated by PAMs [4,7–12].
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However, the procedure to identify this model’s parameters remains complicated with at least two
separate experiments: one experiment for determining spring (K) and contractile (F) coefficients and
another experiment for estimating damping (B) coefficient. Each experiment must be carried out in
three steps [6]. Besides, the parameters of the damping (B) coefficient must be obtained by measuring
the load’s acceleration, which is very sensitive to external noise. For this reason, it is difficult to obtain
the model’s parameters with high accuracy.

To deal with hysteresis of PAMs, many hysteresis models have been proposed recently,
e.g., Maxwell-slip model [13], Prandtl–Ishlinskii model [14], and Preisach model [15]. In these
reports, the dynamic characteristic of PAMs was described by an equivalent pressure/length hysteresis
model. The obtained models were used in the feedforward term of the cascade position control
scheme for hysteresis compensation. The inner loop of the controllers was designed to regulate the
inside pressure of the muscles. The outer loops were designed to deal with the nonlinearity of the
PAMs characteristic. Both of the loops use PID-based control strategy. Consequently, some authors
continued to develop the modified hysteresis model for both single PAM-mass system and PAMs in
antagonistic configuration [16,17]. However, they mainly focused on modelling of PAMs. Only the
trajectory-tracking experiments with low frequency, e.g., up to 0.2 Hz, were conducted in literature.
Furthermore, enhanced PID control methods, which were most widely used in these studies, could not
deal with hysteresis of PAMs.

Another common way to identify the model of PAM-based actuator is the grey-box experiment
method [18–21]. In 2015, to deal with uncertain nonlinearity of PAMs, Dang Xuan Ba et al. introduced a
grey-box experimental model, which consisted of uncertain, unknown, and nonlinear terms. Based on
the built-in model, the authors employed a sliding mode control strategy [18] and an integrated
intelligent nonlinear control approach [19] for the tracking purpose. The control performance
was significantly improved, and the system could track the 10◦ amplitude sinusoidal signal with
1.5 Hz frequency. The grey-box method was also reported by Robinson et al. in 2016 [20] and by
L. Cveticanin et al. in 2018 [21]. The relationships angle/torque and force/pressure were thoroughly
investigated in the wide range of pressure. However, only the mathematical model was considered
and verified in [20]. The low rate of desired trajectories was tracked in [21].

The mechanism-based model [22,23] is another method in which the behaviour of PAMs was
described based on their physical properties: length, diameter, and volume of PAMs, etc. However,
as most of nonlinear models mentioned above, these types of models also require a complex procedure
to derive the model parameters.

To obtain the model of PAMs in a more simple way with a good enough accuracy, the linear
mathematical model has recently been applied to approximate the characteristic of PAMs [24–28].
In these studies, the uncertain nonlinearity of PAM was considered as the system disturbance and
solved by extended state observer (ESO) together with an active disturbance rejection controller
(ADRC). The control performance is considerably improved with 0.5 Hz of sinusoidal reference
signal frequency.

In this research, a discrete-time fractional order integral sliding mode control (DFISMC) is
employed to improve tracking performance of an antagonistic actuator driven by PAMs. First, a linear
discrete-time second order plus dead time (SOPDT) model is chosen to describe the nonlinear dynamic
behaviour of the antagonistic actuator. In this approximation, a nonlinear term in characteristics of
PAM is considered as a disturbance. Then, the DFISMC is designed based on the fractional order
integral (FOI) calculus and a disturbance observer (DSO) for the trajectory tracking purpose. Finally,
the effectiveness of the proposed control technique is confirmed through multi-scenario experiments.
The proposed method shows many advantages in both mathematical model and control technique.
The linear discrete-time SOPDT can approximate the behaviour of antagonistic actuator at a good
accuracy. Besides, the identification procedure is also simplified. By employing the FOI function
together with a DSO, the DFISMC controller is able to reduce the “chattering” problem in sliding mode
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control systems. In addition, the proposed is designed in a discrete-time domain, therefore, it can be
easily implemented by any digital control system.

2. System Description

2.1. Experiment Platform

A typical configuration of antagonistic configuration of PAMs is shown in Figure 1a, and the
proposed experiment platform is demonstrated in Figure 1b. The experimental system consisted of two
PAMs which had 1.0 inches of diameter and 22 inches of length. The PAMs were fabricated at our local
institute. The pressure inside each PAMs was regulated by two proportional electric control valves
series ITV 2030-212S-X26 from SMC company. One potentiometer CP-20H from Midori Precision
(Japan) was used to measure the actuator’s angle. All the control systems were implemented by using
computer-based controller NI cDAQ-9178 from National Instrument (USA). The real-time controller
collected the data from the potentiometer via analogue input module and sends the control signal
to the electric control valve via analogue output modules. The developed control algorithm was
implemented and compiled by LabView software before downloading it to the hardware controller.

(a) (b)

Figure 1. (a) Typical antagonistic configuration of two pneumatic artificial muscles (PAMs) and
(b) experiment platform of an antagonistic actuator powered by PAMs.

2.2. System Modeling

Based on the geometry of the typical antagonistic configuration, which is illustrated in Figure 1a,
the length of each PAMs can be obtained from the measured joint angle, as in the following equations:

yA = yAN + Rθ (1a)

yP = yPN − Rθ, (1b)

where yAN and yPN are the nominal length of the anterior and posterior PAMs when the joint angle
θ = 0, and R is the rotation radius of the actuator. Because two similar PAMs are used in the system,
we can consider that yAN = yPN = yN . Following that, the relationship between contraction of PAMs
and the measured angle can be expressed as

εA =
y0 − yA

y0
× 100% =

y0 − (yN + Rθ)

y0
× 100% (2a)

εP =
y0 − yP

y0
× 100% =

y0 − (yN − Rθ)

y0
× 100% (2b)
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where y0 is the length of PAMs in the complete deflation state. In (2), y0 and yN are fixed by the
deflation and nominal lengths of PAMs. Therefore, the contraction of PAMs can be expressed as the
function of the measured joint angle θ. As a result, the dynamic behaviour of an antagonistic muscle
can be described by a single input single output (SISO) system, in which the input is the difference
pressure of two PAMs (∆P), and the output is the measured angle θ. The input pressure inside the
anterior and posterior PAMs can be expressed as

PP = P0 + ∆P (3a)

PA = P0 − ∆P, (3b)

where P0 is the nominal pressure which determines the initial position of antagonistic actuator.
The nominal pressure can be chosen so that the joint has the desired compliance for a specific
application. It was fixed, so ∆P was chosen as a control variable of trajectory-tracking controller.
All the system parameters P0, y0, and yN are provided as in Table 1. In this research, the following
discrete-time SISO system was chosen to describe the model of antagonistic actuator:

yk+1 = −
n

∑
i=1

aiyk−i+1 +
m

∑
j=1

bjuk−j−d+1 + pk, (4)

where uk represents the control pressure ∆P, yk is the joint angle, d is a positive integer representing
the dead time of the system (as a number of the sampling time), pk is the unknown disturbance of the
system, ai and bj are the model parameters with b1 6= 0, n and m are integers which satisfy n ≤ m.
The model parameters of the system are obtained by the identification experiment. To verify the
mathematical model of PAM, the following experiment procedure was carried out.

Step 1: The initial position of the actuator was set at 0◦ by supplying nominal pressure P0 to each
PAMs of the actuator.

Step 2: The actuator angle can be changed by sending different types of control signal to the electrical
control valves. Three types of control signals were used in this experiment:

• Step response: the control signal was a step wave with the final values 0.2, 0.4, 0.5, and
0.8 MPa.

• Sinusoidal signal: The control signal is the 0.2 MPa amplitude sinusoidal signal, where
frequency varies from 0.2 to 1.0 Hz.

• A sine wave signal with time-varying amplitude and frequency, as in the
following equation:

u(t) = Asin(2π f t) + 0.8Asin(2π0.2 f t) + 0.5Asin(2π1.5 f t) + 0.2Asin(2π3 f t), (5)

where A = 0.05 MPa and f = 0.5 Hz are the basis amplitude and frequency of the
control signal, respectively.

All the data, including control signals and measured angles of actuator, were recorded with
sampling time Ts = 5 ms for further analysis.

Step 3: The discrete-time SOPDT, in which m = n = 2, was chosen as the mathematical model of the
actuator with good accuracy. The precise values of the model’s parameters are estimated by
using the MATLAB software and provided in Table 2.

Table 1. Initial parameters of pneumatic artificial muscles (PAMs).

Parameters y0 [in] yN [in] P0 [MPa]

Values 22 15 0.2
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Table 2. Identified parameters of the antagonistic actuator.

Model Parameters a1 a2 b1 b2 d

Value (Mean ± SD) −1.9139 ± 0.0182 0.9164 ± 0.0180 0.0472 ± 0.0064 0.0460 ± 0.0061 22 ± 3

Figure 2 shows identification results: (a) the control inputs are step of 0.4 MPa, (b) 0.5 Hz sine
wave signal, and (c) time-varying amplitude and frequency sinusoidal signal. The discrete-time SOPDT
mathematical model depicts a good approximation of nonlinear behaviour of the antagonistic actuator.
The maximum error of the estimated angle (dash red line) from the measured one (blue line) was
less than 5.0◦, and the root mean square error did not exceed 2.5◦. The mean values and standard
deviations (SD) of the model parameters obtained by different types of control signals are provided
in Table 2. As seen in Table 2, the standard deviations of the model parameters were much smaller
than their mean values. Therefore, we can conclude that the model parameters obtained by different
methods have similar values. As a result, we can use any aforementioned method for the identification
purpose. The model parameters, which were identified by time-varying amplitude and frequency,
are chosen to design the controller in Section 3 of this paper.

(a) (b)

(c)

Figure 2. Identification results of the antagonistic actuator: (a) the step input of 0.4 MPa, (b) the 0.5 Hz
sinusoidal signal, and (c) the time-varying amplitude and frequency control input. Upper sub-figures
show measured (blue line) and estimated (dash red line) show value of the actuator angle.
Lower sub-figures show the estimation error of the mathematical model.
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3. Control Design

Recently, SMC has been employed for designing the controller for PAMs or systems powered
by PAMs [4,6–11]. SMC is able to provide highly accurate tracking performance with a bounded
error; however, “chattering” problem is a big challenge that SMC must overcome. SMC is a suitable
control approach for PAM-based systems to deal with their uncertain, nonlinear and time varying
characteristics. In this research, we addressed a DFISMC to improve the tracking performance of the
antagonistic actuator powered by PAMs. The fractional order integral is implemented together with
disturbance observer to deal with the “chattering” problem. Figure 3 illustrates the block diagram of
the proposed control system.

Figure 3. Block diagram of the discrete-time fractional integral sliding mode control.

We consider the following fractional integral sliding surface:

Sk = ek +
α Ξe,k (6)

where ek = y∗k − yk is the tracking error with the desired trajectory y∗k , and αΞe,k is the integral of the
tracking error with fractional order α and integral gain KI . αΞe,k can be calculated as follows:

αΞe,k =
α Ξe,k−1 + KI

(
N

∑
j=2

Ωj ẽk−N+j + Ω1ek−N+1

)
(7)

and αΞe,0 = ωNe0 at the initial state. Please refer to Appendix A for details about fractional integral
approximation. We also obtain

αΞe,k+1 =α Ξe,k + KI

(
N

∑
j=2

Ωj ẽk−N+j+1 + Ω1 ẽk−N+2

)
(8)
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From (6)–(8), we can obtain

Sk+1 = ek+1 + Sk − ek + KI

(
N

∑
j=2

Ωj ẽk−N+j+1 + Ω1 ẽk−N+2

)
(9)

Therefore,

Sk+1 − Sk = (1 + KIΩN)ek+1 − (1 + KIΩ̃N)ek − KI

N−1

∑
j=2

Ω̃jek−N+j (10)

where ek + 1 is one-step-ahead tracking error, which can be computed from the SISO model of the
actuator in (4) as

ek+1 = y∗k+1 +
n

∑
i=1

aiyk−i+1 −
m

∑
j=1

bjuk−d−j+1 − pk, (11)

where y∗k+1 is one step ahead of the desired trajectory, which is considered to be known when apply
the model to a specific application. In (4), disturbance pk is unknown and needs to be estimated.
In this study, one-step delayed technique was used to estimate pk. This technique is based on the
following assumptions:

Assumption 1. Sampling time Ts was sufficiently small and system disturbance pk is bounded, so the difference
between two consecutive time samples is also bounded, i.e.,

pk − pk−1 = O(Ts) (12)

pk − 2pk−1 + pk−2 = O(T2
s ), (13)

where O(Ts) is the thickness boundary layer. It means there always exist constants A and B, ∀ k > 0, such that

|pk − pk−1| ≤ ATs (14)

|pk − 2pk−1 + pk−2| ≤ BT2
s . (15)

The aforementioned assumption was based on the Taylor expansion described in Appendix B.
Estimation p̂k of disturbance pk can be computed based on (4) as

p̂k = 2pk−1 − pk−2, (16)

where

pk−1 = yk +
n

∑
i=1

aiyk−i −
m

∑
j=1

bjuk−j. (17)

Hence, the error of estimation p̃k is

p̃k = pk − p̂k

= pk − 2pk−1 + pk−2 = O(T2
s ). (18)

Finally, the one-step-ahead tracking error (11) can be expressed by

ek+1 = yd,k+1 +
n

∑
i=1

aiyk−i+1 −
m

∑
j=1

bjuk−j+1 − p̂k − p̃k. (19)
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When substituting ek+1 in (11) and pk = p̂k + p̃k into (10), we can obtain

Sk+1 − Sk = −(1 + KIΩ̃N)ek − KI

N−1

∑
j=2

Ω̃jek−N+j

+ (1 + KIΩN)

(
y∗k+1 +

n

∑
i=1

aiyk−i+1 −
m

∑
j=1

bjuk−j−d+1 − p̂k − p̃k

)
(20)

Disturbance estimation error p̃k is unknown in practice; however, it is very small and bounded
by assumption 1. Control signal uk can be obtained by solving the reaching law Sk+1 = 0 with the
absence of p̃k as follows:

uk = b−1
1

(
y∗k+1 +

n

∑
i=1

aiyk−i+1 −
m

∑
j=1

bjuk−j−d+1 − p̂k

)
−

(1 + KIΩ̃N)ek − KI ∑N−1
j=2 Ω̃jek−N+j

b1(1 + KIΩN)
. (21)

Adjusting integral gain KI and fractional order integral α may improve performance of the
control system.

4. Experimental Evaluation

4.1. Experimental Procedure

To verify the effectiveness of the proposed control method, multiple-scenario experiment with
different desired trajectories was carried out. In the first scenario of the trajectory-tracking experiment,
sinusoidal signals with amplitude 20◦ and 0.2, 0.5, 0.8, and 1 Hz frequency were given as desired
trajectories. To evaluate the applicability of the proposed control method for a rehabilitation robot,
a human-like pattern signal was employed as a desired trajectory in the second scenario of the
experiment. The modified knee gait data profile in textbook [29], where the maximum flexion angle is
set at 28◦, was used to verify the control performance. In both experimental scenarios, the system was
tested under two load conditions: no load and load m = 2.5 kg.

In all experimental scenarios, the sampling time of the discrete-time control system was Ts = 5 ms.
All the data were recorded for ten cycles from the start time of the experiment. The data were processed
by MATLAB software version R2016b. The proposed controller is also compared with the conventional
discrete-time sliding mode control (DSMC) method in terms of tracking performance. The parameters
of both controllers after being well-tuned are provided in Table 3.

Table 3. Parameters of the discrete-time fractional order integral sliding mode control (DFISMC) and
conventional DSMC controller.

Parameters
FDISMC DSMC

α KI λ Ksw

Values 0.8 0.01 0.1 1.5× 10−3

4.2. Experiment Result

To quantitatively evaluate the tracking performance, the maximum tracking error (MTE) and root
mean square tracking error (RMSTE) are computed. The RMSTE is calculated as follows:

RMSTE =

√√√√ 1
N

N

∑
k=0

e2
k , (22)

where N is the total number of data samples, and ek is the tracking error under kth sample.
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Figure 4 depicts the experimental results when the actuator tracks the sine wave signals without
load. The sinusoidal signal had an amplitude of 20◦ and frequency from 0.2 Hz to 1 Hz. In the
second scenario, a knee gait pattern was given as a desired trajectory. The proposed controller
was evaluated with two different gait cycle (GC) times: 2.5 s and 4 s. The experimental results of
this scenario are shown in Figure 5. In both Figures 4 and 5, the upper sub-figure of each image
includes the desired trajectory (back line), measured angle controlled by DFISMC (dash-blue line),
and measured angle controller by conventional DSMC (dash-dot red line). The lower part of each
figure shows the tracking errors of both proposed controller and DSMC controller. In comparison with
the traditional DSMC, the DFISMC was able to provide a better performance in both transient and
steady states. As demonstrated in Figure 6, in all scenarios of the experiment, both MTE and RMSTE
of the proposed control approach are smaller than the ones of the conventional DSMC control method.
For example, when tracking the 1.0 Hz frequency sinusoidal signal, the RMSTEs of the DFISMC and
DSMC controllers are 1.63◦ and 1.43◦, respectively. It means that DFISMC is able to provide a better
performance than the conventional DSMC controller. In particular, as seen in the error graphs in
Figures 4 and 5, the finite amplitude oscillation of the tracking error in DFISMC is much smaller than
in DSMC. It can be concluded that the inherent “chattering” phenomenon of SMC control is reduced
with DFISMC. The numerical values of the experimental results in all scenarios are given in Table 4.
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Figure 4. Experiment results without a load for tracking a sinusoidal trajectory: (a) 0.2 Hz, (b) 0.5 Hz,
(c) 0.8 Hz, and (d) 1.0 Hz of signal frequency.
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Figure 5. Experiment results of the proposed controller and conventional DSMC controller when
tracking the human-gait pattern signal: (a) 4 s and (b) 2.5 s of gait cycle time. The experiment was
carried out without a load.
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Figure 6. Maximum tracking error (MTE) and root mean square tracking error (RMSTE) of the proposed
controller and conventional DSMC controller with 0.2 Hz, 0.5 Hz, 0.8 Hz, and 1.0 Hz of the desired
signal frequency in case of no load.

Table 4. Maximum tracking error (MTE) and root mean square tracking error (RMSTE) of the proposed
control method and conventional DSMC control method in case of no load.

Signal Frequency
MTE (◦) RMSTE (◦)

DSMC DFISMC DSMC DFISMC

0.2 Hz 3.14 2.65 1.03 0.98
0.5 Hz 6.01 5.71 1.12 1.00
0.8 Hz 7.73 7.39 1.43 1.11
1.0 Hz 8.68 8.67 1.63 1.43
4 s of GC 2.40 2.31 1.30 1.04
2.5 s of GC 4.69 2.26 1.45 1.20

Figures 7 and 8 show the control performances of the system when tracking the sinusoidal signals
and human-gait pattern with a load of 2.5 kg, respectively. When the antagonistic actuator carries a
load m = 2.5 kg, the difference between the DFISMC and DSMC is not significant in terms of MTE.
However, the RMSTE of the DFISMC controller are smaller than the ones of the DSMC controller, as
shown in Figure 9. For example, when tracking the 2.5 s human-gait trajectory, the RMSTEs of the
DFISMC and DSMC controllers are 1.22◦ and 1.68◦, respectively. Furthermore, the same conclusion
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about the “chattering” phenomenon is drawn out in this experiment scenario. All numerical values of
MTE and RMSTE in this experimental scenario are also shown in Table 5.

From experimental results with multiple scenarios, we can conclude that the DFISMC controller
obtains a better tracking performance than the conventional DSMC controller which used the “sign”
function of tracking errors. In addition, the implemented disturbance observer and fractional order
integral term are able to deal with the finite-amplitude oscillation of sliding mode implementations.
As a result, the “chattering” phenomenon is reduced.
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Figure 7. Experiment results with 2.5 kg of load for tracking a sinusoidal trajectory: (a) 0.2 Hz,
(b) 0.5 Hz, (c) 0.8 Hz, and (d) 1.0 Hz of the desired signal frequency.
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Figure 8. Experiment results for the proposed controller and conventional DSMC controller when
tracking the human-gait pattern signal with a load m = 2.5 kg: (a) 4 s and (b) 2.5 s of gait cycle time.



Appl. Sci. 2019, 9, 2503 12 of 17

0.2Hz 0.5Hz 0.8Hz 1.0Hz 4s of GC 2.5s of GC
0

2

4

6

8

10

12

T
ra

ck
in

g 
E

rr
or

 (
°)

Maximum Tracking Error

DSMC FDSMC

0.2Hz 0.5Hz 0.8Hz 1.0Hz 4s of GC 2.5s of GC
0

0.5

1

1.5

2

2.5

3

3.5

T
ra

ck
in

g 
E

rr
or

 (
°)

Root Mean Square Tracking Error

DSMC FDSMC

(a) (b)

Figure 9. MTE and RMSTE of the proposed controller and conventional DSMC controller with 0.2 Hz,
0.5 Hz, 0.8 Hz, and 1.0 Hz of the desired signal frequency and load m = 2.5 kg.

Table 5. MTE and RMSTE of the proposed control method and conventional DSMC control method
with load m = 2.5 kg.

Signal Frequency
MTE (◦) RMSTE (◦)

DSMC DFISMC DSMC DFISMC

0.2 Hz 3.94 2.16 1.67 0.93
0.5 Hz 5.11 5.39 2.31 1.47
0.8 Hz 8.13 7.13 2.64 1.56
1.0 Hz 10.56 11.13 3.28 2.61
4 s of GC 4.09 2.20 1.38 1.16
2.5 s of GC 5.23 3.41 1.68 1.22

5. Discussion and Conclusions

This paper proposed an advanced SMC control strategy for PAMs in antagonistic configuration.
First, the discrete-time SOPDT is chosen to describe the dynamic behaviour of the antagonistic actuator.
The chosen model demonstrated a good approximation of nonlinear characteristics of the actuator:
the root mean square errors between estimated and measured values are less than 2.5◦. Based on
the built-in model, an DFISMC controller, which employed a fractional order integral of tracking
error together with a disturbance observer, was proposed for the tracking purpose. The implemented
approximation of FOI and DO was able to reduce the “chattering” phenomenon, which often occurs
in SMC implementations. The reduction of the “chattering" phenomenon is very important for
applications of the PAMs in rehabilitation robot field. Finally, multi-scenario experiments were
carried out to compare the tracking performances between the DFISMC and the conventional DSMC.

In comparison with the three-elements model [5], hysteresis model [13–15], and mechanism-based
model [22,23], the identification procedure of the proposed method is simplified. Besides,
this procedure does not need to measure the load’s acceleration, which is very sensitive to noise.
Experiments show that, in comparison with DSMC, the DFISMC was able to significantly enhance the
tracking performance of 20◦ amplitude sinusoidal signals with frequency up to 1.0 Hz. In particular,
when the actuator drove a load of m = 2.5 kg, the RMSTEs of DFISMC were about two times
less than those of conventional DSMC in most of the desired trajectory frequencies. For example,
with a frequency of 0.2 Hz, the RMSTEs are 0.93◦ and 1.67◦ for DFISMC and DSMC, respectively.
The proposed controller achieves a performance comparable to the experimental results with similar
configuration and desired trajectory in [23,24]. In [23], when tracking a 0.4 Hz frequency and 5◦

sinusoidal signal, the residual error amplitude is 0.5 ◦ equivalent to 10%. When tracking a 0.5 Hz
frequency and 20◦ amplitude sinusoidal signal, the RMSTE of the DFISMC is 1.47 ◦, equivalent to
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7.35% of amplitude. This result was better than the one in [24], in which a sinusoidal signal with 40◦

amplitude and frequency 0.25 Hz is used as a desired trajectory. The experiments also show that the
proposed controller can track a human-gait pattern with the MTE of less than 6◦. This result is in
accordance with the commercial gait training system LOKOMAT [30], in which the MTE is 15◦. It is
shown that the built-in model and proposed controller can be applied in robot gait training system.
Furthermore, the proposed DFISMC is designed in discrete-time domain, so that it is convenient for
implementing in any digital industrial controller, e.g., the NI instrument in this research.

In summary, this paper presents the control of an antagonistic actuator powered by PAMs.
The dynamic behaviour of the antagonistic actuator is described by a discrete-time SOPDT model,
which requires a simpler identification procedure. The DFISMC controller based on a DSO and the
approximated FOI is used to improve the tracking performance. The implementation of DSO and FOI
also helps the system reduce the “chattering” phenomenon. The experimental results illustrate the
applicability of the proposed model and controller to a robotic gait training system with a human-gait
pattern trackable ability. Future work will involve the impedance control of the antagonistic actuator
to increase applicability of PAMs in the field of rehabilitation. The impedance of the actuator can
be regulated by manipulating the nominal pressure P0 of two PAMs. To integrate the impedance
controller into the system, the relationship between the actuator compliance and nominal pressure P0

would be considered and modelled in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

PAM Pneumatic artificial muscle
PID Proportional integral derivative
SOPDT Second order plus dead time
SISO Single input single output
SMC Sliding mode control
DSMC Discrete-time sliding mode control
DFISMC Discrete-time fractional order integral sliding mode control
MTE Maximum tracking error
RMSTE Root mean square tracking error
ESO Extended state observer
ADRC Active disturbance rejection controller
DSO Disturbance observe
SD Standard deviation
FOI Fractional order integral
GC Gait cycle

Appendix A. Fractional Integral Approximation

Fractional-order calculus is a generalization of the integration and differentiation from integer
to non-integer order. This appendix introduces only definitions which are widely used in the area of
control systems. First, gamma function Γ(z), which is the extension of the factorial for non-integer
number z, is introduced as

Γ(z) =
∫ ∞

0
e−ttz−1dt (A1)

The most important property of the gamma function is

zΓ(z) = Γ(z + 1) (A2)
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Then, the definition of integral of order α ∈ R is presented. In continuous-time domain, the most
often used one is the Riemann-Liouville definition:

αΞe(t) =
1

Γ(α)

t∫
0

(t− τ)(α−1)e(τ)dτ (A3)

At this time, the FOI is not supported in any programming language. For this reason, its numerical
approximation is required to implement the FOI in any real-time control system. In a digital control
system with sampling time Ts, interval (0, t) can be approximated by k = t

Ts sub-intervals. Therefore,

αΞe(t) =
1

Γ(α)

k

∑
j=1

(j+1)Ts∫
jTs

(t− τ)(α−1)e(τ)dτ (A4)

Consider that Ts is small enough, so that e is constant in each sub-interval. Therefore,

αΞe(t) ≈α Ξe,k =
1

Γ(α)

k

∑
j=1

(j+1)Ts∫
jTs

(t− τ)(α−1)e(τ)dτ (A5)

Following that,

αΞe,k =
k

∑
j=1

[(k− j + 1)α − (k− j)α]
Tα

s
αΓ(α)

ej+1 (A6)

From (A2) and (A6), we have

αΞe,k =
k

∑
j=1

ωjej (A7)

with the weighting factor ωj as follows:

ωj = [(k− j + 1)α − (k− j)α]
Tα

s
αΓ(α)

. (A8)

Because of the infinite data in (A7), the approximation of FIO cannot be directly implemented in
any digital system. In this research, the recursive approximation of FIO in [31] is employed. Denote
Ξe,k−1 as FIO of the tracking error in the last step, and it can be computed as

αΞe,k−1 =
k

∑
j=2

ωjej−1 (A9)

From (A7) and (A9), we have

αΞe,k =
α Ξe,k−1 +

k

∑
j=2

ωj ẽj−1 + ω1e1 (A10)

where ẽj = ej − ej−1. We apply the short memory principle to (A10) and we can consider two cases:

(a). If k < N, where N =

[
L
Ts

]
is the number of considered data samples, then

αΞe,k =
α Ξe,k−1 +

N

∑
j=N−k+2

Ωj ẽN−k+j + ΩN−k+1e1 (A11)
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(b). If k ≥ N,

αΞe,k =
α Ξe,k−1 +

N

∑
j=2

Ωj ẽk−N+j + Ω1ek−N+1 (A12)

where
Ωj = [(N − j + 1)α − (N − j)α]

Tα
s

Γ(α + 1)
(A13)

The FIO is approximated by Equations (A11) and (A12), which can be easily implemented in any
digital control system.

Appendix B. Proof of Assumption 1

Assumption 1 is based on the Taylor expansion and can be explained as follows. For a very small
constant Ts, we have

p(t− Ts) = p(t)− dp(t)
dt

Ts +
∞

∑
i=2

(−1)i d(i)p(t)
dti

Ti
s

i!
(A14)

Then, it can be derived from (A14) that

p(t)− p(t− Ts) =
dp(t)

dt
Ts −

∞

∑
i=2

(−1)i d(i)p(t)
dti

Ti
s

i!

≈ dp(t)
dt

Ts + O(T2
s ) (A15)

Assume that signal p(t) is smooth, and its differential is bounded. Then there exists a constant A
such that

|p(t)− p(t− Ts)| ≤ ATs + O(T2
s ) (A16)

which means
P(t)− p(t− Ts) = O(Ts) (A17)

and (12) holds.
Now, ignore the small term O(T2

s ) and differentiate both sides of (A15). This gives us

dp(t)
dt
− dp(t− Ts)

dt
≈ d2 p(t)

dt2 Ts (A18)

By using (A15) on the left side of (A18),

p(t)− 2p(t− Ts) + p(t− 2Ts) ≈
d2 p(t)

dt2 T2
s (A19)

Again, assume that the second order differential of p(t) is bounded by a constant B, then it leads to

|p(t)− 2p(t− Ts) + p(t− 2Ts)| ≤ BT2
s (A20)

which means that (15) holds.
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