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Abstract: To improve the evaluation accuracy of the distorted images with various distortion types,
an effective blind image quality assessment (BIQA) algorithm based on the multi-window method
and the HSV color space is proposed in this paper. We generate multiple normalized feature maps
(NFMs) by using the multi-window method to better characterize image degradation from the
receptive fields of different sizes. Specifically, the distribution statistics are first extracted from the
multiple NFMs. Then, Pearson linear correlation coefficients between spatially adjacent pixels in
the NFMs are utilized to quantify the structural changes of the distorted images. Weibull model
is utilized to capture distribution statistics of the differential feature maps between the NFMs to
more precisely describe the presence of the distortions. Moreover, the entropy and gradient statistics
extracted from the HSV color space are employed as a complement to the gray-scale features. Finally,
a support vector regressor is adopted to map the perceptual feature vector to image quality score.
Experimental results on five benchmark databases demonstrate that the proposed algorithm achieves
higher prediction accuracy and robustness against diverse synthetically and authentically distorted
images than the state-of-the-art algorithms while maintaining low computational cost.

Keywords: blind image quality assessment; multiple normalized feature maps; spatial correlation;
difference map; HSV color space

1. Introduction

As the crucial aspect in optimization problems of image processing applications, the image quality
assessment (IQA) algorithms aim to automatically and accurately evaluate the quality of a given image
without accessing the ground truth [1–5]. Compared with full reference (FR) [6,7] IQA and reduced
reference (RR) IQA [8] algorithms, blind IQA (BIQA) algorithms can estimate the perceptual quality of
a distorted image without using any information of its pristine image. Therefore, BIQA algorithms are
more valuable in practice.

Early BIQA algorithms mainly focus on evaluating the perceptual quality of images that are
corrupted by specific distortions, and assume that the distortion type is known beforehand, such as
blur distortion [9], JPEG compression [10] and ringing distortion [11]. Although these algorithms have
achieved satisfying results, they are limited to certain types of distortions in practice. By contrast,
the general purpose BIQA algorithms do not require knowing the distortion types, which makes
them much more practical and can be applied in various occasions. Generally speaking, the general
purpose BIQA algorithms usually share a similar architecture, i.e., quality-aware feature extraction
and quality pooling, and the performance of a BIQA algorithm is more dependent on quality-aware
feature extraction.
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The most widely used approach to quality-aware feature extraction is based on the natural scene
statistics (NSS) [12], which are altered in the presence of distortions. For example, Moorthy and Bovik
proposed a distortion identification-based image verity and integrity evaluation (DIIVINE) algorithm
that extracts a series of statistical features based on NSS by integrating the wavelet transform and
Gabor transform [12]. In [13], Saad et al. described a block-based discrete cosine transform domain
NSS feature extraction approach to BIQA algorithm (named BLIINDS-II). Zhang et al. [14] proposed
a complex extension of the DIIVINE algorithm (C-DIIVINE) utilizing complex statistical features
with both magnitude and phase information on wavelet domain to assess image quality. Although
aforementioned algorithms can achieve satisfactory prediction performance, they are not suitable for
the real-world applications to some extent due to the time-consuming multiple sub-bands wavelet
transformation and block-based feature extraction process. To provide an efficient way to tackle
the above problem, BRISQUE [15] preprocessed an image by local mean removal transformation to
generate mean subtracted contrast normalized coefficient map, and employed the generalized Gaussian
distribution (GGD) and asymmetric GGD (AGGD) models to extract the distribution features. Due to
their low computational cost and good performance, quality-aware features used in BRISQUE have also
been adopted by many other BIQA algorithms [16–18]. For example, Natural Image Quality Evaluator
(NIQE) [16] collects statistical features to build an NSS-based prediction model without training the
model on human-rated distorted images. Zhang et al. [17] extended NIQE algorithm (dubbed ILNIQE)
to capture local distortion artifacts more comprehensively by integrating the features of luminance,
color, gradient, and Log-Gabor filter responses. However, the performances of NIQE and ILNIQE
are inferior to the state-of-the-art BIQA algorithms. To improve the prediction accuracy and assess
image quality for authentically distorted images, Ghadiyaram and Bovik [18] proposed FRIQUEE to
extract more complex statistical features from various types of transformed maps including luminance
map, sigma map, difference of Gaussian of sigma map, Laplacian of the luminance map, subbands of a
complex steerable pyramid, and feature maps from CIELAB, LMS, RGB, and HSI color spaces. Despite
the great improvement achieved by FRIQUEE, its real-time implementation is still a challenging task
due to the time-consuming feature extraction process.

There are still others algorithms dedicated to using other kinds of perceptual features. In gradient
measure, Xue et al. [19] utilized the joint statistics of normalized gradient magnitude and Laplacian
of Gaussian (GMLOG) features to characterize image quality. The model, oriented gradients image
quality assessment (OG-IQA) [20], utilizes an AdaBoosting back-propagation neural network for
mapping the statistics of image relative gradient orientation to image quality. In the work of
Zhou et al. [21], local statistical features were extracted from the gradient magnitude and phase
for image quality estimation. Recently, Rezaie et al. [22] applied the local binary pattern (LBP) operator
to the wavelet sub-bands of the distorted image and calculated the histogram of LBP coefficients to
form the perceptual quality features. Cai et al. [23] proposed a BIQA algorithm based on multi-scale
second-order statistics derived from the joint distribution of adjacent wavelet sub-bands. Although the
aforementioned BIQA algorithms improved the prediction accuracy and robustness, but there is still
much room for performance improvement on contrast distorted, multiply distorted, and authentically
distorted images.

In this paper, we propose a general-purpose BIQA algorithm by using various perceptual features
extracted from the spatial and the color domains (named BIQA-SC). Based on the observation that
measuring the correlation between intensity values of image points in receptive fields of different sizes
could get more local details of the real-world [24–26], we generate multiple normalized feature maps
(NFMs) for feature extraction. Multiple Gaussian filters of different filter sizes are utilized in image
normalization procedure to produce multiple NFMs. The distribution statistics, including GGD and
AGGD parameters, are first extracted from the NFMs. Then, Pearson linear correlation coefficient
(PLCC) is employed to better characterize the correlation changes between neighboring pixels of the
distorted images. The differences between different NFMs are also measured by using the Weibull
fitting function. Furthermore, we utilize the entropy and the gradient statistics obtained from the
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HSV color space to improve the prediction accuracy for color distorted images. Experimental results
on five benchmark databases indicate that, compared with the other competing BIQA algorithms,
the proposed algorithm achieves better evaluation accuracy and robustness on a wider range of image
distortion types with low computational cost.

2. Proposed Method

Human visual system (HVS) is sensitive to the intensity changes, therefore measuring the
relationship between intensity values of different points in the receptive fields could get information
indicating the properties of the images [26]. Moreover, the size of the receptive field determines the
information extracting from the image: larger receptive field size obtains coarser information of the
image, while smaller size may achieve finer details of the image [27]. To simulate the HVS and obtain
more descriptive features from the distorted images, we introduce a multi-window method to generate
multiple feature maps to represent receptive fields of different sizes. Specifically, we normalize the
input image by a local nonlinear transformation following the method mentioned in [15], and multiple
Gaussian filters of different window sizes are applied in the normalization procedure in our method.

For a given image, the NFM is computed by

Ti(m, n) =
I(m, n)− µi(m, n)

σi(m, n)
(1)

where I(m, n) is the gray-scale image; m ∈ 1, 2, . . . , M and n ∈ 1, 2, . . . , N are the pixels indices; M and
N are the image height and width, respectively; i ∈ 1, 2, 3 is the Gaussian function index; and µi(m, n)
and σi(m, n) are the local mean map and the local standard deviation map, which are defined as

µi(m, n) =
Ki

∑
k=−Ki

Li

∑
l=−Li

ωi(k, l)I(m + k, n + l) (2)

σi(m, n) =

√√√√ Ki

∑
k=−Ki

Li

∑
l=−Li

(ωi(k, l)I(m + k, n + l)− µi(m, n))2 (3)

where ωi(k, l) is the 2D circularly-symmetric Gaussian weighting function whose kernel size is
(2Ki + 1)× (2Li + 1).

To extract discriminative features from the distorted image, we generate three NFMs by using
three different Gaussian filters in normalization procedure with the Gaussian window size increasing
from small to large. Specifically, the Gaussian filter size parameters K and L are set to 2, 4 and 6, and
the standard deviations of the Gaussian filters follow the three standard deviations rule. As a result,
three different NFMs ( named as T1, T2, and T3) for a given image can be obtained.

2.1. Distribution Statistics within Different Receptive Fields

It has been proved that the empirical distribution of the normalized image can be modeled by
a zero mean GGD model [15]. For the ith NFM, the probability density function associated with the
GGD is defined as

f (x; αi, σ2
i ) =

αi
2βiΓ(1/αi)

exp

(
−
(
|x|
βi

)2
)

(4)

where βi = σi

√
Γ(1/αi)
Γ(3/αi)

, αi represents the shape parameter of the distribution, σ2
i is the distribution

variance, and Γ(x) =
∫ ∝

0 tx−1e−tdt, x > 0 is a Gamma function. Gamma function is an infinite
generalized integral, where t is the integral variable of this infinite generalized integral.

Distortions will also affect the distributions of pairwise products of neighboring normalized
coefficients along horizontal, vertical, main-diagonal and secondary-diagonal orientations [15]:
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Hi(i, j) = Ti(i, j)Ti(i, j + 1), Vi(i, j) = Ti(i, j)Ti(i + 1, j), MDi(i, j) = Ti(i, j)Ti(i + 1, j + 1), and
SDi(i, j) = Ti(i, j)T(i + 1, j− 1). The distributions of these pairwise products exhibit regular structure
and can be modeled by the AGGD model [15], which is defined by

f (x; γi, σ2
i,l , σ2

i,r) =


γi

(βi,l+βi,r)Γ(1/γi)
exp

(
−
(
−x
βi,l

)γi
)

, x < 0

γi
(βi,l+βi,r)Γ(1/γi)

exp
(
−
(

x
βi,r

)γi
)

, x ≥ 0
(5)

where γi is the shape parameter that adjusts the shape of the distribution, σ2
i,r and σ2

i,l are
scale parameters controlling the spread on right and left sides of the distribution, βi,r =

σi,r
√

Γ(1/γi)/Γ(3/γi), βi,l = σi,l
√

Γ(1/γi)/Γ(3/γi), and Γ(x) =
∫ ∝

0 tx−1e−tdt, x > 0 is a Gamma
function. We estimate the parameters αi and σ2

i from the GGD fit of the three NFMs, and estimate the
parameters γi, σ2

i,r, andσ2
i,l from the AGGD fit of pairwise products of neighboring pixels in the three

NFMs along four orientations.
To show how the GGD and AGGD parameters of different NFMs distribute in the parameter space,

we randomly select 300 distorted images from three different quality ranges in the LIVE database [28].
The DMOS value of LIVE database is in the range [0, 100], where higher scores represent lower quality.
It can be seen in Figure 1 that GGD parameters extracted from the distorted images of different quality
regions occupy different regions of the parameter space. Relatively speaking, the distribution statistics
of each of the three NFMs have their own value ranges in the parameter space. Meanwhile, it can
be seen in Figure 2 that AGGD parameters of the three quality regions are also separated well in the
parameter space. Therefore, we employ the GGD and AGGD parameters as perceptual features to
reflect the luminance intensity changes in the distorted images.

Figure 1. 2D scatter plots between GGD parameters α and σ2 of the three NFMs, where each point
in the scatter plots represents one distorted image in LIVE [28] database: (a) scatter plots for the first
NFM; (b) scatter plots for the second NFM; and (c) scatter plots for the third NFM.
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Figure 2. 3D scatter plots between AGGD parameters α, σ2
l and σ2

r in horizontal orientation of the
three NFMs, where each point in the scatter plots represent one distorted image in LIVE [28] database:
(a) scatter plots for the first NFM; (b) scatter plots for the second NFM; and (c) scatter plots for the
third NFM.

2.2. Correlation Coefficient between Adjacent Pixels in NFMs

There are strong structural correlations among neighboring pixels [15]. By examining the
relationship between neighboring pixels in the NFMs, we found that the presence of distortions
will alter the global correlation between spatially adjacent pairs in natural images. PLCC is employed
to quantify the correlation changes between adjacent pairs in the NFMs. The four PLCC values along
horizontal (pH), vertical (pV), main-diagonal (pMD) and secondary-diagonal (pSD) orientations are
calculated by

pi,H = P(Ti(1 : M, 1 : N − 1), Ti(1 : M, 2 : N)) (6)

pi,V = P(Ti(1 : M− 1, 1 : N), Ti(2 : M, 1 : N)) (7)

pi,MD = P(Ti(1 : M− 1, 1 : N − 1), Ti(2 : M, 2 : N)) (8)

pi,SD = P(Ti(2 : M, 1 : N − 1), Ti(1 : M, 2 : N)) (9)

where Ti is the ith NFMs, i ∈ 1, 2, 3 is the NFM index, M and N are the height and the width of NFMs,
respectively, and

P(X, Y) =

M
∑

m=1

N
∑

n=1
(xm,n − X)(ym,n −Y)√

M
∑

m=1

N
∑

n=1
(xm,n − X)2

M
∑

m=1

N
∑

n=1
(ym,n −Y)2

(10)

where X and Y are two non-overlapping blocks with equal size of the NFM, X and Y are the mean
values of X and Y, m ∈ 1, 2, . . . , M and n ∈ 1, 2, . . . , N are the pixels indices, and M and N are the
blocks height and width, respectively.

To illustrate how distortion types and distortion levels will affect the PLCC values between
adjacent pairs, we take images in CSIQ database [29] as an example. Figure 3 plots the PLCC
values between neighboring pixels of the first NFM along four orientations for six types of distorted
images in CSIQ database. The six distortion types are additive Gaussian white noise (WN), JPEG2000
compression (JP2K), JPEG compression (JPEG), pink Gaussian noise (PGN), Gaussian blur (GB),
and global contrast decrements (GCD). Each distortion type contains four distorted images with
different difference mean opinion scores (DMOS) values. The DMOS value of CSIQ database is in the
range [0, 1], where higher scores represent lower quality. In Figure 3, we plot the curve of PLCC values
varying with DMOS values for the first NFM for each type of distorted images and for the reference
images, where DMOS = 0 corresponding to PLCC values of the reference images. It is clear that the
PLCC values of WN and PGN images decrease gradually as the DMOS value increases, while the PLCC
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values of JPEG, JP2K and GB images increase significantly as the DMOS value increases. This implies
that the PLCC values between spatially adjacent pixels can well characterize the presence of distortions.

Figure 3. Variation of the PLCC values along four orientations for six types of distorted images in
CSIQ database [29]. Each distortion type contains four distorted images with different difference
mean opinion scores (DMOS) values, where DMOS = 0 corresponding to PLCC values of the pristine
image: (a) additive Gaussian white noise (WN) distorted images; (b) JPEG compressed (JPEG) images;
(c) JPEG2000 compressed (JP2K) images; (d) pink Gaussian noise (PGN) distorted images; (e) Gaussian
blurred (GB) images; and (f) global contrast decrements (GCD) images.

Furthermore, we measure the PLCC values along four orientations for all the reference and
distorted images in CSIQ database to more precisely describe the effect of the presence of distortions.
Table 1 lists the average values of PLCC values along four orientations for each distortion type and
the reference images. It is clear that the average PLCC values of different distortion types are quite
different with the average PLCC values of the reference images. The average PLCC values of WN
and PGN images are smaller than the average PLCC values of the reference images. The main reason
is that there are many random signals in WN and PGN images, which will increase the differences
between neighboring pixels and will also reduce the correlation between neighboring pairs. Besides,
the average PLCC values of JPEG, JP2K, and GB images are much larger than the average PLCC values
of the reference images. This is because less detailed information is contained in the compressed
and blurred images, which will reduce the differences between neighboring pixels and will make the
correlation between neighboring pairs larger. Moreover, since the global contrast decreasing will not
change the correlation between adjacent pixels, the average PLCC values of GCD images are similar
with the average PLCC values of the reference images. The experimental result implies that the PLCC
values between spatially adjacent pixels can well characterize the presence of distortions.
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Table 1. The average PLCC values along four orientations for the reference images and each type of
distorted images in CSIQ database [29].

Distortion p1,H p1,V p1,MD p1,SD

Reference 0.3238 0.2689 0.0595 0.0600
WN 0.0902 0.0650 0.0086 0.0122
JPEG 0.4698 0.3991 0.1049 0.1041
JP2K 0.5367 0.4695 0.2773 0.2746
PGN 0.2821 0.2437 0.0430 0.0407
GB 0.5495 0.4930 0.3401 0.3359
GCD 0.3366 0.2781 0.0693 0.0705

2.3. Difference between NFMs

Since different NFMs contain different information from receptive fields of different sizes, we
calculate the differential feature map (DFM) between NFMs to measure more detailed information of
image degradation. The DFM between two NFMs is calculated by

Di(m, n) =
∣∣(Ti(m, n)

)2 −
(
Ti+1(m, n)

)2∣∣ (11)

where Di are the ith DFMs, Ti and Ti+1 are two different NFMs, m ∈ 1, 2, . . . , M and n ∈ 1, 2, . . . , N are
the pixels indices, M and N are the image height and width, respectively, and i ∈ 1, 2 is the index of
the DFMs.

Our hypothesis is that the presence of distortions may affect the distribution properties of the
DFMs, and measuring the distribution statistics in DFMs may better characterize image degradation.
To visualize how the presence of distortions will affect the distributions of DFMs, we use five distorted
images of different mean opinion score (MOS) values in the LIVE In the Wild Image Quality Challenge
Database (WIQCD) [30] as an example. The MOS value of WIQCD database is in the range [0, 100],
where higher scores represent higher quality. Figure 4 gives the five images in WIQCD database.
Figure 5a visualizes the distributions of the DFMs between T1 and T2 for the five distorted images
showed in Figure 4. It can be seen in Figure 5a that histograms of these DFMs follow the Weibull
distribution, while the peak and tails of the five histograms are different. Therefore, we use Weibull
model to fit the distribution of the DFMs. The probability density function associated with Weibull
model is defined as

f (xi; ai, bi) =
bi
ai

(
xi
ai

)bi−1

exp
(
−
(

xi
ai

)bi)
, xi > 0 (12)

where ai and bi are the scale parameter and shape parameter of the ith DFM, respectively, and i ∈ 1, 2
is the index of DFMs.

Figure 5b gives bar plots of a1 and b1 of the five histograms shown in Figure 5a. It is clear that
a1 and b1 increase as the MOS value grows. This indicates that the distribution statistics of the DFMs
can measure the quality variation and can be adopted as perceptual features.

Figure 4. The five distorted images in the WIQCD database [30]: (a) MOS = 25.33; (b) MOS = 35.89;
(c) MOS = 48.94; (d) MOS = 54.58; and (e) MOS = 66.51.
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Figure 5. Distributions of the DFMs follow the Weibull distribution, and the distribution statistics of
the DFMs increase as the MOS value grows: (a) distributions; and (b) bar plots of a and b.

2.4. Statistics in Color Space

Color is also an important ingredient for visual quality perception [31]. De et al. [32] investigated
the important role that color information played in image quality prediction. Redi et al. [33] utilized
the color distribution features for reduced-reference IQA algorithm. Temel et al. [1] proposed an
unsupervised learning approach that utilized the structural information in the YCbCr color space to
improve the prediction accuracy of image quality. However, only a few BIQA algorithms concerned
about the effect of color information. Considering the HSV color space, which contains the three
components hue, saturation, and lightness, provides an intuitive representation of color and is more
suitable than the RGB color space to capture features correlate well with human perception, we
employ the color entropy and the low-level statistics of the three channels in the HSV color space as a
complement to the gray-scale features.

Visual entropy can effectively measure the uncertainty of an image, and can be utilized to quantify
the distorted information [34,35]. Therefore, we employ the color entropy of the three channels in the
HSV space to characterize color information. The entropy of the kth channel is calculated by

Ek =
255

∑
i=0

pk
i log2 pk

i (13)

where pk
i is the probability density of ith level in kth channel, k ∈ 1, 2, 3.

Image gradient magnitude is sensitive to the degradations of images [19,36,37]. Therefore, before
calculating the low-level statistics for the HSV color space, we compute the gradient magnitude map
for each channel in the HSV color space. The gradient magnitude map of kth channel is computed by

GMk =
√
[Ik(x, y) ∗ Gh]2 + [Ik(x, y) ∗ Gv]2 (14)

where * is the linear convolution operator, Ik(x, y) denotes the map of the kth channel in the HSV color
space, and Gh and Gv are the Gaussian partial derivative filters applied along the horizontal (h) and
vertical (v) directions. Here, the Gaussian partial derivative filter is used as convolution masks to
perform a local averaging to reduce the effects of noise in the HSV color space, and can be defined as

Gd =
∂

∂d
g(x, y|σ) = − 1

2πσ2
d
σ2 exp

(
− x2 + y2

2σ2

)
, d ∈ (h, v) (15)

where σ is the scale parameter of the Gaussian function g(x, y|σ).
Figure 6 shows how the 3D scatter plots of the mean, the standard deviation, and the entropy of

each channel in the HSV color space distributed in the feature space, where each point in the scatter
plots represents one distorted image in LIVE database. We can see clearly that the distorted images
belonging to different categories of DMOS values occupy different regions of the feature space, which
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means that the color features extracted from the HSV color space can help to distinguish images of
different quality scores.

Figure 6. 3D scatter plots between the color features extracted from HSV color space on LIVE [28]
database: (a) features in the saturation channel; (b) features in the hue channel; and (c) features in the
value channel.

2.5. Statistical Features and Evaluation Model

Considering the computational complexity and the accuracy performance, three Gaussian
windows (with K = L = 2, 4, 6) are employed in the proposed BIQA-SC. For a given image, three NFMs
and two DFMs can be obtained. Statistics including GGD parameters, AGGD parameters, and PLCC
values among neighboring pixels are extracted from the three NFMs. The Weibull parameters are
computed for the two DFMs. To achieve a better performance, the above features are extracted from
the original resolution and a reduced resolution (down-sampled by a factor of 2). The color features
are only extracted from the original resolution.

To comprehensively investigate the effectiveness of the proposed method, we train three support
vector machine regressor (SVR) models by using different feature sets for estimating the perceptual
quality score. We use only GGD and AGGD parameters extracted from the multiple NFMs to train
the first SVR model, which is denoted by BIQA-SC-I. In the second model, which is denoted by
BIQA-SC-II, GGD and AGGD parameters, PLCC values, and Weibull parameters are used to train
the evaluation model. In the third model, which is denoted by BIQA-SC, all features extracted from
the NFMs, the DFMs, and the HSV color space are used to train the evaluation model. The LIBSVM
package [38] is utilized to implement the SVR models, and the radial basis function is employed as the
regression kernel.
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3. Experiments and Results

3.1. Databases and Evaluation Methodology

We evaluated the performance of the proposed algorithm on six benchmark IQA databases:
LIVE [28], TID2013 [39], CSIQ [29], LIVE multiply distorted database I (MD1) [40], LIVE multiply
distorted database II (MD2) [40], and WIQCD [30]. LIVE database includes 29 reference images and
779 distorted images of five distortion types. TID2013 database consists of 25 pristine images and
3000 distorted images with 24 distortion types. CSIQ database contains 30 reference images and 866
distorted images with six distortion types. MD1 database includes 225 images distorted by blur and
JPEG. MD2 database includes 225 images distorted by blur and noise. WIQCD database consists
of 1169 widely diverse authentic distorted images. It is worth mentioning that images in WIQCD
database are directly obtained by using a lot of highly different smart phones and tablets, and the
distorted images are totally different from each other because they are authentically distorted images
acquired from typical real scenes.

Three commonly used performance metrics, i.e., the Spearman rank-order correlation coefficient
(SROCC), the PLCC, and the root mean square error (RMSE), were employed to evaluate the competing
BIQA algorithms. A better BIQA algorithm is expected to have lower RMSE value and higher values
of SROCC and PLCC.

3.2. Overall Performance Comparison

The proposed algorithms were evaluated in comparison with the state-of-the-art BIQA algorithms
including DIIVINE [12], BLIINDS-II [13], BRISQUE [15], ILNIQE [17], and GMLOG [19]. The overall
performance on individual databases in terms of SROCC, PLCC, and RMSE are listed in Table 2.
For each performance measure, the two best algorithms are highlighted in boldface.

In the experiments, although there are pristine images in some databases, we only used distorted
images for training and testing. Each database was randomly divided into a training subset and
a test subset without overlapping, where the training subset contained 80% of distorted images in
the database and the test subset contained the remaining 20% of distorted images in the database.
To eliminate the performance bias, this train-test procedure was implemented for 1000 times, and the
median values across 1000 trials were taken as the final performance evaluation.

It can be observed in Table 2 that the proposed algorithms achieved encouraging results on all the
databases. The top two algorithms were BIQA-SC-II and BIQA-SC, which indicates that the proposed
algorithms correlate well with human subjective judgements of image quality on all the databases.
In terms of the three performance metrics, BIQA-SC-II had similar results to BIQA-SC on LIVE, CSIQ,
MD1, and MD2 databases, and was obviously inferior to BIQA-SC on TID2013 and WIQCD databases.
The proposed BIQA-SC-II, which employs the correlation statistics and Weibull parameters, was
better than BIQA-SC-I, which employs only the GGD and AGGD parameters extracted from the
NFMs. The comparison results demonstrate that the multiple NFMs, the DFMs, and the HSV color
image contain useful information for characterizing the perception quality of images with various
distortion types.
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Table 2. The median of SROCC, PLCC, and RMSE across the 1000 train-test trials on individual databases.
The best two performances in terms of SROCC, PLCC, and RMSE are highlighted in boldface.

Metric Algorithm LIVE TID2013 CSIQ MD1 MD2 WIQCD

DIIVINE [12] 0.941 0.824 0.895 0.932 0.876 0.561
BLIINDS-II [13] 0.885 0.793 0.822 0.665 0.015 0.496
BRISQUE [15] 0.933 0.805 0.794 0.933 0.878 0.605

SROCC ILNIQE [17] 0.847 0.494 0.804 0.891 0.882 0.440
GMLOG [19] 0.948 0.828 0.849 0.908 0.832 0.597
BIQA-SC-I 0.948 0.837 0.881 0.899 0.921 0.632
BIQA-SC-II 0.954 0.844 0.910 0.962 0.951 0.667
BIQA-SC 0.956 0.906 0.928 0.957 0.964 0.682

DIIVINE [12] 0.941 0.844 0.885 0.943 0.904 0.565
BLIINDS-II [13] 0.866 0.832 0.835 0.691 0.073 0.529
BRISQUE [15] 0.934 0.833 0.826 0.953 0.909 0.621

PLCC ILNIQE [17] 0.620 0.509 0.724 0.834 0.852 0.491
GMLOG [19] 0.952 0.849 0.857 0.933 0.866 0.612
BIQA-SC-I 0.950 0.857 0.881 0.923 0.931 0.661
BIQA-SC-II 0.955 0.869 0.904 0.971 0.959 0.682
BIQA-SC 0.958 0.909 0.917 0.969 0.968 0.696

DIIVINE [12] 5.510 0.675 0.125 6.452 8.097 17.685
BLIINDS-II [13] 12.91 0.710 0.149 19.15 27.08 46.566
BRISQUE [15] 5.777 0.694 0.152 5.915 7.879 16.125

RMSE ILNIQE [17] 10.802 0.956 0.143 8.169 8.248 17.664
GMLOG [19] 4.945 0.660 0.138 6.974 9.484 16.165
BIQA-SC-I 5.073 0.641 0.125 7.478 6.9485 15.446
BIQA-SC-II 4.778 0.623 0.115 4.668 5.361 15.020
BIQA-SC 4.623 0.522 0.106 4.775 4.765 14.625

For the purpose of evaluating the statistical significance between BIQA-SC and other competing
BIQA algorithms, a t-test was conducted at 95% significance level between the SROCC results generated
by the competing algorithms across the 1000 train-test trials. The results of the t-test are shown in
Table 3. The symbol 1 (−1) indicates that BIQA-SC is statistically superior (inferior) to the compared
algorithm, and 0 indicates that BIQA-SC and the compared algorithm are statistically indistinguishable.
It can be seen that BIQA-SC was superior to all the compared algorithms on all the databases.

Table 3. Results of the t-test between the SROCC results generated by the competing algorithms across
the 1000 train-test trials on benchmark databases. The symbols 1, −1, and 0 indicate that BIQA-SC is
statistically superior, inferior, or indistinguishable to the compared algorithm.

Algorithm LIVE TID2013 CSIQ MD1 MD2 WIQCD

DIIVINE [12] 1 1 1 1 1 1
BLIINDS-II [13] 1 1 1 1 1 1
BRISQUE [15] 1 1 1 1 1 1
ILNIQE [17] 1 1 1 1 1 1
GMLOG [19] 1 1 1 1 1 1
BIQA-SC-I 1 1 1 1 1 1
BIQA-SC-II 1 1 1 −1 1 1

To visualize the statistical significance comparison, Figure 7 shows the box plots of the SROCC and
PLCC distributions of the competing BIQA algorithms over 1000 train-test trials on LIVE database. It is
clear that the quality scores produced by the proposed BIQA-SC correlated well with human subjective
opinions on LIVE database. The proposed BIQA-SC was statistically superior to the state-of-the-art
BIQA approaches. The scatter plots and the fitted lines of the DMOS values versus the scores predicted
by the competing methods are shown in Figure 8. It can be observed that the predicted scores of the
proposed BIQA-SC were nearly linear with the DMOS.
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Figure 7. Box plots of SROCC and PLCC distributions of BLIINDS-II [13] (BL), DIIVINE [12] (DI),
BRISQUE [15] (BR), GMLOG [19] (GM), BIQA-SC-I (SC-I), BIQA-SC-II (SC-II), and BIQA-SC (SC) across
1000 train-test trials on LIVE database [28]: (a) box plot of SROCC distributions; and (b) box plot of
PLCC distributions.

Figure 8. Scatter plots and fitted lines of the DMOS values versus the predicted scores by the competing
algorithms on LIVE database [28].

3.3. Performance on Individual Distortion Types

To fully test the proposed algorithm, we also compared the performance of the competing
BIQA algorithms on individual distortion types in LIVE and CSIQ databases. The same train-test
procedures as in the previous experiments were conducted. The median SROCC values across the 1000
train-test trials are listed in Table 4. It is clear that most of the competing algorithms could achieve
good evaluation accuracy on individual distortion types in LIVE database. However, only BIQA-SC
and BIQA-SC-II could obtain relatively high prediction accuracy on each distortion type in CSIQ
database. Compared with BRISQUE [15], which only utilizes NSS features extracted from a single
NFM, BIQA-SC-I and BIQA-SC-II had significantly improved prediction accuracy on six types of
distortions in CSIQ database. This implies that statistics extracted from multiple NFMs and DFMs
are more sensitive to the distortion changes than statistics obtained from a single NFM. The main
reason is that measuring the relationship between coefficients in receptive fields of different sizes could
get more detailed information indicating the changes of the surrounding world. Moreover, BIQA-SC
achieved the best performance on individual distortion types in CSIQ database. This implies that
using color features extracted from HSV color space can improve the evaluation accuracy of contrast
distorted images.
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To further test the generalization ability of the proposed algorithms, we also conducted
experiments on the 24 distortion types in TID2013 database. The bar plots in Figure 9 correspond to the
median SROCC values of 1000 train-test trials on TID2013 database. It is clear that BIQA-SC achieved
promising results on most commonly encountered distortion types. For several special distortion types,
such as local block-wise distortion (LBD), contrast change (CC), change of color saturation (CCS),
and comfort noise (CN), BIQA-SC still achieved satisfying results and outperformed state-of-the-art
algorithms. This indicates that the proposed method is capable of evaluating the image quality for
various distortion types.

Table 4. Median SROCC comparison of the competing algorithms on individual distortion types
in LIVE [28] and CSIQ [29] databases. The distortion types include additive Gaussian white noise
(WN), JPEG compression (JPEG), JPEG2000 compression (JP2K), Gaussian blur (GB), fast fading (FF),
pink Gaussian noise (PGN), and global contrast decrements (GCD). The best two algorithms are
highlighted in boldface.

Algorithm
LIVE CSIQ

JP2K JPEG WN GB FF WN JPEG JP2K PGN GB GCD

DIIVINE [12] 0.911 0.911 0.977 0.955 0.911 0.909 0.883 0.883 0.941 0.889 0.886
BLIINDS-II [13] 0.916 0.886 0.959 0.910 0.834 0.776 0.778 0.839 0.828 0.882 0.685
BRISQUE [15] 0.913 0.908 0.973 0.960 0.869 0.861 0.850 0.834 0.868 0.863 0.447
ILNIQE [17] 0.872 0.863 0.980 0.916 0.833 0.851 0.875 0.894 0.877 0.830 0.518
GMLOG [19] 0.917 0.930 0.981 0.934 0.918 0.704 0.864 0.878 0.881 0.872 0.833
BIQA-SC-I 0.928 0.918 0.982 0.967 0.908 0.934 0.891 0.849 0.926 0.907 0.886
BIQA-SC-II 0.939 0.911 0.983 0.966 0.915 0.931 0.888 0.908 0.939 0.916 0.919
BIQA-SC 0.938 0.913 0.985 0.973 0.915 0.943 0.911 0.924 0.967 0.940 0.950

Figure 9. Median SROCC results of 1000 train-test trials on TID2013 database [39] for DIIVINE [12],
BRISQUE [15], GMLOG [19], BIQA-SC-I, BIQA-SC-II and BIQA-SC. There are 24 distortion types in
TID2013 [39] database, including additive Gaussian noise (AGN), additive noise in color components
is more intensive than additive noise in the luminance component (NC), spatially correlated noise
(SN), masked noise (MN), high frequency noise (HFN), impulse noise (IN), quantization noise (QN),
Gaussian blur (GB), image denoising (IDN), JPEG compression (JPEG), JPEG2000 compression (JP2K),
JPEG transmission errors (JPTE), JPEG2000 transmission errors (J2TE), non eccentricity pattern noise
(NEPN), local block-wise distortions of different intensity (LBD), mean shift (MS), contrast change
(CC), change of color saturation (CCS), multiplicative Gaussian noise (MGN), comfort noise (CN),
lossy compression of noisy images (LCN), image color quantization with dither (ICQD), chromatic
aberrations (CA), and sparse sampling and reconstruction (SSR).
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3.4. Impact of Varying the Number of NFMs

As shown in Table 5, we examined how the number of the NFMs used in BIQA-SC would be
affected the performance. We denote BIQA-SC using n(n ∈ 1, 2, . . . , 5) NFMs as Mn. It can be seen that
better performance in terms of RMSE, SROCC, and PLCC is likely to be achieved if multiple NFMs
are used. However, the prediction performance does not improve too much when the number of the
NFMs is larger than 3 on most of the databases. To better analyze the difference between the BIQA-SC
using different numbers of the NFMs, we calculated the statistical significance between each two of
the Mn algorithms by conducting a t-test at 95% significance level between SROCC values of these
algorithms across the 1000 train-test iterations. The t-test results are shown in Table 6. The symbol 1
(−1) indicates that the algorithm in the row is statistically superior (inferior) to the algorithm in the
column, and 0 indicates that the two compared algorithms are statistically indistinguishable. Clearly,
M3, M4, and M5 were superior to M1 and M2 on nearly all databases, while M3, M4, and M5 achieved
better evaluation performance on different database. Considering the balance of performance and
computational cost, we use three NFMs in the proposed BIQA-SC.

Table 5. Median SROCC of BIQA-SC on six databases when using different numbers of NFMs, where
BIQA-SC using n(n ∈ 1, 2, . . . , 5) NFMs is denoted as Mn.

Metric K and L Metric LIVE TID2013 CSIQ MD1 MD2 WIQCD

M1 2 SROCC 0.949 0.880 0.927 0.945 0.950 0.644
PLCC 0.951 0.889 0.919 0.959 0.955 0.655
RMSE 5.008 0.576 0.106 5.500 5.607 15.436

M2 2,4 SROCC 0.953 0.900 0.932 0.952 0.958 0.660
PLCC 0.956 0.903 0.923 0.965 0.963 0.676
RMSE 4.772 0.533 0.103 5.093 5.084 15.209

M3 2,4,6 SROCC 0.956 0.906 0.928 0.957 0.964 0.682
PLCC 0.958 0.909 0.917 0.969 0.968 0.696
RMSE 4.623 0.522 0.106 4.775 4.765 14.63

M4 2,4,6,8 SROCC 0.956 0.900 0.927 0.956 0.966 0.672
PLCC 0.958 0.904 0.918 0.968 0.970 0.689
RMSE 4.638 0.532 0.107 4.813 4.616 14.989

M5 2,4,6,8,10 SROCC 0.952 0.906 0.930 0.958 0.963 0.669
PLCC 0.955 0.908 0.921 0.969 0.968 0.685
RMSE 4.812 0.522 0.105 4.751 4.719 14.911

Table 6. Statistical significance comparison of M1, M2, M3, M4, and M5 with t-test between SROCC
values of Mn algorithms on six databases, where BIQA-SC using n(n ∈ 1, 2, . . . , 5) NFMs is as Mn.

LIVE TID2013 CSIQ
Metric M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

M1 0 −1 −1 −1 −1 0 −1 −1 −1 −1 0 −1 0 0 −1
M2 1 0 −1 −1 0 1 0 −1 0 −1 1 0 1 1 0
M3 1 1 0 1 1 1 1 0 1 0 0 −1 0 0 −1
M4 1 1 −1 0 1 1 0 −1 0 −1 0 −1 0 0 −1
M5 1 0 −1 −1 0 1 1 0 1 0 1 0 1 1 0

MD1 MD2 WIQCD
Metric M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

M1 0 −1 −1 −1 −1 0 −1 −1 −1 −1 0 −1 −1 −1 −1
M2 1 0 −1 −1 −1 1 0 −1 −1 −1 1 0 −1 0 0
M3 1 1 0 1 0 1 1 0 −1 −1 1 1 0 0 0
M4 1 1 −1 0 −1 1 1 1 0 1 1 0 0 0 0
M5 1 1 0 1 0 1 1 1 −1 0 1 0 0 0 0
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3.5. Cross Database Experiments

Cross-database experiments were also carried out to investigate the generalization ability
and robustness of BIQA-SC. In the experiments, we used one database as training set and the
other databases as testing sets. In Table 7, we list the SROCC of the competing algorithms when
these algorithms were trained on LIVE database and tested on the other databases. The two
best algorithms are highlighted in boldface. It can be seen in Table 7 that the performance of all
the competing algorithms decreased significantly compared with their performance on individual
databases. The main reason is that there are only five distortion types in LIVE database while the testing
databases contain many other types of distortions, such as contrast distortion, multiple distortions,
color distortions, etc. Moreover, only TID2013 and LIVE databases contain partial images of the
same scene. The images in other databases are completely different from those in LIVE database.
Nevertheless, BIQA-SC still performed well compared to the competing algorithms. Besides, we
also trained the competing algorithms on the entire TID2013 database, and tested them on the
other databases. The experimental results shown in Table 8 demonstrate that BIQA-SC is database
independent and outperformed the other competing algorithms.

Table 7. The SROCC of the competing algorithms when trained on LIVE database [28]. The best two
algorithms are highlighted in boldface.

Algorithm TID2013 CSIQ MD1 MD2 WIQCD

DIIVINE [12] 0.414 0.569 0.772 0.655 0.357
BLIINDS-II [13] 0.319 0.535 0.731 0.355 0.143
BRISQUE [15] 0.457 0.472 0.733 0.224 0.332
GMLOG [19] 0.468 0.547 0.563 0.309 0.218
BIQA-SC 0.469 0.497 0.741 0.451 0.323

Table 8. The SROCC of the competing algorithms when trained on TID2013 database [39]. The best
two algorithms are highlighted in boldface.

Algorithm LIVE CSIQ MD1 MD2 WIQCD

DIIVINE [12] 0.680 0.456 0.679 0.447 0.170
BLIINDS-II [13] 0.681 0.426 0.660 0.098 0.085
BRISQUE [15] 0.740 0.499 0.521 0.472 0.280
GMLOG [19] 0.812 0.591 0.541 0.019 0.121
BIQA-SC 0.748 0.584 0.719 0.475 0.160

3.6. Computational Cost Comparison

Table 9 lists the average feature extraction cost of an image in LIVE database for all competing
algorithms. All the results were measured in seconds with Matlab2014b implementation on a desktop
computer with 2.7 GHz Intel Core i7 CPU and 16GB RAM. As shown in Table 9, the three most efficient
algorithms were BRISQUE [15], GMLOG [19], and the proposed BIQA-SC, while DIIVINE [12] and
BLIINDS-II [13] had the highest cost. The main reason for such big differences in computational cost is
that the image transformation and feature extraction strategies adopted by the competing algorithms
are quite different. In DIIVINE [12], the scale-space-orientation decomposition of the distorted
image and the GGD fitting procedure for each wavelet subband slow down the approach greatly.
The block-based method BLIINDS-II [13] needs to perform local discrete cosine transformation and
complex feature extraction strategies for each block, which will inevitably lead to high computational
complexity. Different from DIIVINE [12] and BLIINDS-II [13], BRISQUE [15] is based on spatial
domain, thus it does not need to perform complex image transformation. Similarly, GM-LOG [19]
only employs gradient and Laplacian Gaussian features, which costs very short computational time.
Compared with BRISQUE and GM-LOG algorithms, the proposed BIQA-SC that extracts statistics from
multiple NFMs, DFMs, and color space needs a little more computational time, but the performance of
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BIQA-SC is greatly improved. In short, the experimental results in Tables 2–9 prove that BIQA-SC has
the best performance on all the databases and has a relatively low computational cost, which makes
BIQA-SC more suitable for practical application.

Table 9. Comparison of computation time on LIVE [28] database. The best two algorithms are
highlighted in boldface.

Metric DIIVINE [12] BLIINDS-II [13] BRISQUE [15] ILNIQE [17] GMLOG [19] BIQA-SC

Time (s) 19.24 70.70 0.09 4.90 0.07 0.82

4. Conclusions

In this paper, we extract statistical features from the spatial and the color domains to form a
powerful quality-aware feature vector for image quality pooling. By using the multi-window method,
the proposed BIQA-SC algorithm can better characterize the degradations in the distorted images
from receptive fields of different sizes. Quantifying the correlation between adjacent coefficients
in the multiple NFMs, and measuring the difference between different NFMs can also improve the
prediction accuracy of the image quality. The color entropy and the low-level gradient statistics
extracted from the HSV color space make BIQA-SC capable of evaluating the quality more accurately
for a variety of distorted images. Experimental results on LIVE, TID2013, CSIQ, MD1, MD2, and
WIQCD databases show that BIQA-SC can considerably improve the prediction accuracy on a broad
range of synthetically distorted images as well as authentically distorted images. BIQA-SC performs
much better than state-of-the-art algorithms with relatively low computational cost, which makes it
more suitable for practical applications.
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