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Featured Application: A double-column self-centering pier fused with shear links is proposed as
a novel structure, which can improve the seismic resilience of bridges. Corresponding simplified
FE model and theoretical model are developed. The research outcome of this work can guide the
design of the innovated pier.

Abstract: A double-column self-centering pier fused with shear links is a novel structure developed
to reduce residual deformation and facilitate post-earthquake repair. With this novel structure,
the seismic resilience of bridges can be improved, and the reliability of lifeline infrastructure can be
ensured. This paper presents the proposed pier configuration and investigates the mechanical behavior
of the pier. A simplified finite element model is established to develop the lateral force-displacement
relationship under cyclic loading. Additionally, a theoretical model based on the matrix displacement
method and the virtual work principle is proposed to calculate the lateral force-displacement
skeleton curve. The rationality and reliability of the theoretical model are validated by the satisfactory
agreement observed between the numerical and theoretical results. Furthermore, a series of parametric
analyses are conducted to discuss the effects of key parameters. The outcomes of this work can serve
as a reference for further development of the design method for the innovated pier.
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1. Introduction

In recent years, enhancing the seismic resilience of structures, communities, and even nations
has received extensive attention in the field of earthquake engineering [1,2]. In 2015, the importance
of promoting the resilience of new and existing critical infrastructure (water, transportation,
telecommunications infrastructure, etc.) was emphasized at the Third United Nations World Conference
on Disaster Risk Reduction [3]. These critical infrastructures play a crucial role in post-earthquake
relief and reconstruction. However, previous post-earthquake surveys have shown that conventional
reinforced concrete piers dissipate seismic energy through plastic hinge zones, which results in residual
drifts and irreparable damage. For instance, after the 1995 Japan Kobe earthquake, approximately 100
reinforced concrete piers, with residual drift ratios exceeding 1%, were demolished [4].

Based on the lessons learned from previous earthquakes, several pier systems have been proposed
to satisfy the requirements of seismic resilient structures [5,6]. Pioneering research on rocking bridge
columns incorporating unbonded posttensioning was conducted by Mander and Cheng [7]. Later,
Hewes and Priestley experimentally investigated the response of segmental bridge piers with unbonded
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prestress tendons [8]. Subsequently, experimental and analytical studies were performed by many
researchers to demonstrate the potential advantages of self-centering piers [9–13]. Corresponding
results confirmed that unbonded posttensioning could effectively mitigate residual deformation.
However, despite the desirable self-centering capacity, the energy dissipating capacity is less than
satisfactory. Therefore, a hybrid system, a posttensioned structure assembled with additional energy
dissipation, is proposed [14]. This system results in a flag-shaped hysteretic relationship. Many studies
have been conducted for further validation of the superiority of the hybrid pier system and the
development of various solutions for energy dissipation. In previous studies, the energy dissipating
capability of the hybrid system was enhanced in two ways: (1) Embedding internal energy dissipation
(ED) devices consisting of mild steel bars or shape-memory-alloy bars with unbonded length at the
critical joint [15–22]. Obviously, such internal ED devices are not readily replaceable if damaged after a
major earthquake, which increases the difficulty of post-earthquake restoration. (2) Installing external
ED devices (viscous energy dissipation, steel dissipater, aluminum bars, etc.) around the bottom
of the piers [20,23–28]. However, the limited installation space for external ED devices restricts the
development of energy dissipation performance. Moreover, the external ED devices located at the
bottom of the piers are more vulnerable to other natural and artificial factors, such as corrosion from
water, impacts from vehicles, or floating debris.

Replaceable shear links have been successfully applied in buildings [29–32] and bridges [33–38]
as sacrificial elements to dissipate seismic energy. Inspired by previous research, this work proposes a
novel pier system, which combines the advantages of both self-centering piers and replaceable shear
links. As shown in Figure 1, the pier system relies on unbonded prestress steel strands to provide
self-centering forces and adopts shear links between the columns to act as reformative external ED
devices. The shear link consists of two parts, i.e., the replaceable part and the pre-embedded part,
which are connected by high strength grade 12.9 bolts. During a severe earthquake (E2 level earthquake
defined in Chinese Code [39], the largest acceleration in the lateral acceleration response spectrum
is 0.34 g), inelastic deformation is concentrated in the replaceable part of the shear link, while the
damage of key components (bent cap, columns, footing, unbonded prestress steel strands, and the
pre-embedded parts of the shear links) can be prevented. In addition, the bolted connection ensures
that the damaged parts can be easily and quickly replaced, which will accelerate post-earthquake
restoration. Furthermore, the interval between the columns provides adequate space for the shear
links. Therefore, sufficient energy dissipation of the proposed pier system can be guaranteed.
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Figure 1. Configuration of the double-column self-centering pier with shear links.
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Although the double-column self-centering pier with shear links has outstanding seismic
performance theoretically, the nonlinear behavior and design method of the pier have not been
systematically studied. An experimental study of the entire pier system is costly and difficult.
Consequently, in this work, a finite element (FE) model of the proposed pier is developed, and the
mechanical behavior of the proposed double-column self-centering pier fused with shear links is
investigated. The investigation is mainly focused on the application of the innovated pier in urban
viaducts, the piers of which are not slender. To calculate the lateral force-displacement skeleton
curve, a theoretical model based on the matrix displacement method and the virtual work principle is
established. The outcomes of this study can benefit the further development of the design method of
the innovated pier.

2. FE Model and Validation

The FE method is adopted to study the performance of the pier. Although experimental work
on the proposed double-column self-centering pier fused with shear links does not exist, relevant
experiments on self-centering piers and shear links, which are the key components of the proposed
pier, can be found in the literature. Consequently, the experimental results of the key components are
adopted to validate the rationality of the proposed model.

2.1. Modeling Method

To improve simulation efficiency, a two-dimensional FE model was built to determine the mechanism
of double-column self-centering piers with shear links, using the general-purpose FE program MSC.Marc
(MSC Software Corporation, CA, USA, 2007) [40]. A sketch illustrating the main model components is
shown in Figure 2. Four-node quadrilateral plane stress elements are employed to simulate the columns,
bent cap, and footing; 2-node truss elements with initial stress are employed to simulate the unbonded
prestress steel strands. According to previous relevant investigations [8–14], during the rocking process
of the self-centering pier, the footing, bent cap, and prestress steel strands remain elastic, with limited
damage in the contact area at both ends of the column. Therefore, the aforementioned parts are set as
elastic. In addition, the shear links are modeled by elasto-plastic springs as presented in Section 2.2.2.
Furthermore, the contact between the columns and the bent cap/footing is simulated by the contact
function provided by MSC.Marc [40]. The elements in the potential contacting parts of the columns
and bent cap/footing are defined as two separated sets of contact bodies. During the iteration process,
each node in the contact bodies is repeatedly checked. The program calculates the contact tolerance
according to the size of elements. If a node is within the contact tolerance, it will be considered to be in
contact with other elements. In a tangential direction of the contact interface, an approximation of the
Coulomb friction model (i.e., arctangent model) is adopted to represent the relationship between the
normal stress and tangential stress at the contact interface.
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Figure 2. Numerical model of the double-column self-centering pier with shear links.

2.2. Validation of Modeling Method

2.2.1. Self-Centering Pier

The experiment conducted by Guo et al. [17], as shown in Figure 3, is employed to validate the
modeling of the self-centering component. The specimen has a height of 1700 mm with a 400 × 400 mm
cross section. Grade C60 concrete (Chinese concrete grade, measured uniaxial unconfined compressive
strength f c = 52.7 MPa, measured elastic modulus Ec = 3.8 × 104 MPa) is adopted, while 20 mm
diameter hot rolled ribbed steel bars (measured yield strength f y = 349 MPa, measured elastic modulus
Es = 202 GPa) and 15.2 mm diameter strands (ultimate strength f PT = 1860 MPa, elastic modulus
Es = 195 GPa) are used for the internal ED bars and unbonded prestress steel strands, respectively.
The average prestress of each strand is 78.26 kN.
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Figure 3. Self-centering pier experiment (redrawn from [17]). (a) Design details of the Specimen
(unit: mm); (b) load pattern. ED, energy dissipation.
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The FE model is illustrated in Figure 4. The aforementioned modeling method of the columns,
the bent cap, the footing, and the unbonded prestress steel strands in Section 2.1 has been adopted.
Note that the unbonded parts of the internal ED bars are modeled by elasto-plastic 2-node truss
elements, while the bonded parts share nodes with the concrete elements. The initial stress of the
unbonded prestress steel strands is set as 431.3 MPa according to the test results.
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The hysteretic curves are shown in Figure 5. The comparison of experimental results and
simulation results demonstrates the validity of the self-centering pier model.
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2.2.2. Shear Links

The hysteretic model proposed by Lu et al. [41], as shown in Figure 6, is adopted to simulate the
nonlinear behavior of the shear links between the columns. The prominent features of Lu’s model [40]
are as follows: (1) The yielding, hardening and softening behavior are considered, as well as the
pinching and strength and stiffness deterioration effects under cyclic loading; (2) different positive and
negative yield strengths can be represented. Previous research [41–43] indicates that the hysteretic
model can efficiently simulate the nonlinear behavior of various components, especially a successful
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application in the simulation of shear links in tall buildings [42]. Consequently, the hysteretic model is
adopted in this study to simulate the shear links between columns.
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Figure 6. Hysteretic model to simulate shear links [41].

The model is mainly controlled by the following parameters: (1) C, a dimensionless accumulated
hysteretic energy dissipation parameter that reflects the capacity of resisting strength degradation
caused by the cyclic loading; (2) γ, a parameter representing the pinching effect; (3) ω, a parameter
representing the position of the end point of slip; (4) αk, a parameter defining unloading stiffness; (5) K0,
initial stiffness; (6) Fy, yield strength; (7) η, hardening ratio; (8) ηsoft, softening ratio; and (9) α, the ratio
of peak strength to yield strength. These parameters can be divided into two categories: parameters
(1)–(4), namely, the backbone curve parameters, describing the force-displacement backbone curve
under the cyclic lateral load; and parameters (5)–(9), namely, the hysteretic parameters, specifying
the hysteretic rules. The experiment conducted by Ji et al. [44] is employed to calibrate the hysteretic
parameter values.

When C = 1500, γ = 0.9, ω = −0.01, αk = 0, the hysteretic curve of the shear link simulated using
the hysteretic model [41] agrees well with the curve obtained from the experiment, which is shown in
Figure 7.
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3. Performance of Double-Column Self-Centering Piers with Shear Links under Quasi-Static
Cyclic Loading

An FE model of the double-column self-centering piers with shear links was built based on the
modeling method presented in Section 2. Each column has a height of 3.00 m with a 2.00 m × 2.00 m
cross section, and the clear distance between the columns is 3.00 m. The steel strand in each column
has a total area of 15424 mm2 and an initial stress of 1395 MPa. Further, a vertical concentrated
load of 3.08 × 104 kN is applied at the bent cap to simulate the superstructure gravity. Grade C60
concrete (Chinese concrete grade, standard uniaxial unconfined compressive strength f c = 38.5 MPa,
standard elastic modulus Ec = 3.6 × 104 MPa) is adopted, while 15.2 mm diameter strands (ultimate
strength f PT = 1860 MPa, elastic modulus Es = 195 GPa) are used for unbonded prestress steel strands.
The initial stiffness and yield strength of the adopted shear link are 6.0×105 kN/m and 1.4 × 106 kN,
respectively. The responses of the piers under quasi-static cyclic loading are discussed in this section.

3.1. Rocking Process

Figure 8 illustrates the rocking process of the pier. The column-footing interface remains closed
until the lateral force has increased to the force at the imminent gap opening. Then, the columns begin
to rotate about the compression toe. Large nonlinear rotations can be sustained at the column-footing
and column-cap beam joints with minimal structural damage. However, high stress may develop in
the contact area during joint gap opening; the maximum stress is 179 MPa, at the edge of the contact
area. Therefore, the joints should be strengthened (e.g., by installing steel jacketing) to avoid local
failure and corresponding posttensioning losses.
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Figure 9 shows the coordinates of the column axis while the pier rocks at the maximum lateral
displacement (the centroid of the bottom column section is the coordinate origin). As shown, the column
axis is approximately a straight line. The rigid-body motion significantly affects the displacement.
Consequently, the deformation of each column under the action of lateral loads can be neglected.
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3.2. Influence of Shear Link Arrangement

As shown in Figure 10, a uniformly distributed spring model (Figure 10a) and an integrated
spring model (Figure 10b) were built to compare the influence of the shear link arrangement. Note that
the spring in the integrated spring model is a superposition of the springs in the uniformly distributed

spring model, i.e., kISM =
n∑

i=1
kUDSMi and FyISM =

n∑
i=1

FyUDSMi, where kISM and FyISM represent the initial

stiffness and yield strength of the spring in the integrated spring model, respectively, while kUDSMi and
FyUDSMi represent the initial stiffness and yield strength of each spring in the uniformly distributed
spring model, respectively; n is the number of springs.
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Comparing the results of the two models (Figure 11), it can be concluded that the shear link
arrangement has little impact on the hysteretic performance of the hybrid bridge pier. The reason for
this phenomenon is that the relative shear displacement of each shear link is subjected to the identical
rigid-body motions of the columns. Therefore, the analysis and discussion of this study are based on
the integrated spring model. Note that the integrated spring model is more convenient for computing,
while uniformly distributed shear links will be adopted in reality to significantly reduce the difficulties
in construction.
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The comparison in Section 2.2 validates the rationality of the FE model. To make computing and
design more convenient, a theoretical model is preferred. Consequently, this section will develop a
theoretical model for the proposed pier system.

4.1. Theoretical Model Parameters

The parameters in the theoretical model of the double-column self-centering piers with shear
links can be divided into the following five groups:
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4.2. Piers with Shear Links

4.2.1. Pre-Rocking State

Before rocking, the pier can be simplified as the model in Figure 13a, in which the bent cap is
considered an undeformable rigid body. During this period, the columns and shear link deform under
the lateral force F. Due to the symmetry of the frame, the calculation model can be further simplified as
shown in Figure 13b.
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In the simplified model, the geometric parameters l and x are half of the pier height and half of
the distance between the column axes, respectively:

l =
h
2

(1)

x =
b + d

2
(2)

The matrix displacement method is used. The corresponding global coordinate system is
established and the information of the nodes and elements is shown in Figure 13b. There are six
independent nodal displacements: the angular displacements of nodes B(u3) and E(u6); the horizontal
linear displacements of nodes B(u1), C(u4), D(u4), and E(u5); and the vertical linear displacement of
node B(u2). Obviously, u4 can be considered the lateral displacement at the top of the pier ux, i.e.,
ux = u4. Since elements 1O and 2O in Figure 13b refer to the column, A1, I1, and E1 are the area, inertia
moment, and elastic modulus of each column, which are expressed as

A1 = Acol = b2 (3)

I1 = Icol =
b4

12
(4)

E1 = Ec (5)

where Ec is the elastic modulus of concrete.
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It is reasonable to assume that the shear stiffness of the shear links is equal to the bending stiffness
of element 4O in Figure 13b, and the shear links do not bear compressive axial force. Consequently,
Equations (6) and (7) can be obtained as

12E2I2

b3 = kSL (6)

E2A2 → 0 (7)

The element stiffness matrix of elements 1O and 2O (Figure 13b) in the local coordinate system can
be expressed as:

K
e
1 = K

e
2 =



E1A1
l 0 0 −

E1A1
l 0 0

0 12E1I1
l3

6E1I1
l2 0 −

12E1I1
l3

6E1I1
l2

0 6E1I1
l2

4E1I1
l 0 −

6E1I1
l2

2E1I1
l

−
E1A1

l 0 0 E1A1
l 0 0

0 −
12E1I1

l3 −
6E1I1

l2 0 12E1I1
l3 −

6E1I1
l2

0 6E1I1
l2

2E1I1
l 0 −

6E1I1
l2

4E1I1
l


(8)

Transforming the element stiffness matrix of elements 1O and 2O in Figure 13b from the local
coordinate system to the global coordinate system, it is determined that

Ke
1 = Ke

2 =



12E1I1
l3 0 −

6E1I1
l2 −

12E1I1
l3 0 −

6E1I1
l2

0 E1A1
l 0 0 −

E1A1
l 0

−
6E1I1

l2 0 4E1I1
l

6E1I1
l2 0 2E1I1

l

−
12E1I1

l3 0 6E1I1
l2

12E1I1
l3 0 6E1I1

l2

0 −
E1A1

l 0 0 E1A1
l 0

6E1I1
l2 0 2E1I1

l
6E1I1

l2 0 4E1I1
l


(9)

For element 4O in Figure 13b, the local coordinate system is in accordance with the global coordinate
system. Thus, its element stiffness matrix in the global coordinate system can be expressed as

Ke
4 = K

e
4 =



E2A2
x 0 0 −

E2A2
x 0 0

0 12E2I2
x3

6E2I2
x2 0 −

12E2I2
x3

6E2I2
x2

0 6E2I2
x2

4E2I2
x 0 −

6E2I2
x2

2E2I2
x

−
E2A2

x 0 0 E2A2
x 0 0

0 −
12E2I2

x3 −
6E2I2

x2 0 12E2I2
x3 −

6E2I2
x2

0 6E2I2
x2

2E2I2
x 0 −

6E2I2
x2

4E2I2
x


(10)

By merging the entries of the element stiffness matrices into the structural stiffness matrix based on
the sequence number of the displacements, and superimposing the entries with the same displacement
sequence, the structural stiffness equation can be obtained as

Fe = Ke∆e (11)
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where

Ke =



24E1I1
l3 + E2A2

x 0 0 −12 E1I1
l3 −

E2A2
x 0

0 2E1A1
l + 12E2I2

x3
6E2I2

x2 0 0 6E2I2
x2

0 6E2I2
x2

8E1I1
l + 4E2I2

x −
6E1I1

l2 0 2E2I2
x

−
12E1I1

l3 0 −
6E1I1

l2
12E1I1

l3 0 0

−
E2A2

x 0 0 0 E2A2
x 0

0 6E2I2
x2

2E2I2
x 0 0 4E2I2

x


(12)

is referred to as the structural stiffness matrix. In addition, the forces and displacements in the global
coordinate system can be expressed as:

Fe =
{

0 0 0 Fx
2 0 0

}T
(13)

∆e = {u1 u2 u3 u4 u5 u6 }
T

= {u1 u2 u3 ux u5 u6 }
T (14)

These equations can be solved to determine the relationship between the lateral load and lateral
displacement at the top of the pier:

Fx =
12(2A1E1

2I1
2x3 + 3E2I2lE1I1

2 + 3A1E2I2lE1I1x2)

l2(3A1E2I2l2x2 + 12E2I1I2l2 + 8A1E1I1lx3)
ux (15)

Substituting Equations (1)–(7) into Equation (15) yields:

Fx =
32E2

cb5(b + d)3 + 2EckSLhb6 + 24EckSLhb4(b + d)2

3kSLh4(b + d)2 + kSLh4b2 + 16Ech3b(b + d)3 ux (16)

4.2.2. Rocking State

According to the observation in Section 3.2, under the action of lateral loads, the deformation of
each column can be neglected, with only the rigid-body displacements of the superstructure, bent cap,
and columns remaining.

As shown in Figure 14, ∆PT is the elongation of unbonded steel strands; ∆ss and ∆col are the rising
height of the superstructure and pier, respectively; ∆SL is the relative shear displacement between the
ends of the shear link; and ux is the lateral displacement at the top of the pier. The relationship between
the above displacements and the rotation angle of the column can be directly obtained based on the
principle of displacement compatibility:

∆PT(θ) = 2b sin
θ
2

(17)

∆ss(θ) = b sinθ− h(1− cosθ) (18)

∆col(θ) =
b sinθ− h(1− cosθ)

2
(19)

∆SL(θ) = (b + d) sinθ (20)

ux(θ) = b(1− cosθ) + h sinθ (21)
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Before the stress of the unbonded steel strands reaches the ultimate strength, the force provided
by the unbonded steel strands, FPT (θ) is

FPT(θ) = EPTAPT
∆PT(θ)

h
+ FPT0 (22)

Assuming that the constitutive model of the shear links is perfectly elasto-plastic with yield
strength Fy, the shear force at the ends of the shear link, FSL(θ), is

FSL(θ) =

{
kSL∆SL(θ) ∆SL < ∆SLy

Fy ∆SL ≥ ∆SLy
(23)

where ∆SL is the relative shear displacement between the ends of the shear link when the shear link yields.
According to the principle of the virtual work, the total work done by the applied forces and

the inertial forces of a structure in equilibrium equals zero for any virtual displacement. Therefore,
Equation (24) is obtained as

Fx(θ)
dux

dθ
= 2FPT(θ)

d∆PT

dθ
+ FSL(θ)

d∆SL

dθ
+ Wbeam

d∆ss

dθ
+ 2Wpier

d∆col

dθ
(24)

where dux
dθ , d∆PT

dθ , d∆SL
dθ , d∆ss

dθ , and d∆col
dθ are the virtual displacements along the directions of applied lateral

force, the prestress in the steel strands, the shear force at the ends of the shear link, the superstructure
gravity, and the column gravity, respectively, which can be derived from Equations (17)–(21).

d∆PT

dθ
= b cos

θ
2

(25)

d∆ss

dθ
= b cosθ− h sinθ (26)

d∆col

dθ
=

b cosθ− h sinθ
2

(27)

d∆SL

dθ
= (b + d) cosθ (28)
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dux

dθ
= b sinθ+ h cosθ (29)

Substituting Equations (25)–(29) into Equation (24) yields:

Fx(θ) = 2FPT(θ)
b cos θ2

b sinθ+h cosθ + FSL(θ)
(b+d) cosθ

b sinθ+h cosθ+

Wss
b cosθ−h sinθ
b sinθ+h cosθ + Wcol

b cosθ−h sinθ
b sinθ+h cosθ

(30)

4.3. Piers without Shear Links

If there are no shear links between the columns, Equations (16) and (30) are degenerated as:

Fx =
2Ecb4

h3 ux (31)

Fx(θ) = 2FPT(θ)
b cos θ2

b sinθ+ h cosθ
+ Wss

b cosθ− h sinθ
b sinθ+ h cosθ

+ Wcol
b cosθ− h sinθ
b sinθ+ h cosθ

(32)

where all parameters have been described previously.

4.4. Model Validation

In this section, the aforementioned equations to calculate the lateral force-displacement skeleton
curve are validated by the FE simulations of the double-column self-centering piers with and without
shear links. The FE models are built based on the modeling method presented in Section 2, and the
corresponding parameters are listed in Table 1.

The theoretical and FE results of the double-column self-centering pier with shear links are
shown in Figure 15, while the results of the double-column self-centering pier without shear links
are shown in Figure 16. The skeleton curve calculated by using the theoretical model consists of
four parts. Curves OA and AB refer to the pre-rocking state and rocking state in the positive lateral
loading condition, respectively, while curves OC and CD refer to the pre-rocking state and rocking
state in the negative lateral loading condition, respectively. The results derived from the theoretical
models are in accordance with the results from the FE models. However, during the pre-rocking state,
when the lateral displacement approaches the critical point between the pre-rocking and rocking states,
the stiffness of the theoretical model is greater than the stiffness of the FE model. This occurs is because
the columns are modeled as rigid bodies in the theoretical model. However, the deformation of the
column ends will result in decreased stiffness. Further, comparing Figures 15 and 16, it can be seen
that the shear links between columns endow the pier with a preferable energy dissipation ability.

Table 1. Parameters in finite element (FE) models.

Parameters Pier with Shear Links Pier without Shear Links

Geometrical dimensions

Height of columns, h 10.0 m
Cross section of columns, Acol 2.0 m × 2.0 m
Distance between columns, d 3.0 m

Area of steel strands, APT 12,737.8 mm2

Material properties

Elastic modulus of concrete, Ec 3.6 × 104 MPa
Axial compressive strength of

concrete, f c
38.5 MPa

Elastic modulus of steel strands, EPT 1.95 × 105 MPa
Ultimate strength of steel strands, f PT 1860 MPa

Gravitational forces
Gravity of superstructure, Wss 3.08 × 104 kN

Gravity of columns, Wcol Ignored

Shear links
Initial stiffness of shear links, kSL 1.6 × 104 kN/m /
Yield strength of shear links, FySL 2.0 × 104 kN /

Other Initial prestress of steel strands, FPT0 1.54 × 104 kN
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5. Parametric Analysis

Considering that the dimensions of the pier are usually controlled by the construction space and
normal loads, such as gravity and vehicles, only parameters related to shear links and steel strands
are discussed in this section. Further, the parametric analysis is conducted on the basis of parameters
listed in Table 1. In other words, when a specified parameter is studied, the other parameters in Table 1
remain unchanged.

5.1. Influence of Initial Stiffness of Shear Links (kSL)

The hysteretic curves of the double-column self-centering pier with shear links, when the initial
stiffness of the shear links increases from 8000 kN/m to 24,000 kN/m with an increment of 4000 kN/m,
are shown in Figure 17. The initial stiffness of shear links only has a small influence on the initial
stiffness and unloading stiffness of the pier, which is negligible.
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Figure 17. Influence of the initial stiffness of shear links on the hysteretic curve of the double-column
self-centering pier with shear links.

5.2. Influence of Yield Strength of Shear Links (FySL)

The hysteretic curves of the double-column self-centering pier with shear links, when the yield
strength of the shear links increases from 10,000 kN to 30,000 kN with an increment of 5000 kN,
are shown in Figure 18. The yield strength of the shear links has little influence on the stiffness of the
pier but has a notable influence on the energy dispassion and the residual displacement. When the
yield strength of shear links increases, the energy dissipation capacity of the pier improves significantly.
Meanwhile, the residual displacement becomes larger.

Figure 18. Influence of the yield strength of shear links on the hysteretic curve of the double-column
self-centering pier with shear links.

5.3. Influence of Initial Prestress of Steel Strands (FPT0)

When the initial prestress of steel strands increases from 0.77 × 104 kN to 3.08 × 104 kN with an
increment of 0.77 × 104 kN, the hysteretic curves of the double-column self-centering pier both with
and without shear links are shown in Figure 19. For both piers, the initial prestress of steel strands
mainly affects stiffness during the rocking process. The bigger the initial prestress is, the larger the
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rocking stiffness of the pier is. Further, the initial prestress of the steel strands can efficiently reduce the
residual displacement.Appl. Sci. 2019, 9, x 18 of 21 
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Figure 19. Influence of the initial prestress of steel strands on the hysteretic curve. (a) Double-column
self-centering pier with shear links; (b) double-column self-centering pier without shear links.

6. Conclusions

A double-column self-centering pier with shear links was proposed to improve the seismic
resilience of bridges. A corresponding FE model was established, and a theoretical model was
developed to calculate the pier lateral force-displacement skeleton curve. Moreover, a series of
parametric analyses were conducted to determine the effects of key parameters. The following
conclusions can be drawn:

1. The prestressed steel strands provide the proposed pier with a stable self-centering ability, which
efficiently reduces the residual displacement. Additionally, the rocking behavior effectively
prevents the development of plastic hinges in the columns of conventional reinforced concrete
piers. Furthermore, the shear links between columns guarantee the pier has a preferable energy
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dissipation ability. Therefore, the proposed pier can be used to improve seismic resilience with
the remarkable features mentioned above.

2. The results of the FE model indicate that, for the short piers, it is reasonable to neglect the
deformation of each column when the pier rocks. The integrated spring model and the uniformly
distributed spring model show almost the same hysteretic performance. These two observations
are the basis of the theoretical model.

3. The results derived from the theoretical models show good agreement with the results from the
FE models. In this case, the theoretical model based on the matrix displacement method and the
virtual work principle can be used for future analysis of the innovated pier.

4. According to the parametric analyses, the influence of the initial stiffness of the shear links can
be neglected. By enhancing the yield strength of shear links, the energy dissipation capacity
of the pier can be improved but the residual displacement will increase. Further, the bigger
the initial prestress is, the larger the rocking stiffness of the pier is and the smaller the residual
displacement is.
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