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Abstract: The rendezvous process is considered a key operation that allows a secondary user
(SU) to access an unused authorized spectrum in cognitive radio networks (CRNs). Most existing
works focused on fast guaranteed rendezvous without considering a sophisticated jamming attack
environment. In this paper, I propose a fast and robust asynchronous rendezvous scheme that can
improve robustness against jamming attacks under symmetric asynchronous environments in which
all SUs have the same available channels. Unfortunately, in CRNs, each SU can have a different
number of available channels due to their relative position to primary nodes (PUs). Therefore, I extend
my fast and robust asynchronous rendezvous scheme (FRARS) to a general asymmetric scenario
while preserving robustness against jamming attacks. I derive the maximum rendezvous time (MTTR)
of my new algorithm and the upper bound of the expected TTR (ETTR) and compare it with the
state-of-the-art algorithms such as jump-stay (JS) and Enhanced jump-stay (EJS). My numerical results
show that the performance of the proposed technique is better than that of JS and EJS in terms of
MTTR and ETTR. Also, the performance will be more significant when there are security concerns
about a sophisticated jamming attack.

Keywords: cognitive radio networks (CRNs); jamming attack; blind rendezvous; channel-hopping (CH)

1. Introduction

Unlicensed spectrum bands that can be used without complying with the regulations applicable
to licensed services have already become globally overcrowded. In contrast, large portions of the
licensed spectrum bands are severely underused as shown in federal communications commission
report [1]. To overcome this problem, a method has been widely used in which a secondary user (SU)
can use an authorized spectrum that is not in use opportunistically without interfering with primary
users (PUs). Cognitive radio networks (CRNs) have been recognized as a promising paradigm to
improve the spectrum efficiency of wireless communications [2–4]. Devroye et al. [3] highlight some
of the recent information theoretic limits, models, and design of these promising CRNs. Liang et al. [2]
provide a systematic overview of CRNs and communications by looking at the key functions of the
physical, medium access control, and network layers involved in a CR design and how these layers
are crossly related. In CRNs, a pair of SUs wishing to communicate with each other must establish
a link, i.e., two SUs must simultaneously exchange handshake information on a common channel
and this process is called the rendezvous process. Most existing works [5,6] focus on implementing
a rendezvous process by using dedicated common control channel (CCC) for the sake of simplicity.
However, CCC is probably occupied by a PU that is an incumbent license holder of a frequency band,
and maintaining a CCC may result in a bottleneck problem as well as creating a single point of failure.
Therefore, I study a different scheme to rendezvous without using a centralized controller. In this
approach, each SU uses a channel-hopping (CH) sequence with guaranteed rendezvous during the
CH sequence. This process is known as blind rendezvous. In most CH algorithms, time is divided
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into slots of constant size, and the number of time slots required for two SUs to achieve a rendezvous
after all SUs start the rendezvous process is defined as rendezvous time (TTR). If a pair of SUs achieve
successful rendezvous on the same channel at the same time, they can exchange control messages and
select one of the commonly available channels to start data transmission. The MTTR and the ETTR are
two important metrics commonly used to evaluate performance of proposed CH schemes.

In CH algorithms, each SU in the CRN periodically senses the spectrum of the PU to determine
the available channels for the rendezvous process. Each SU can have a different set of channels because
geographic locations of SUs are different. If all SUs have the same available channels, this is called a
symmetric system, otherwise asymmetric system, i.e., different SUs have different numbers of available
channels. There has been much work in the literature to guarantee blind rendezvous, but most work
focuses on symmetric scenarios due to time synchronization constraints. Moreover, few of those works
consider security attacks such as jamming. One of the most notable works, as addressed in a recent
survey paper [7], is the jump-stay (JS) rendezvous algorithm [8]. The same author revises the original
configuration and suggests an improved jump-stay (EJS) algorithm [9] to improve performance for
the asymmetric scenario. It is known that the EJS is one of the best blind rendezvous algorithms
for CRNs based on non-deterministic CH sequences and the guaranteed rendezvous times for both
symmetric and asymmetric models. The basic idea in both JS and EJS algorithms is to generate CH
sequences based on jump and stay patterns to ensure blind rendezvous without time synchronization.
These schemes can be applied to the rendezvous of multi-user and multi-hop scenarios. Nevertheless,
those are significantly vulnerable to a hostile environment, i.e., the CH sequences can be easily detected
and jammed by the channel-detecting jamming attack (CDJA) [10]. This paper analyzes the limitations
of JS and EJS by revisiting the CDJA and propose a fast and robust asynchronous rendezvous scheme
(FRARS) to overcome those limitations. I also include a theoretical analysis as well as extensive
simulations under CDJA to demonstrate that the proposed technique is superior to other recently
proposed methods, including JS and EJS.

The remainder of this paper is organized as follows. The following section reviews related tasks in
the CRN. In Section 3, I present well-known CH schemes such as JS and EJS as well as channel-detecting
jamming attack model. Section 4 presents my proposed FRARS for both symmetric and asymmetric
systems. The numerical results and evaluations are described in Section 5. Section 6 is the conclusion
of the paper.

2. Related Work

Liu et al. [7] provides a comprehensive review of CRN existing rendezvous algorithms and
categorizes those algorithms into two groups—centralized and decentralized. In a centralized
system [11,12], a centralized controller manages the rendezvous of all SUs in the networks.
Guerra et al. [13] introduced a systematic construction of common channel-hopping rendezvous
strategy to guarantee that every node should be able to rendezvous in all common available channels.
However, these algorithms have limitations discussed in the previous section. In a decentralized
system, each SU attempts rendezvous without any help from a controller. Recently, many studies
have focused on decentralized rendezvous system without using common control channel, i.e.,
blind rendezvous. A typical method of blind rendezvous is the CH technique. The taxonomy of
rendezvous algorithms [7,14] shows three categories for blind rendezvous; random algorithms,
synchronous algorithms, and asynchronous algorithms. The asynchronous algorithms can be
further classified into two sub-categories—a symmetric model and an asymmetric model. A purely
random [15] or an improved random algorithm [16] provide a trivial CH algorithm where SUs
rendezvous by chance. However, these random algorithms cannot guarantee a bounded TTR. Both
synchronous and asynchronous algorithms provide guaranteed rendezvous. Several synchronous
algorithms are proposed with an assumption of global time synchronization [17–19]. Bahl et al. [17]
introduced a Slotted Seeded Channel Hopping to increase the capacity of an IEEE 802.11 network
and Krishnamurthy et al. [18] proposed a deterministic approach in which each SU can dynamically
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calculate a common set of channels globally. Bian et al. [19] introduced two quorum-based CH
methods (M-QCH and L-QCH) that can guarantee rendezvous between time-synchronized SUs. These
synchronous systems are usually unfeasible for blind rendezvous and the impact of a jamming attack
can be significant.

Most of the recently proposed algorithms [20–25] consider asynchronous scenarios without
time synchronization. DaSilva and Guerreiro [20] proposed a generated orthogonal sequence (GOS)
algorithm that uses interspersed permutation channels to guarantee rendezvous. Theis et al. [21]
introduced modular clock and modified modular clock algorithms in which each SU generates
its CH sequence from pre-defined modulo operations. Liu et al. [22] proposed a ring walk (RW)
algorithm by using the idea of velocity. Thus, the rendezvous is achieved when the SU with
lower velocity is caught by the SU with higher velocity. Yang et al. proposed two significant
algorithms, namely deterministic rendezvous sequence (DRSEQ) [23] and channel rendezvous
sequence (CRSEQ) [24], which provide fast asynchronous rendezvous under symmetric and
asymmetric models, respectively. The performance of CRSEQ is good under the asymmetric model
but it does not perform well under the symmetric model. Pu et al. [25] designed an efficient dynamic
rendezvous algorithm when the status of the channels varies dynamically for both synchronous
and asynchronous users. Among the rendezvous algorithms that are applicable to asymmetric
scenario, the JS [8] and EJS [9] are known to have the overall best performance. However, most of the
aforementioned algorithms including the JS and EJS are significantly vulnerable to a sophisticated
jamming attack. In this paper, I propose a FRARS algorithm to overcome the vulnerability problem
by employing a randomized permutation technique while preserving fast guaranteed rendezvous. I
also derive the upper bounds on MTTR and ETTR of the FRARS for both symmetric and asymmetric
systems.

3. Preliminary

This section presents two well-known modular-based asymmetric rendezvous schemes, JS and
EJS algorithms. I then introduce a CDJA model that demonstrates how effectively the JS and EJS
algorithms are attacked. I use all the terminologies defined in Lin’s work [8].

3.1. Jump-Stay Algorithm

Lin et al. [8] proposed the JS algorithm that provides a guaranteed rendezvous for both symmetric
and asymmetric models in the CR networks. The considered CRN consists of K SUs (K ≥ 2), who
coexist with several PUs. The licensed spectrum can be divided into M non-overlapping channels
C = {c1, c2, ..., cM}, where ci denotes the ith channel. Let Ck ⊆ C denote the set of channels available
to User k(k = 1, 2, ..., K) and let G be the number of common available channels of the users, i.e., G =

|⋂K
i=1 Ci|. In the symmetric model, all SUs have the same available channels, i.e., Ci = Cj(1 ≤ i, j ≤ K).

For simplicity, I assume Ci = Cj = C. Each SU generates its CH sequences in rounds and each round
consists of a jump pattern and a stay pattern. To generate the sequences in a round, each SU selects
three parameters: P which is the smallest prime number greater than M, an index i0 from [1, M] for the
starting channel index and a non-zero number r0 from [1, M] for the step length parameter. Using this
information, each round takes 3P time slots that consists of two jump patterns for 2P time slots and
one stay pattern for P time slots. In the jump pattern, the SU starts with index i0 and keeps jumping in
[1, P] with step length r0 by using the modulo operations on P. In the following stay pattern, the SU
just stays on channel r0 which is the step length of this round. Every round (i.e., every 3P time slots),
step length r0 is changed to the next number in [1, M] in round-robin fashion. The starting index i0 will
remain the same in all rounds for the symmetric case but for the asymmetric scenario it will be changed
to the next number in every 6MP time slots. The JS algorithm guarantees the rendezvous and performs
well under both the symmetric and asymmetric models. The MTTR values of JS for symmetric and
asymmetric models are 3P and 6MP(P− G), respectively. Figure 1 shows a rendezvous example of
the JS scheme, where M = 4 and P = 5. User 1 starts its sequence with i1 = 2 at t = 1 and jumps to
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the next channel with the step length r1 = 1. The other user can start at any time within 3P time slots
because there is no time synchronization, thus User 2 starts its sequence with i2 = 3 at t = 5 and jumps
to the next channel with the step length r2 = 2. Therefore, at time slot t = 8 the two users jump to the
same channel, Channel 4.

Figure 1. An example of symmetric JS Algorithm.

3.2. Enhanced Jump-Stay Algorithm

The same authors improve the performance of JS by proposing the EJS algorithm that can reduce
the upper bounds of both MTTR and ETTR values from O(P3) to O(P2) under the asymmetric model,
while keeping the same order of rendezvous times of the symmetric case. Unlike JS, EJS’s jump pattern
lasts 3P time slots, i.e., each round takes 4P time slots which consists of three jump patterns for 3P time
slots and one stay pattern for P time slots. In addition, the starting index i is randomly selected from
[1, P] and switched to the next number every round (4P time slots) in the round-robin fashion, while
the step length r remains the same in every round after randomly selecting from the available channels
for both symmetric and asymmetric models. Therefore, the channel c of the jump pattern is determined
as follows. c = ((i + t× r− 1) mod P) + 1 where c is the channel of time t = t mod 4P. If c is greater
than M, then it is remapped to [1, M] (i.e., c = ((c− 1) mod M) + 1 for c > M). For the asymmetric
model in EJS, additional replacement process is performed to increase the probability of rendezvous.
That is to say, if cj is the computed channel in the sequence of User k and it does not belong to Ck,
then it is replaced by ((j− 1) mod |Ck|) + 1)th channel in Ck. For example, given Ck = {c1, c3, c4} and
j = 5, since c5 does not belong to Ck, it is replaced by c3 (Here, ((j− 1) mod |Ck|) + 1) = 2 and c3

is the 2nd channel in Ck). Figure 2 illustrates an example rendezvous of the symmetric EJS system
where M = 4 and P = 5. The rendezvous process is very similar to the JS system, except the length
of one round of EJS is longer than that of the JS system. For the asymmetric scenario, two users’ CH
sequences under EJS scheme are shown in Figure 3 when M = 2 and P = 3 without substitution
process. User 1 as a sender has two available channels {c1, c2} and User 2 as a receiver has only one
available channel {c2}. Two different step lengths for User 1 are considered in this example. When the
step lengths of the sender are 1 and 2, the sender and receiver rendezvous at slot numbers 14 and 10,
respectively. The upper bounds of MTTR for symmetric and asymmetric models are proved to be 4P
and 4P(P + 1− G) time slots, respectively in Lin’s work [9].
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Figure 2. An example of symmetric EJS Algorithm.

Figure 3. An example of asymmetric EJS Algorithm.

3.3. Channel-Detecting Jamming Attack

To show the vulnerability of JS and EJS against a sophisticated jamming attack, I present a CDJA
model in this section. This jammer can dramatically decrease the probability of rendezvous for both JS
and EJS schemes. Since the EJS is an enhanced algorithm of the JS, I focus on how to determine the CH
sequence of a sender for EJS’s symmetric and asymmetric scenarios. Channel-detection jammers have
similar functions to a legitimate user, but assumes that it can listen on two channels at the same time by
using two transceivers. Although one listening-channel jammer can detect the CH sequences, it is much
more difficult and the cost of adding one more listening channel is very low. I also assume a normal
situation where a jammer is already waiting on the network before communication between the two
SUs begins. When there is no jamming attack, the symmetric EJS scheme guarantees that two SUs can
rendezvous in up to 4P time slots as described in the previous subsection. However, when the jammer
selects two channels and listens until the sender’s activity is detected, the jammer can find two channels
during P time slots and the step length must be able to be calculated. Therefore, the jammer can find
out all the remaining CH sequences after an average b (P+1)

2 c time slots. In other words, two SUs must

rendezvous within an average b (P+1)
2 c time slots in the CDJA attack situation. Thus, the rendezvous

probability will significantly decrease. For the asymmetric EJS system, the channel-detecting jammer
uses the replacement algorithm as well as modular-based properties. Also, I assume that jammers can
find the available channels of the sender by using spectrum-sensing techniques. When the jammer is
waiting for the sender’s signals, it selects two random listening channels among the sender’s available
channels. The jammer can then find two channels within the first P time slots and be able to compute
the step length in a similar way to the symmetric scenario. However, the calculated step length may
be incorrect because the detected channels can be either non-replaced or replaced channels. To verify
the step length, the jammer needs to listen on more channels to make sure the step length is correct.
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Since the initial channel i increases for consecutive rounds and the step length r is fixed in EJS, all
subsequent CH sequences can be easily calculated by the jammer. The detailed procedures of detecting
CH sequences for both symmetric and asymmetric scenarios are presented in Oh’s work [10].

4. Proposed Channel-Hopping Scheme

I propose a FRARS algorithm with robust performance against jamming attacks in symmetric and
asymmetric scenarios and derive the MTTR and ETTR of the proposed FRARS.

4.1. FRARS for Symmetric System

In the considered system, time is divided into equal slots and slots are numbered from 0.
The length of a slot is assumed to be the minimum time required for any two nodes to discover
each other and exchange the necessary information. Figure 4 describes my system model structure
that represents k slots difference asynchronous rendezvous scenario. The length of a node’s CH
sequence period is assumed to be 2M − 1 as will be addressed in the following. Thus, u =

{u0, u1, ..., ui, ..., u2M−2} is a CH sequence, where ui ∈ [1, M] represents the channel index in the
ith time slot of sequence u. Please note that the CH sequence changes every period. If I mark a slot
number as I and two CH sequences (u and v) are given as shown in Figure 4, I say that node A and B
rendezvous in the ith time slot on channel c when u{i=I mod 2M−1} = v{j=(I−k) mod 2M−1} = c, where
c ∈ [1, M]. In order words, any two nodes can rendezvous even though the misalignment distance of
their starting slots is k, which is referred to as k-shift rendezvous [23]. In my proposed scheme, if an SU
has data to transmit, it follows the transmit CH sequence; otherwise it follows the receive CH sequence,
i.e., the sender and receiver have different CH sequences. In every round of the sending CH sequence,
a random permutation of the available channels is used in the first M time slots, and the reverse order
of that random permutation excluding the last channel will be added in the next M− 1 time slots. Let
the first part of M time slots and the next part of M− 1 time slots denote permutation part and reversed
repetition part, respectively. If I denote the permutation part with R = {r0, r1, ..., ri, ..., rM−1}, where
ri ∈ [1, M], the sending CH sequence will be expressed as:

ui =

{
ri for 0 ≤ i ≤ M− 1

r2M−2−i for M ≤ i ≤ 2M− 2
(1)

The receiving CH sequence selects one random channel among M available channels and then
stays on that channel for one round. Figure 5 illustrates an example of a rendezvous in FRARS when
M is 3. The transmit CH sequence represents three rounds and the receive CH sequence represents two
rounds with k slots difference from the sender, i.e., there is k slots time difference between the sender
and receiver. The shaded slots in the transmit CH sequence represents the permutation parts, and the
rest of time slots represents the reversed repetition parts. For example, the sender visits channels 2 and
1 at slot numbers 3 and 4, which are in reverse order of slot numbers 0 and 1. Similarly the channel
indexes in the slots numbered 5 and 6 are reused in slot numbers 8 and 9, while the receiving CH
sequence randomly chose channel 1 in the first period and channel 3 in the second period. The shaded
time slot of the received CH sequence refers to the rendezvous.

first period 

k slots 

slot number 

node A 

node B 

0 1 k-1 2M-2 2M-1 2M 

u
0
 u

1
 u

k-1
 u

2M-2
 u

0
 u

1
 

second period 

v
0
 v

1
 v

2M-2
 k slots

first period second period

Figure 4. System model structure.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2 3 2 1 2 1 3 1 2 3 1 2 1 3 

1 1 1 1 1 3 3 3 3 3 

1 1 1 1 1 3 3 3 3 3 

1 1 1 1 1 3 3 3 3 3 

1 1 1 1 1 3 3 3 3 3 

1 1 1 1 1 3 3 3 3 3 

k=0 

k=1 

k=2 

k=3 

k=4 

slot number 

sender 

receiver 

Figure 5. Illustration of FRARS when the number of available channels is 3.

Theorem 1. Given M available channels, FRARS guarantees k-shift rendezvous for all k(= 0, 1, ..., 2M− 2)
so that any pair of sender and receiver must rendezvous within 2M− 1 slots.

Proof. For k = 0, the random permutation part (u0, u1, ..., uM−1) in a sending CH sequence is totally
overlapped with a receiving CH sequence, i.e., TTR ≤ M. For k = 1, the first time slot of the
permutation part is not overlapped with a receiving CH sequence, but the channel index u0 is reused
in the last time slot of the reversed repetition part (u0 = u2M−2). Therefore, the sender and receiver
CH sequences u and v rendezvous in the worst case on channel c when u2M−2 = v2M−3 = c, where c ∈
[1, M], i.e., TTR ≤ 2M− 2. For k = 2, in a similar way, the sender and receiver CH sequences u and
v rendezvous in the worst case on channel c when u2M−2 = v2M−4 = c, where c ∈ [1, M]. That is,
TTR ≤ 2M− 3. As the value of k increases, the upper bound of TTR decreases until the value of k is
equal to M− 1, where TTR ≤ M. For k = M, only M− 1 ending slots in the reversed repetition part
are overlapped with a receiving CH sequence. Hence, rendezvous can occur in the next M permutation
part of the second period, i.e., TTR ≤ 2M− 1. For k = M + 1, only M− 2 ending slots in the reversed
repetition part are overlapped, thus the next M permutation part of the second period is included in
TTR, i.e., TTR ≤ 2M− 2. The upper bound of TTR decreases until the maximum value of k = 2M− 2.
Therefore, given M available channels, the upper bound of TTR can be expressed as:

MTTR =

{
M for k = 0

2M− 1− (k mod M) for 1 ≤ k ≤ 2M− 2
(2)

Consequently, the upper bound of MTTR in FRARS is 2N-1.

Theorem 2. Given M available channels, ETTR of FRARS is not greater than 3
4 M + 1

4M .

Proof. For k = 0, since the random permutation part is totally overlapped with a receiving CH
sequence, rendezvous can happen in each time slot within the permutation part with probability 1/M,
i.e., ETTR is 1 1

M + 2 1
M + 3 1

M + ... + M 1
M = M+1

2 . For k = 1, rendezvous can happen in the beginning
M− 1 time slots of the receiving CH sequence (v0, v1, ..., vM−2) with probability 1/M and one more
rendezvous is possible in the last time slot of the reversed repetition part (u2M−2 = v2M−3) with
probability 1/M, i.e., ETTR is 1

M
(M−1)M

2 + 1
M (2M− 2). For k = 2, in a similar way, M− 2 time slots

(v0, v1, ..., vM−3) and two time slots (v2M−5, v2M−4) are possible rendezvous slots with probability
1/M, i.e., ETTR is 1

M
(M−2)(M−1)

2 + 1
M (2M− 3 + 2M− 4). Therefore, I can derive a generalized form

of ETTR 0 ≤ k ≤ M− 1 as follows:

ETTR =
(M− k)(M− (k− 1))

2M
+

∑k
i=1(2M− (k + i))

M
. (3)
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For k = M, rendezvous can happen in the overlapped M− 1 ending slots in the reversed repetition
part with probability 1/M, and one more rendezvous is possible in the next M permutation slots of the

second period with probability 1/M2, i.e., ETTR is 1
M

(2M−(k+1))(2M−k)
2 +

∑M−1
i=0 (2M−k+i)

M2 . For k = M+ 1,
in a similar way, rendezvous can happen in M− 2 ending slots with probability 1/M and two channels
can rendezvous in the next M permutation slots with probability 1/M2. Therefore, a generalized form
of ETTR for M ≤ k ≤ 2M− 2 can be expressed as:

ETTR =
(2M−(k+1))(2M−k)

2M
+

∑M−1
i=0 (2M−k+i)

M2 ×(k−M+1). (4)

To find an upper bound of ETTR, I rearrange Equations (3) and (4) as follows:

ETTR=

{
− k2

M + (1− 1
M )k + M+1

2 , 0 ≤ k≤M−1

− k2

2M+( 3
2−

1
M )k−(M2−4M+1

2M ), M≤ k≤2M−2
(5)

Since the second derivative of (5) is negative, the value of k for which the first derivative of
(5) with respect to k is equal to zero corresponds to a maximum value of ETTR, i.e., the maximum
value of ETTR for 0 ≤ k ≤ M− 1 is 3

4 M + 1
4M when k = M−1

2 , and the maximum value of ETTR for
M ≤ k ≤ 2M− 2 is 5

8 M + 1
2 when k = 3M−2

2 . Since I assume that the value of k is a positive integer
value as depicted in Figure 4, the maximum value of ETTR for 0 ≤ k ≤ M− 1 is equal to or greater
than the maximum value of ETTR for M ≤ k ≤ 2M− 2. Consequently, the upper bound of ETTR in
FRARS is 3

4 M + 1
4M .

4.2. FRARS for Asymmetric System

I extend the FRARS algorithm to a general asymmetric algorithm by allowing each SU to have
different available channels. When the geographical locations of the SUs are far, it is very likely that
each SU has different available channels because of their relative locations to PUs. Suppose that the
number of available channels for each sender and receiver are |m1| and |m2|, the total number of
channels is M, and the number of common available channels is G. The sender and receiver do not
know each other’s available channels, but at least one common channel is assumed to be available,
otherwise rendezvous is impossible. Each SU must take total M channels for each round of its CH
sequence, thus the length of one round is 2M − 1. In the first round of the receiver CH sequence,
the randomly selected one channel among m2 can rendezvous within 2M− 1 time slots; however, it
may not belong to m1. Then the rendezvous cannot be achieved. However, the receiver does not
have to consider unavailable channels that are not in m2, and the rendezvous can be guaranteed
within |m2| rounds of CH sequence, therefore the upper bound of MTTR for asymmetric system is
(2M− 1)(|m2|+ 1− G). When the rendezvous happens in the first round of receiver’s CH sequence,
in other words, the receiver selects one of the commonly available channels in the first round of CH
sequence, and the TTR value will be the same as the symmetric ETTR value ETTRsym = 3

4 M + 1
4M .

For the second-round and third-round rendezvous cases, the TTR values are (2M− 1) + ETTRsym and
(2M− 1)2 + ETTRsym, respectively. Therefore, the expected TTR value for the asymmetric model can
be computed as:

ETTRasym =
|m2|−G

∑
i=0

(
(2M− 1)i + ETTRsym

)
· 1
|m2|+ 1− G

(6)

where 1
|m2|+1−G is the probability of rendezvous of each round. This can be further simplified as

(2M−1)(|m2|−G)
2 + ETTRsym.

In the enhanced FRARS system, I also implement a replacement process to increase rendezvous
probability by replacing unavailable channels in the CH sequence with randomly selected available
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channels. In the EJS system, I investigate that the distribution of replacement channel selection is not
uniformly distributed, and hence the performance of the asymmetric EJS system can be degraded.
For example, suppose that M = {1, 2, 3, 4, 5}, m1 = {2, 4}, and G = {4}. Then, according to the
replacement algorithm, the unavailable channels 1, 3, 5 will be replaced by channel 2, thus the
rendezvous probability is not improved. In addition, it is very likely that the performance of the EJS
system can be degraded under a jamming attack.

To avoid this problem, I introduce a random-selection scheme for the replacement process in
the enhanced FRARS system, i.e., the unavailable channels are replaced with randomly selected
channels among the available channels. Using the same example as above, the unavailable channels
1, 3, 5 are replaced with randomly selected channels among m1 = {2, 4}. Consequently, the
probability of rendezvous will be enhanced by the replacement process. While the upper bound
of MTTR for asymmetric system will be the same, the ETTRasym value is decreased by that random
replacement scheme. Since the probability of rendezvous of each round, 1

|m2|+1−G , does not depend
on m1, the random replacement process can only affect ETTRsym value in the whole ETTRasym

value in (6). To compute the modified ETTRsym, I need to consider two different rendezvous cases:
case 1—rendezvous on a randomly selected replaced channel; case 2—rendezvous on a non-replaced
channel. Let PR denote the probability of case 1 and the ETTR values for each case are denoted as
ETTRcase1 and ETTRcase2, respectively. The probability PR simply represents the number of random
replaced channels over the whole one round time slots 2M − 1. However, the number of random
replaced channels can be either 2(M− |m1|) or 2(M− |m1|)− 1 according to whether the last channel
of the permutation part is included in the replaced channels. The probability of choosing M− |m1|
channels including the last channel of the permutation part out of M channels is M−1

MCM−|m1 |
, hence the

probability PR can be computed as:

PR =
(

1− M− 1

MCM−|m1|

)
· 2(M− |m1|)

2M− 1
+

M− 1

MCM−|m1|
· 2(M− |m1|)− 1

2M− 1
. (7)

Since the ETTRcase2 is the same as ETTRsym, I need to figure out ETTRcase1 to derive the final
ETTR value. If the random variable X is defined as a random independent sample extracted from m1,
then the probability of choosing one channel P{X = x} is 1

|m1|
for any x ∈ m1. Thus, the probability of

selecting the rendezvous channel is expressed as:

P{X = x} = G
|m1|

, ∀x ∈ G. (8)

Now, I denote the number of attempts at R before the first rendezvous occurs. Then the rendezvous
probability P{R = n} can be computed by:

P{R = n} = (1− p)n−1 p, (9)

where n is the n-th independent trial and p is the success probability, which is equal to P{X = x} = G
|m1|

.
Therefore, the expected TTR value for case 1 can be expressed as:

ETTRcase1 =
∞

∑
k=1

k(1− p)k−1 p =
1
p
=
|m1|

G
. (10)

Consequently, using (7) and (10) the modified ETTRsym can be determined by:

ETTRnew sym = PR · ETTRcase1 + (1− PR) · ETTRsym. (11)

If I take the lower bound of PR (i.e., PR = 2(M−|m1|)−1
2M−1 ) in order to simplify the expression of the

final ETTR, Equation (6) can be rewritten as (2M−1)(|m2|−G)
2 +

(
2(M−|m1|)−1

2M−1 · |m1|
G + (1− 2(M−|m1|)−1

2M−1 ) ·
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( 3
4 M + 1

4M )
)

. Numerical results show that the enhanced FRARS system outperforms the asymmetric
EJS system. In particular, when the G is small, the performance is more excellent. Moreover,
the robustness of my proposed scheme against jamming attack is significantly higher than that of the
EJS scheme.

5. Performance Evaluation

The considered network consists of two SUs and one channel-detection jammer that has similar
functions as a legitimate user. Each SU is assumed to be equipped with a single antenna and operates
in half-duplex mode, hence, no terminal can transmit and receive data simultaneously. However,
the jammer can listen on two channels at the same time by using two transceivers to show how to
quickly detect CH sequences of SUs. I implemented CH sequences for the sender and the receiver
according to the considered rendezvous algorithms and the CDJA model by using MATLAB [10], and
computed the TTR values and the rendezvous probabilities for the performance evaluation. I first
evaluated the effect of the CDJA model on the EJS rendezvous method since the EJS system is an
advanced system of the JS system. I then implemented the symmetric and asymmetric FRARS schemes
to show that it is more resistant to jamming attacks than EJS systems.

First, in a symmetric scenario, the mean time to rendezvous (TTR) without considering a jamming
attack is compared for both EJS and FRARS schemes. Figure 6 shows the mean TTR for both EJS and
FRARS schemes when the M increases from 4 to 100. For each available channel case, I repeated the
above process 1000 times to calculate the average TTR. The starting position of the receiver can be any
time slot of the sender’s sequence in the both EJS and FRARS schemes due to no time synchronization.
In both schemes, as the number of available channels increases, the average TTR tends to gradually
increase. The TTR result of symmetric EJS is about half value of M and is slightly better than that of the
symmetric FRARS. The results are consistent with the upper-bound ETTR of the symmetric EJS scheme
(i.e., 3

2 P + 3) [9] and the ETTR of the FRARS scheme (i.e., 3
4 M + 1

4M ) respectively.
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Figure 6. The average Time To Rendezvous (TTR) results for the symmetric FRARS and EJS schemes
with M = [4, · · · , 100].

Next, I compare the rendezvous probabilities for symmetric EJS and FRARS schemes under
jamming attacks using the CDJA model. For the EJS scheme, a single jammer can fully detect the
CH sequence of a sender within the P time slots and jams all remaining time slots; thus, I use two
jammers for the FRARS scheme in this experiment. As shown in Figure 7, the rendezvous probability of
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symmetric EJS scheme is significantly reduced due to the CDJA attack and is less than 10%. However,
the probability of a rendezvous in a symmetric FRARS system is almost stable and close to 100%.

For an asymmetric scenario, in Figure 8, I show the average TTR of the asymmetric FRARS as
well as the theoretical ETTR of FRARS mentioned in Section 4.2. The number of available channels
of the sender or receiver is denoted by mi and is half of the M (i.e., |mi|/|M| = 0.5) and |G| = 1 for
various M = {10, 20, · · · , 90, 100}. Figure 8 shows that the average TTR values for the asymmetric

FRARS are not significantly different from the theoretical ETTR (2M−1)(|m2|−G)
2 +

(
2(M−|m1|)−1

2M−1 · |m1|
G +

(1− 2(M−|m1|)−1
2M−1 ) · ( 3

4 M + 1
4M )

)
.
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Figure 7. The probability of rendezvous for the symmetric EJS and FRARS schemes under CDJA
attacks with M = [4, · · · , 100].
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Figure 8. The average TTR and the theoretical ETTR for the asymmetric FRARS scheme with |m1| =
|m2| = |M|/2, M = [4, · · · , 100], and G = 1.

As I have seen in the above symmetric scenarios, I now firstly analyze the asymmetric EJS
and FRARS schemes by comparing the mean TTRs without a jamming attack. In addition, I then
compare the rendezvous probability for both the asymmetric EJS and FRARS using the CDJA model.
Figure 9 shows the average TTRs for the asymmetric EJS and FRARS schemes when the M is
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{10, 20, · · · , 90, 100}, |m1| = |m2| = |M|/2, and G are 1 and 10. When the G is 1, the average
TTR of the asymmetric FRARS is about half of the asymmetric EJS algorithm. However, as the G
increases, the average TTRs of both asymmetric FRARS and EJS schemes are similar to each other.
Moreover, it is clear that the average TTRs for both EJS and FRARS schemes significantly decrease
when the G increases.

Finally, for the jamming attack in an asymmetric scenario, Figure 10 shows the rendezvous
probability of the asymmetric EJS and FRARS schemes under the CDJA attacks when the ratio
|mi|/|M| = 0.5 and M = {40, 100}. Under the CDJA attack, it is clear that the asymmetric EJS
system’s rendezvous probability decreases dramatically regardless of the value of M. As the number
of common channels increases to G = 20, the probability of rendezvous increases slightly, and it does
not exceed 15%. However, the rendezvous probability of the FRARS schemes for both the M = 40
and M = 100 cases are 100% within the maximum time slots that was the duration of the runs for this
experiment. The reason for this is that in FRARS scheme, since the repetition of the CH sequence of
the sender is independent of the previous repetition, it is almost impossible for the jammer to estimate
the CH sequence of the sender.

10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

The number of available channels

T
h

e
 a

v
e

ra
g

e
 T

im
e

 t
o

 R
e

n
d

e
zv

o
u

s
 (

T
T

R
)

 

 

Asymmetric EJS with G=1

Asymmetric FRARS with G=1

Asymmetric EJS with G=10

Asymmetric FRARS with G−10

Figure 9. The average Time to Rendezvous (TTR) for the asymmetric FRARS and EJS schemes with
|m1| = |m2| = |M|/2, M = {10, 20, · · · , 90, 100}, and G = {1, 10}.
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Figure 10. The probability of rendezvous for the asymmetric FRARS and EJS schemes under CDJA
attacks with |m1| = |m2| = |M|/2, M = {40, 100}, and G = {1 · · · 20}.

6. Conclusions

In this paper, I examined the vulnerability of the well-known asymmetric rendezvous schemes
such as JS and EJS under a sophisticated jamming attack. By using the CDJA model, the sender’s CH
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sequences in JS and EJS are fully detected and jammed completely after a certain time slot. To enhance
robustness under a sophisticated jamming attack, I proposed a FRARS algorithm that can apply the
randomized permutation technique in the CH sequences. Moreover, I showed that my proposed
FRARS algorithm can be easily extended to a general asymmetric scenario with replacement scheme.
The upper bounds of MTTR and ETTR of the FRARS for both symmetric and asymmetric systems are
derived, and my numerical results showed that the rendezvous probabilities for the symmetric and
asymmetric FRARS systems are close to 100% while the rendezvous probabilities for the EJS systems
are less than 15%. Therefore, my proposed FRARS algorithm vastly outperforms other asymmetric
rendezvous schemes under a sophisticated jamming attack.
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