
applied
sciences

Article

Model-Based 3D Pose Estimation of a Single RGB
Image Using a Deep Viewpoint Classification
Neural Network

Jui-Yuan Su 1,2 , Shyi-Chyi Cheng 1,*, Chin-Chun Chang 1 and Jing-Ming Chen 1

1 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 20224,
Taiwan; 20357001@mail.ntou.edu.tw or rysu@mail.mcu.edu.tw (J.-Y.S.); cvml@mail.ntou.edu.tw (C.-C.C.);
10557003@mail.ntou.edu.tw (J.-M.C.)

2 Department of New Media and Communications Administration, Ming Chuan University,
Taipei 11103, Taiwan

* Correspondence: csc@mail.ntou.edu.tw; Tel.: +886-935-128-226

Received: 29 March 2019; Accepted: 11 June 2019; Published: 18 June 2019
����������
�������

Featured Application: The image-based 3D scene modeling technique has potential applications
in robotics, augmented reality (AR), geodesy, remote sensing, 3D face recognition, drone or vehicle
navigation, and 3D printing.

Abstract: This paper presents a model-based approach for 3D pose estimation of a single RGB image
to keep the 3D scene model up-to-date using a low-cost camera. A prelearned image model of the
target scene is first reconstructed using a training RGB-D video. Next, the model is analyzed using
the proposed multiple principal analysis to label the viewpoint class of each training RGB image
and construct a training dataset for training a deep learning viewpoint classification neural network
(DVCNN). For all training images in a viewpoint class, the DVCNN estimates their membership
probabilities and defines the template of the class as the one of the highest probability. To achieve
the goal of scene reconstruction in a 3D space using a camera, using the information of templates,
a pose estimation algorithm follows to estimate the pose parameters and depth map of a single RGB
image captured by navigating the camera to a specific viewpoint. Obviously, the pose estimation
algorithm is the key to success for updating the status of the 3D scene. To compare with conventional
pose estimation algorithms which use sparse features for pose estimation, our approach enhances the
quality of reconstructing the 3D scene point cloud using the template-to-frame registration. Finally,
we verify the ability of the established reconstruction system on publicly available benchmark datasets
and compare it with the state-of-the-art pose estimation algorithms. The results indicate that our
approach outperforms the compared methods in terms of the accuracy of pose estimation.

Keywords: image-based 3D model; pose estimation; viewpoint classification; deep learning;
template-to-frame registration; multiple principal plane analysis

1. Introduction

1.1. Motivation

In the field of three-dimensional (3D) computer vision, researchers aim at quickly reconstructing
3D models from an image sequence due to its potential applications in robotics, augmented reality
(AR), geodesy, remote sensing, 3D face recognition, drone or vehicle navigation, and 3D printing.
Researchers in remote sensing provide two traditional 3D reconstruction techniques including airborne
image photogrammetry [1] and light detection and ranging (LiDAR) [2]. Both approaches reconstruct

Appl. Sci. 2019, 9, 2478; doi:10.3390/app9122478 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0680-8727
http://www.mdpi.com/2076-3417/9/12/2478?type=check_update&version=1
http://dx.doi.org/10.3390/app9122478
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2478 2 of 23

high quality 3D models; however, their acquisition cost is very high. With the advances of low-cost
3D data acquisition devices, researchers in computer vision have introduced many image-based
3D modeling techniques such as simultaneous location and mapping (SLAM) [3], multiview stereo
(MVS) [4–6], photo tourism [7], virtual reality modeling [8], and an RGB-D video-based method [9].
These methods can represent a real-world scene as a point cloud which consists of a large number
of points distributed in a 3D space to faithfully represent the intrinsic structure of the scene. A point
cloud representation can be used for 3D inspection as it renders detailed 3D environments accurately.

The cost of consumer-level color and depth (RGB-D) cameras, e.g., Microsoft Kinect, is low and
thus widely used to reconstruct 3D indoor scenes [10]. However, Kinect-like scanning devices fail in
capturing reliable depth images from outdoor scenes. On the other hand, high resolution RGB cameras
in an unmanned drone can faithfully capture the surrounding images of a real-world scene, which can
be used to build up the corresponding point cloud if the intrinsic and external camera parameters are
carefully calibrated [11]. To reconstruct a 3D scene model from an RGB video requires an accurate
pose estimation algorithm which augments the input video with an additional depth channel and
transforms each frame into an RGB-D image. Putting all of these together, an image-based scene model
can be reconstructed from an RGB video captured by a moving camera.

Image-based 3D scene modeling is predicated on the assumption that the observed imagery is
generated by joining multiple views of a 3D scene. Recently, with the depth or combined color and
depth imagery from a low-cost Kinect-like sensor as input data, state-of-the-art approaches focus on
the development of novel methods that can accurately reconstruct a 3D scene model from a multiview
RGB-D video. The template-based approach is an efficient method that transforms both depth and
color information in a limited set of view-specific templates into a 3D point cloud which renders
the appearance and geometric structures of a real-world scene [12]. Because the pose parameters
of each template are given in the model reconstruction phase, it provides a coarse estimation of
the pose parameters, i.e., the depth map and external camera parameters, of the input image in the
surveillance phase. Once the viewpoint class of the input image is determined, the coarse estimation
of pose parameters and depth map should be fine-tuned since location error exists in the viewpoint of
capturing the image using a conventional GPS-based drone navigation scheme. The fine-tuned camera
parameters and depth map of the current input RGB image are then used to compute the current
view-specific point cloud which can keep the 3D model up-to-date if the alignment error between the
current point cloud and the model point cloud is low. On the contrary, based on the assumption that
the status of the target scene is stationary, an abnormal event occurring in the scene under surveillance
is detected if the alignment error is large.

The performance of template-based 3D scene modeling is extremely good; however, it still has
some disadvantages [12,13]: (1) the online-learned templates are often spotty in the coverage of
viewpoints; (2) the pose output by template matching is only approximately correct since a template
covers a range of views around its viewpoint; (3) the presence of false positive in defining a specific
viewpoint. An optimization process of template selection can be used to deal with these difficulties,
though they remain as a challenge. Note that many methods have been developed to quickly create
high quality 3D models from RGB-D videos [9,12–17]. However, there is little research work that
models a 3D scene for video-based surveillance using an unmanned drone.

1.2. Related Works

In the field of computer vision, the research on digitizing real-world scenes has received significant
interest in the past decades due to the potential applications to daily life. For example, with the
advance of virtual and augmented reality techniques, real estate agents can digitize their properties
into 3D models for online browsing to achieve the goal of offering customers an immersive experience
of inspecting houses [12,18]. Digital museums offer a large number of users with internet access the
opportunity to visit them virtually anytime and anywhere [19]. Benefiting from the advance of low-cost
RGB-D cameras, multiview video research based on mining and analyzing the vast number of 2D frames

Appl. Sci. 2019, 9, 2478 3 of 23

for 3D model reconstruction has been greatly boosted [20–22]. Image-related 3D modeling techniques
require expertise and are time-consuming; thus, they remain as challenging research problems.

In computer vision, many approaches have been studied to recover the spatial layout of a scene
by acquiring surrounding images under different viewpoints. For each pixel in an image, accurate
depth information plays an import role in calculating the corresponding coordinates in a 3D space.
However, the cost to acquire high-quality depth information is often very high. A variety of approaches,
categorized into passive and active techniques, have been studied to obtain RGB-D data. Passive
techniques, such as stereoscopic camera pairs, derive the depth from disparity between images captured
from each camera, while active techniques use a range sensor to emit some kind of light to assist depth
calculation. The latter are recognized to offer accurate depth information from 3D surfaces. Currently,
light detection and ranging (LiDAR) is the main modality for acquiring RGB-D data. LiDAR systems
can be further divided into two classes: scanner-less LiDAR and scanning LiDAR [23]. The former
captures the entire scene with each laser or light pulse, whereas the latter uses a laser beam to capture
the scene in the fashion of point-by-point scanning. Low cost Kinect-like time-of-light (ToF) cameras,
which are used for many consumer-level RGB-D data acquisition, belong to the scanner-less LiDAR
class. ToF cameras are widely used in many indoor scene modeling applications because their operation
speed is quick for real-time applications. However, ToF cameras often produce inaccurate depth
information and thus suffer from the missing depth problem, which requires more efficient and reliable
algorithms to deal with [10,24].

In particular, laser pulses in a consumer-level ToF camera often fail in accurate depth information
calculation for outdoor 3D modeling. One of the approaches for depth calculation in outdoor
environments is called structure-from-motion [25,26], which automatically recover camera parameters
and 3-D positions of feature points by tracking discriminative features in a sequence of RGB images.
Under the assumption of an affine camera model, the well-known factorization algorithm [27] can
efficiently estimate a stable 3-D scene. However, traditional structure-from-motion algorithms cannot
compute reliable depth and camera parameters when the 3-D scene is not suitable for the affine camera
model. Moreover, these approaches cannot estimate reliable depth maps and camera parameters from
a small set of images. To deal with the difficulty, Sato et al. reconstruct a 3-D model of an outdoor
scene accurately by using a large number of input images captured from a moving RGB camera [28,29].
Based on similar algorithms, commercial software for 3D scene modeling using an unpiloted drone
equipped with a moving RGB camera is available [16].

A ToF camera arranges laser pulses for depth information calculation into a 2D array, so that depth
information can be represented as a depth image. An RGB-D image frame, which depicts a single view
of the target scene including both the color and the shape, is thus formed by aligning an RGB image
with the corresponding depth image. An image-based 3D model can be reconstructed by unprojecting
such RGB-D image frames to represent the target scene as a colored 3D point cloud [30]. One of the
advantages of representing a 3D scene as a point cloud is that there is a one–one correspondence
between points in the 3D space and pixels in the image space. Template-based 3D scene reconstruction
uses a set of RGB-D image templates to represent individual viewpoints of a scene, where the RGB
information in each template describes the scene’s visual appearance, and the depth image along with
the camera parameters offers the geometric structure [13,14,31]. Given a prelearned template-based
3D scene model, in the inspecting phase, we can perform a prelearned viewpoint classifier to locate
the viewpoint in which the 3D points are unprojected from a single test RGB image frame, which is
captured by an RGB camera in a navigated drone. However, for an uncalibrated camera with a known
focal length, at least two images are required to recover their poses [32]. The minimal number of images
required in recovering the pose of a calibrated camera is known as the perspective-3-point-problem
(P3P), which consists of three 3D-2D point correspondences. Many solutions are available for the
general case when more information is available [24–30]. When the environment in the scene can
be controlled, Rashwan et al. present an interesting approach that uses curvilinear features in focus
for registering a single image to a 3D Object [33]. However, the usage of hand-crafted features for

Appl. Sci. 2019, 9, 2478 4 of 23

recovering the pose of a single image is obviously not a trivial problem. In this work, our contribution
is to push beyond this limit by dealing with the case of an uncalibrated camera seeing one viewpoint
using deep learning. Once the depth image and the camera parameters of a single RGB image are
obtained, 3D point cloud registration algorithms [34–36] can be applied for viewpoint inspection in a
3D space.

1.3. Our Contributions

In this research, we reconstruct the image-based 3D model of a scene (or an object) from a set
of training RGB-D images in which templates corresponding to individual viewpoints of the scene
are carefully selected. For the potential application of scene surveillance in a 3D space, the moving
camera in a drone needs to be calibrated in advance for computing its intrinsic parameters. In the
phase of scene modeling, a structure-from-motion approach [11] is then used to compute the pose
parameters and depth maps of frames in the captured RGB video. This augments the input video with
an additional depth channel and transforms it into a video of four channels. To put these parameters
together, we can reconstruct a scene model by transforming individual templates into view-specific
3D point clouds which are further registered into a single model point cloud [37]. Based on the input
RGB-D video that captures pictures at all the viewpoints of the target scene, the proposed 3D scene
modeling makes contributions in four aspects. Firstly, we propose an approach based on the multiple
principal plane analysis (MPPA) to partition a point cloud generated from a training RGB-D image into
multiple super-points. For each super-point, we have a corresponding super-pixel in the associated
training RGB image. To represent a training RGB image as a list of visual features of individual
super-pixels, our approach then clusters the training feature vectors into a viewpoint codebook using
the well-known k-means clustering algorithm [38]. A training image is labeled as the i-th viewpoint if
its feature vector belongs to the i-th cluster of the viewpoint codebook. Secondly, a convolution neural
network for viewpoint classification is trained, which predicts the viewpoint of a single RGB image.
The deep neural network annotates the viewpoint classes of individual training RGB images in terms
of membership probability. In a viewpoint class, among all member images, the training image with
the highest probability is selected as the template of the viewpoint. Thirdly, for estimating the pose
parameters of an input RGB image, the RGB image and the corresponding viewpoint template are
aligned in terms of feature vectors of key-points (super-pixels). The pose estimation process is an
iterative loop which finely tunes the initial camera parameters and depth map by matching the input
frame against the most similar template in terms of visual features of super-pixels. Finally, taking
the different levels of 3D noise into account, we propose an iterative closest point (ICP) framework
which embeds the generalized Procrustes analysis [39] to decrease the interference of high noise on
the accurate calculation of a projection matrix describing how a 3D model projects onto a set of input
frames. Through template-to-frame registration, the up-to-date scene model can be reconstructed and
loaded in an augmented reality (AR) environment to facilitate displaying, interaction, and rendering
of an image-based AR application. To compare with conventional pose estimation algorithms which
use sparse features for pose estimation, our approach enhances the quality of reconstructing the 3D
scene point cloud using a RGB-D video. Lastly, we evaluate our system on open RGB-D benchmarks
provided by the Technical University of Munich [40]. Parts of our work are implemented based on
the open source project Open3D [37]. It provides some visualization functions for the 3D point cloud
process and achieves the basic function of the ICP algorithm.

2. Materials and Methods

2.1. Notation and Preliminaries

In this section, for the sake of illustration, we briefly summarize some relevant mathematical
concepts and notation, including the camera model, the representation of 3D rigid body transformation,
and the point cloud representation of 3D scene model [41,42]. Let pc = (xc, yc, zc, 1)t be the homogeneous

Appl. Sci. 2019, 9, 2478 5 of 23

coordinates of a 3D point in the camera coordinate system. The pinhole camera model unprojects the
3D point into the pixel pI = (u, v, 1)t in an image I using the following equation:

pI = π(pc) =

(
fxxc + cx

z(pI)
,

fyyc + cx

z(pI)
, 1

)t

(1)

where fx and fy are the x and y direction focal length, respectively; cx and cy are the principal point
offsets; z(pI) is the depth value of the 2D point pI. Obviously, given the depth value z(pI), the inverse
projection function π−1(·) projects a 2D point pI back to the 3D point pc:

pc = π−1
(
pI, z(pI)

)
= z(pI)

(
u− cx

fx
,

v− cy

fy
, 1

)t

(2)

Based on the theory of three-dimensional special orthogonal (SO(3)) Lie group, the pose of the
classical rigid body can be described by the camera motion model of six-degree-of-freedom (6DOF)
which constitutes an orthogonal rotation matrix R3×3 ∈ R3×3 and a translation vector t3×1 ∈ R3.
The 6DOF camera motion model also defines the rigid body transformation in a 3D space R3 and is
defined as a 4 × 4 matrix:

M4×4 =

[
R3×3 t3×3

0 1

]
(3)

The rigid body transformations in R3 form a smooth manifold and therefore are also a Lie group.
The group operator is the matrix left-multiplication. Thus, a 3D point pc in the camera coordinate
system can be transformed into a 3D point pw = (xw, yw, zw, 1)t in the world coordinate system by
matrix left-multiplication:

pw = ψ(M4×4, pc) = M4×4pc (4)

Inversely, the inverse function ψ−1(·) transformation pg back to pc:

pc = ψ−1(M−1
4×4, pw) = M−1

4×4

xw

yw

zw

1

 =
[

R−1
3×3 −R−1

3×3t3×1

0 1

]
xg

yg

zg

1

 (5)

Estimating the pose of a rigid scene means to determine its rigid motion in the 3D space from
2D images. Researchers in 3D reconstruction have shown that the colored point cloud representation,
which builds up one-to-one correspondence between points in the 3D space and pixels in the image
space is an efficient and effective approach to define the visual appearance and shape of a scene or
object. Accordingly, in this paper, we integrate the camera parameters and depth images of a video
that captures the RGB-D image frame from individual viewpoints of the scene under surveillance into
a colored point cloud to represent the geometry and texture of the scene.

A colored point cloud is a collection of points {pi}, each representing a color vector and a normal
vector at a particular position in a 3D space. Thus, a point in the cloud may be represented as a tuple:

pi = (xi, yi, zi, Ri, Gi, Bi, Di, ni,x, ni,y, ni,z) (6)

where x, y, and z describe the point position in the 3D space; R, G, and B describe the color components
of the point; D is the depth value of the point; nx, ny, and nz describe the normal vector at the position
pi. In the 3D modeling phase, the depth value of each pixel in the depth image of a RGB-D video can
be used to calculate the corresponding 3D point using Equations (2) and (4). Many pixels in different
depth frames may be mapped into the same points in the 3D scene because each image may contain
content with multiple views. This implies that a point in the point cloud may be attributed with
multiple color vectors {c1, c2, . . . , cm}, each obtained from different RGB images. To deal with the

Appl. Sci. 2019, 9, 2478 6 of 23

difficulty, we compute the color vector c of the point pi with the median of these overlapped color
vectors:

c = argmin
ci

∑
c j

di j, i, j = 1, . . . , m (7)

where di j =
√
(Ri −R j)

2 + (Gi −G j)
2 + (Bi − B j)

2 is the color distance between color vector ci and cj.
The normal vector at point pi implicitly describes the local shape of the target scene. An efficient

and effective approach should be designed to deal with the difficulty of a large number of points
comprising a point cloud. In this paper, we present an approach to compute reliable normal vectors of
individual points in the 3D scene, which will be discussed later.

2.2. Our Approach

Figure 1 shows our approach for 3D model updating using a single RGB image, starting from a
prelearned 3D scene model. We represent the geometry of the 3D model using a colored point cloud
with each point storing a color vector, a depth value and a normal vector. The convolutional neural
network (CNN) object detection [43] is pretrained to preprocess all the training RGB-D image frames
when the target scene to be modeled is an object. The effectiveness of the CNN object detector is
well recognized. This guarantees the accuracy of the resulting 3D object model. Here, we skip the
discussion of the details of the CNN; instead, we discuss the proposed 3D scene modeling algorithm
which is divided into two phases: the 3D scene modeling phase as shown in Figure 1a and the model
updating phase as shown in Figure 1b. In the 3D scene modeling phase, the 3D point clouds of
scene or objects are generated from an RGB-D video in the 3D point clouds generation step. We use
super-pixels generated by the proposed binary tree algorithm for image quantization. We cascade the
RGB and depth quantization images as the RGB-D feature representation. We also use the generated
super-pixels as ground truth for training neural networks for quickly generating RGB and depth
quantization images. RGB-D image quantization and feature representation steps are described in more
detail in Section 2.2.1. The RGB-D features are then clustered and we use the clusters as viewpoints’
descriptors. We also use the output of the trained auto-encoder as features for training deep viewpoint
classification neural network. Some of the input images are selected as the templates of viewpoints
for pose estimation. Finally, we join the point clouds generated from RGB-D image frames by using
the 3D point cloud registration algorithm [34] to produce the final 3D model. In the model updating
phase, the viewpoint annotation of an input image is obtained by the viewpoint classification neural
network. The deep features of the input image are then compared with the templates of the viewpoint
for estimating the pose. We use the estimated pose and the image to generate the new 3D point cloud
and register the new point cloud to the 3D model. Then, we can calculate the alignment error for event
reporting or updating the 3D model.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 23

image may contain content with multiple views. This implies that a point in the point cloud may be

attributed with multiple color vectors {c1, c2, …, cm}, each obtained from different RGB images. To deal

with the difficulty, we compute the color vector c of the point pi with the median of these overlapped

color vectors:

c arg min , , 1,...,
i

j

ij
c

c

d i j m
(7)

where 2 2 2() () ()ij i j i j i jd R R G G B B is the color distance between color vector ci and cj.

The normal vector at point pi implicitly describes the local shape of the target scene. An efficient

and effective approach should be designed to deal with the difficulty of a large number of points

comprising a point cloud. In this paper, we present an approach to compute reliable normal vectors

of individual points in the 3D scene, which will be discussed later.

2.2. Our Approach

Figure 1 shows our approach for 3D model updating using a single RGB image, starting from a

prelearned 3D scene model. We represent the geometry of the 3D model using a colored point cloud

with each point storing a color vector, a depth value and a normal vector. The convolutional neural

network (CNN) object detection [43] is pretrained to preprocess all the training RGB-D image frames

when the target scene to be modeled is an object. The effectiveness of the CNN object detector is well

recognized. This guarantees the accuracy of the resulting 3D object model. Here, we skip the

discussion of the details of the CNN; instead, we discuss the proposed 3D scene modeling algorithm

which is divided into two phases: the 3D scene modeling phase as shown in Figure 1a and the model

updating phase as shown in Figure 1b. In the 3D scene modeling phase, the 3D point clouds of scene

or objects are generated from an RGB-D video in the 3D point clouds generation step. We use super-

pixels generated by the proposed binary tree algorithm for image quantization. We cascade the RGB

and depth quantization images as the RGB-D feature representation. We also use the generated

super-pixels as ground truth for training neural networks for quickly generating RGB and depth

quantization images. RGB-D image quantization and feature representation steps are described in

more detail in Section 2.2.1. The RGB-D features are then clustered and we use the clusters as

viewpoints’ descriptors. We also use the output of the trained auto-encoder as features for training

deep viewpoint classification neural network. Some of the input images are selected as the templates

of viewpoints for pose estimation. Finally, we join the point clouds generated from RGB-D image

frames by using the 3D point cloud registration algorithm [34] to produce the final 3D model. In the

model updating phase, the viewpoint annotation of an input image is obtained by the viewpoint

classification neural network. The deep features of the input image are then compared with the

templates of the viewpoint for estimating the pose. We use the estimated pose and the image to

generate the new 3D point cloud and register the new point cloud to the 3D model. Then, we can

calculate the alignment error for event reporting or updating the 3D model.

RGB-D Image
Quantization

RGB-D Feature
Representation

RGB-D Template
Selection

Viewpoint
Clustering and

Annotation

Deep
Viewpoint

Classification
Neural

Network

Generation of 3D
Point Clouds Viewpoint

Classifier Training

RGB-D
Templates

… …… …

CNN Object
Detection (option)

3D Model
Reconstruction 3D Model

(a)

Figure 1. Cont.

Appl. Sci. 2019, 9, 2478 7 of 23
Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 23

Camera Pose
Estimation

3D Point Cloud
Calculation

3D Point Cloud
Registration

RGB-D
Templates

Viewpoint
Annotation

Deep
Viewpoint

Classification
Neural

Network
Event detection

& 3D Model
Updating

CNN Object
Detection
(option)

3D Model

Alignment
Error

Calculation

(b)

Figure 1. The workflow of the proposed 3D scene modeling for model updating using a single RGB

image: (a) the 3D scene modeling; (b) the model updating approach. The CNN object detector is an

optional operator which is used only when the target scene to be modeled is an object.

2.2.1. Template-Based 3D Scene Modeling

The core modules of the 3D scene modeling algorithm include the proposed 3D point cloud

modeling using the MPPA and the training of the deep neural networks for describing the content of

the scene model. In this section, we analyze these two algorithms in detail.

 3D Point Cloud Modeling Using MPPA

In this work, we propose a deep learning approach to train a viewpoint classifier that learns the

feature representation of each training RGB-D frame in a multiview video which captures the image

and depth information in different views of a 3D scene. The algorithm starts by performing the 3D

reconstruction algorithm, shown in Figure 2, to represent the scene as a 3D point cloud using the

training depth maps and the given camera pose parameters. The 3D scene reconstruction algorithm

is outlined in Algorithm 1.

… …

RGB
Images

… …

Multiple
Principal Plane
Representation
of Point Clouds

… …

3D Point Cloud
Registration

… …

Depth
Images

Camera Pose
Parameters

(a)

(b)

(c)

Figure 2. Example of 3D Scene Reconstruction using the dataset ‘freiburg1-plant’ [44]: (a) Multiview

RGB-D video; (b) the unprojecting result of each frame in (a) using the proposed multiple principal

plane analysis on the corresponding point cloud; (c) the unprojected image of the whole scene point

cloud which is generated by the 3D point cloud registration algorithm [34].

Figure 1. The workflow of the proposed 3D scene modeling for model updating using a single RGB
image: (a) the 3D scene modeling; (b) the model updating approach. The CNN object detector is an
optional operator which is used only when the target scene to be modeled is an object.

2.2.1. Template-Based 3D Scene Modeling

The core modules of the 3D scene modeling algorithm include the proposed 3D point cloud
modeling using the MPPA and the training of the deep neural networks for describing the content of
the scene model. In this section, we analyze these two algorithms in detail.

• 3D Point Cloud Modeling Using MPPA

In this work, we propose a deep learning approach to train a viewpoint classifier that learns the
feature representation of each training RGB-D frame in a multiview video which captures the image
and depth information in different views of a 3D scene. The algorithm starts by performing the 3D
reconstruction algorithm, shown in Figure 2, to represent the scene as a 3D point cloud using the
training depth maps and the given camera pose parameters. The 3D scene reconstruction algorithm is
outlined in Algorithm 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 23

Camera Pose
Estimation

3D Point Cloud
Calculation

3D Point Cloud
Registration

RGB-D
Templates

Viewpoint
Annotation

Deep
Viewpoint

Classification
Neural

Network
Event detection

& 3D Model
Updating

CNN Object
Detection
(option)

3D Model

Alignment
Error

Calculation

(b)

Figure 1. The workflow of the proposed 3D scene modeling for model updating using a single RGB

image: (a) the 3D scene modeling; (b) the model updating approach. The CNN object detector is an

optional operator which is used only when the target scene to be modeled is an object.

2.2.1. Template-Based 3D Scene Modeling

The core modules of the 3D scene modeling algorithm include the proposed 3D point cloud

modeling using the MPPA and the training of the deep neural networks for describing the content of

the scene model. In this section, we analyze these two algorithms in detail.

 3D Point Cloud Modeling Using MPPA

In this work, we propose a deep learning approach to train a viewpoint classifier that learns the

feature representation of each training RGB-D frame in a multiview video which captures the image

and depth information in different views of a 3D scene. The algorithm starts by performing the 3D

reconstruction algorithm, shown in Figure 2, to represent the scene as a 3D point cloud using the

training depth maps and the given camera pose parameters. The 3D scene reconstruction algorithm

is outlined in Algorithm 1.

… …

RGB
Images

… …

Multiple
Principal Plane
Representation
of Point Clouds

… …

3D Point Cloud
Registration

… …

Depth
Images

Camera Pose
Parameters

(a)

(b)

(c)

Figure 2. Example of 3D Scene Reconstruction using the dataset ‘freiburg1-plant’ [44]: (a) Multiview

RGB-D video; (b) the unprojecting result of each frame in (a) using the proposed multiple principal

plane analysis on the corresponding point cloud; (c) the unprojected image of the whole scene point

cloud which is generated by the 3D point cloud registration algorithm [34].

Figure 2. Example of 3D Scene Reconstruction using the dataset ‘freiburg1-plant’ [44]: (a) Multiview
RGB-D video; (b) the unprojecting result of each frame in (a) using the proposed multiple principal
plane analysis on the corresponding point cloud; (c) the unprojected image of the whole scene point
cloud which is generated by the 3D point cloud registration algorithm [34].

Appl. Sci. 2019, 9, 2478 8 of 23

Algorithm 1. Generation of 3D Scene Point Clouds.

Input: A multiview RGB-D video V characterized by n image frames, calibrated intrinsic camera parameter K
and frame-by-frame external camera parameters {Mi}

n
i=1.

Output: A set of local point clouds PL and a global point cloud PG. PL is a collection of point cloud Pi which is
generated from a single RGB-D image frame in the RGB-D video.PG is constructed by joining all the point
cloud Pi by using the 3D point cloud registration algorithm [34].
Method:
1. for each RGB image Ii and depth image Di in V do:
1.1 Compute the i-th local point cloud Pi using Equations (2) and (4).
1.2 Perform Algorithm 2 (discussed later) to construct the binary tree of Pi and order the leave nodes as a list of

super-points Γi =
{
SP j

}||Γi ||

j=1
using the depth-first tree traversal.

1.3 for each super-point SPj in Γi do:
1.3.1 Compute the center coordinates p j, mean color vector c j, mean depth value D j, and normal vector n j
of SPj.
1.3.2 Add the tuple (p j, c j, D j, n j) to the local point cloud Pi.
1.4 Add Pi to PL.
1.5 Join Pi into the global point cloud PG using the 3D point cloud registration algorithm [34].
Next, the major steps of the algorithm will be discussed in detail and analyzed.

The point cloud generated from Step 1.1 is first partitioned by the binary tree representation
to define the set of super-points (SPs) which will be used as the basic units for the RGB-D image
quantization and point cloud registration. We have two types of nodes in a binary tree: nonleave and
leave nodes. A nonleave node will be decomposed into two child nodes in the binary tree. A leave
node stores a small number of points that are basically located on a common 3D plane, i.e., the principal
plane. We perform the depth-first-traversal process to flatten the tree as a list of leave nodes, i.e., the
so-called super-points. Thus, each super-point is a leave node of the binary tree, consisting of a subset
of points that describes a principal plane of the point cloud. The shape of the point cloud is finally
represented as multiple principal planes (MPPs).

Let a nonleave node N contain a collection X of m points:

X =

x1, y1, z1

x2, y2, z2

· · ·

xm, ym, zm

 (8)

where (xi, yi, zi), i = 1 to m, are the 3D points of a cloud. To perform singular value decomposition (SVD)
on X, we obtain three eigenvalues λ1, λ2 and λ3 (λ1 ≥ λ2 ≥ λ3) and the corresponding eigenvectors v1,
v2 and v3. In this work, we define the following metric to estimate the score of flatness (SF) of the local
surface in N:

SF(N) =
λ3∑

i=1,...3 λi
(9)

Using (9), the following rule (R1) is applied to define the type of the node N:

R1(N) :
{

Leave, if SF(N) < γ
Non− leave, otherwise

(10)

where γ is a predefined threshold which controls the number of leave nodes of the resulting binary
tree. Furthermore, we define the plane with the eigenvector v3 = (v3,x, v3,y, v3,z), corresponding the
smallest eigenvalue of SVD(X), as the normal vector to be the principal plane (PP) of N, which can be
used to compute the distance from a point p = (x, y, z) to PP:

d(p) = v3,x(x− xN) + v3,y(y− yN) + v3,z(z− zN) (11)

Appl. Sci. 2019, 9, 2478 9 of 23

where p =
(
xN, yN, zN) =

∑
i=1,...,m pi/m be the center point of a node N which contains m points. Next,

based on (11), rule R2 decomposing a nonleave node N into two child nodes N1 and N2, is defined as:

R2(N) :
{

p ∈ N1, i f d(p) ≥ 0
p ∈ N2, otherwise

(12)

If N is a leave node, N is a super-point in which the v3 is stored as the normal vector of the node.
The proposed MPPA keeps a queue of nonleave nodes and removes each node in the queue one-by-one
for further decomposition. Thus, the input point cloud is finally represented as a list of leave nodes
(super-points) in which the shape of each super-point is modeled as its principal plane.

Let Pi =
{
(x j, y j, z j, R j, G j, B j, D j)

}mi

j=1
be the point cloud of the i-th RGB-D image frame of the

training video V. Initially, we store Pi into the root note of the binary tree and set the root node to be a
nonleave one. Next, based on keeping a list Li of nonleave nodes, we build up the resulting binary tree
Ti with the following summarized iterative algorithm.

Algorithm 2. Binary tree Representation of Point Cloud with the MPPA.

Input: A point cloud Pi =
{
(x j, y j, z j, R j, G j, B j, D j)

}mi

j=1
.

Output: A binary tree of Pi and the list of super-points Γi =
{
SP j

}||Γi ||

j=1
.

Method:

1. Initially, add Pi to the nonleave node list Li.
2. Remove a nonleave node N from Li.
3. Check the type of N using (10) and perform SVD to compute the principal plane of N.
4. if N is a leave node, store the eigenvector v3 into N, which is defined as the normal vector of the principal

plane in N.
5. if N is a nonleave node do: apply rule R2 to decompose N into two child nodes N1 and N2, which

are added to Li.
6. if Li is not empty, go to Step 2.
7. Perform the depth-first tree traversal on the binary tree Ti to order the leave nodes as a list of

super-points Γi =
{
SP j

}||Γi ||

j=1
.

As mentioned in Algorithm 1, the j-th super-point SPj in Pi is represented as the tuple (p j, c j,

D j, n j) in which n j is the normal vector of the principal plane that approximates the shape of the
points in SPj. For each point in SPj, we set the color and depth values of the corresponding pixel in
2D image to be c j and D j, respectively. This process generates the super-pixels of the input RGB and
depth images. Figure 3 shows an example of representing an RGB-D image as a point cloud, which is
processed to generate the super-point-based point cloud and super-pixel-based RGB-D images using
the proposed MPPA.

• 3D Scene Modeling Using Deep Learning

Recently, deep learning has been recognized to be a successful approach in the research of artificial
intelligence [43,45,46]. The key to the success of deep learning is the labeling of a large amount of
training data because the number of parameters to be trained in a deep learning neural network is
often very huge. However, the training data labeling cost is often so high and limits the applications of
deep learning in research areas wherein it is impossible to prepare a large amount of training data by
human annotation. To deal with the difficulty, for 3D scene modeling, we propose an unsupervised
deep learning neural networks which use the automatically labeled training data with the proposed
3D point cloud processing algorithms. The proposed learning approach can be categorized as the

Appl. Sci. 2019, 9, 2478 10 of 23

methodology of self-taught learning, which is recognized to be an effective method for training a
supervised-learning based neural network without using a tedious human annotated dataset.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 23

(a) (b) (c)

(d) (e) (f)

Figure 3. An example of the proposed binary tree representation algorithm for 3D reconstruction: (a,b)

are the original RGB and depth images, respectively; (c) is the 3D point cloud generated from (a,b);

(d,e) are the super-pixel representation of (a,b), respectively; (f) is the super-point representation of (c).

Recently, deep learning has been recognized to be a successful approach in the research of

artificial intelligence [43,45,46]. The key to the success of deep learning is the labeling of a large

amount of training data because the number of parameters to be trained in a deep learning neural

network is often very huge. However, the training data labeling cost is often so high and limits the

applications of deep learning in research areas wherein it is impossible to prepare a large amount of

training data by human annotation. To deal with the difficulty, for 3D scene modeling, we propose

an unsupervised deep learning neural networks which use the automatically labeled training data

with the proposed 3D point cloud processing algorithms. The proposed learning approach can be

categorized as the methodology of self-taught learning, which is recognized to be an effective method

for training a supervised-learning based neural network without using a tedious human annotated

dataset.

In this work, the convolutional-based deep viewpoint classification neural network (DVCNN)

is trained in the 3D scene modeling phase. As shown in Figure 4, the auto-encoder neural networks,

which are variants of the semantic segmentation neural network (SegNet) [47], can be used for RGB-

D deep feature prelearning. The layers of the encoder and decoder network in Figure 4 are

topologically identical to the layers of auto-encoder and decoder in SegNet except that we use ADAM

as the optimizer instead of SGD since the ADAM achieves better training performance. In this work,

we also discard the last softmax layer of the decoder and use a 1 × 1 convolution layer with ReLU

instead.

Given a training RGB-D video V of n image frames for 3D scene modeling, for each RGB image

I and depth image D in V, the proposed Algorithm 1 generates the corresponding quantized RGB

image qI and quantized depth image qD, and then produces the training data sets: RGB-dataset and

depth-dataset which consist of collections of RGB image tuples 1(,)n
j j jI qI and depth image tuples

1(,)n
j j jD qD , respectively. Using a generic back-propagation gradient descent optimization

algorithm, the RGB-dataset (depth-dataset) can be applied to train the RGB-deep feature learning

neural network (depth-deep feature learning neural network) using the loss function defined as

follows:

2
1

1 ˆ|| ||
n

j j
j

loss qI I
n

 (13)

Figure 3. An example of the proposed binary tree representation algorithm for 3D reconstruction: (a,b)
are the original RGB and depth images, respectively; (c) is the 3D point cloud generated from (a,b);
(d,e) are the super-pixel representation of (a,b), respectively; (f) is the super-point representation of (c).

In this work, the convolutional-based deep viewpoint classification neural network (DVCNN) is
trained in the 3D scene modeling phase. As shown in Figure 4, the auto-encoder neural networks,
which are variants of the semantic segmentation neural network (SegNet) [47], can be used for RGB-D
deep feature prelearning. The layers of the encoder and decoder network in Figure 4 are topologically
identical to the layers of auto-encoder and decoder in SegNet except that we use ADAM as the
optimizer instead of SGD since the ADAM achieves better training performance. In this work, we also
discard the last softmax layer of the decoder and use a 1 × 1 convolution layer with ReLU instead.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 23

where ˆ
jI is the image generated by the feature learning neural network if the j-th input image Ij is

applied for training. As shown in Figure 4c, a deep feature learning neural network (DFLNN) can

also be used to recover the depth information from the input RGB image by applying the training

dataset which consists of a collection of image tuples 1(,)n
j j jI D to train the resulting depth

recovering neural network (DRNN). The last layer of both DFLNN and DRNN is a 1 × 1 convolutional

layer, which reduces the dimensionality of the output of the RGB-decoder (or depth-decoder), i.e.,

the prelearned deep features, to the shape of the original input.

LRN

Conv + Batch Norm + ReLU

Max Pooling

Dropout

1x1 Conv + ReLU

Upsampling

RGB-encoder RGB-decoder

(a)

(b)

LRN

Conv + Batch Norm + ReLU

Max Pooling

Dropout

Upsampling

Depth-encoder Depth-decoder

LRN

Conv + Batch Norm + ReLU

Max Pooling

Dropout

Upsampling

RGB-to-depth
encoder

RGB-to-depth
decoder

(c)

1x1 Conv + ReLU

1x1 Conv + ReLU

Figure 4. In deep feature learning neural networks (DFLNN) which consists of an encoder, a decoder,

and a 1 × 1 convolutional layer: (a,b) are the neural networks that transform the original RGB and

depth images into the quantized versions, respectively; (c) is the depth recovering neural network

(DRNN).

The performance of the above neural networks for deep feature pretraining is obviously limited

by the size of training datasets. This is the so-called overfitting problem of deep neural networks.

Instead of using the auto-encoders to compute the deep features of the training RGB-D images, in our

approach, we directly cascade the visual features of all super-pixels into a feature vector to

characterize the content of an input RGB image. Next, we perform the well-known k-means clustering

on the collection of these visual feature vectors to group the training RGB-D images into clusters.

With each cluster representing a viewpoint, the clustering results automatically generate the

viewpoint (vp) labels of the training RGB-D images. This forms a collection of viewpoint training

tuples 1(,)n
j j jI vp for training the proposed viewpoint classifier which is a variant of the VGG

convolutional neural network (CNN) [43]. As shown in Figure 5, the trained deep viewpoint

classification neural network (DVCNN) is accurate in annotating the viewpoint of an input RGB

image because it is transferred from the effective VGG neural network. Note that the input to the

DVCNN is only a single RGB image. That is because only a single RGB image is used for 3D model

updating and inspecting in the model updating phase.

Figure 4. In deep feature learning neural networks (DFLNN) which consists of an encoder, a decoder,
and a 1 × 1 convolutional layer: (a,b) are the neural networks that transform the original RGB and depth
images into the quantized versions, respectively; (c) is the depth recovering neural network (DRNN).

Appl. Sci. 2019, 9, 2478 11 of 23

Given a training RGB-D video V of n image frames for 3D scene modeling, for each RGB image
I and depth image D in V, the proposed Algorithm 1 generates the corresponding quantized RGB
image qI and quantized depth image qD, and then produces the training data sets: RGB-dataset and
depth-dataset which consist of collections of RGB image tuples (I j, qI j)

n
j=1 and depth image tuples

(D j, qD j)
n
j=1, respectively. Using a generic back-propagation gradient descent optimization algorithm,

the RGB-dataset (depth-dataset) can be applied to train the RGB-deep feature learning neural network
(depth-deep feature learning neural network) using the loss function defined as follows:

loss =
1
n

n∑
j=1

∣∣∣∣∣∣qI j − Î j
∣∣∣∣∣∣

2 (13)

where Î j is the image generated by the feature learning neural network if the j-th input image Ij is
applied for training. As shown in Figure 4c, a deep feature learning neural network (DFLNN) can also
be used to recover the depth information from the input RGB image by applying the training dataset
which consists of a collection of image tuples (I j, D j)

n
j=1 to train the resulting depth recovering neural

network (DRNN). The last layer of both DFLNN and DRNN is a 1 × 1 convolutional layer, which
reduces the dimensionality of the output of the RGB-decoder (or depth-decoder), i.e., the prelearned
deep features, to the shape of the original input.

The performance of the above neural networks for deep feature pretraining is obviously limited by
the size of training datasets. This is the so-called overfitting problem of deep neural networks. Instead
of using the auto-encoders to compute the deep features of the training RGB-D images, in our approach,
we directly cascade the visual features of all super-pixels into a feature vector to characterize the
content of an input RGB image. Next, we perform the well-known k-means clustering on the collection
of these visual feature vectors to group the training RGB-D images into clusters. With each cluster
representing a viewpoint, the clustering results automatically generate the viewpoint (vp) labels of the
training RGB-D images. This forms a collection of viewpoint training tuples (I j, vp j)

n
j=1 for training the

proposed viewpoint classifier which is a variant of the VGG convolutional neural network (CNN) [43].
As shown in Figure 5, the trained deep viewpoint classification neural network (DVCNN) is accurate
in annotating the viewpoint of an input RGB image because it is transferred from the effective VGG
neural network. Note that the input to the DVCNN is only a single RGB image. That is because only a
single RGB image is used for 3D model updating and inspecting in the model updating phase.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 23

Softmax

RGB-encoder Dense
Layers

Viewpoint
Probability
Vector

LRN
Conv + Batch Norm+ ReLU

Max Pooling
Dropout
Upsampling
Fully Connection
Flattening

V
iew

p
oint

L
ab

el

Argmax

Softmax

(b)

RGB-D
Training
Images

RGB
Quantization

Depth
Quantization

Cascading
RGB-
Depth

Feature
Vectors

k-means
Clustering

Viewpoint
Classification

Training
Dataset

(a)

RGB
Image

Depth
Image

Figure 5. The proposed deep viewpoint classification neural network (DVCNN): (a) the block

diagram of generating the training dataset for viewpoint classification learning; (b) the deep

architecture of the DVCNN.

The final step to build up the 3D scene model is the selection of templates that play an important

role in the estimation of camera external parameters for the input RGB image captured by a moving

RGB camera in a drone. Let VPi be the set of training RGB-D images that are labeled as the viewpoint

i by the DVCNN. The training RGB-D image Φi is defined to be the template of viewpoint i if

arg max Pr()
j i

i j
I VP

I

 (14)

where Pr(Ij) is the probability of the input RGB image Ij labeled as viewpoint i using the DVCNN.

The pose parameters of these templates are also stored in the 3D scene model for the purpose of

estimating the pose parameters of the input RGB image in the model updating phase.

2.2.2. The Pose Estimation Algorithm

The usage of a highly mobile drone facilitates the modeling task of a 3D outdoor scene. The

selected templates to model the target 3D scene also play an important role in the application of visual

inspection because the associated GPS information of templates is useful to define the checkpoints of

the scene. In the inspection phase, we navigate the drone to the GPS locations of the templates and

capture individual RGB images which can be used to detect abnormal events that occur in the real-

world scene. Furthermore, the scene under surveillance is often changing slightly along the timeline.

It is quite important to keep the model up-to-date when we load the model into a 3D scene

surveillance application. Basically, the 3D model records the background information which

corresponds to the normal situation of the scene under surveillance. On the contrary, an abnormal

event can be detected in a specific checkpoint if the matching error between the current input RGB

image and the corresponding RGB template is large. However, the detection accuracy is often limited

by this simple scheme since the captured RGB image in a checkpoint is often not the same as the

corresponding template RGB image as the location of the navigated drone contains an error using

the prestored GPS information of templates. This leads to the requirement of the pose estimation

algorithm that recovers the depth image and external camera parameters using an alignment

algorithm between the input RGB image and the corresponding template RGB image.

In the model updating phase, given an RGB image I captured from an unknown location of the

scene, the proposed pose estimation algorithm is an iterative procedure consisting of four major

steps: (1) search for a suitable template that samples the possible appearance of the model in the input

Figure 5. The proposed deep viewpoint classification neural network (DVCNN): (a) the block diagram
of generating the training dataset for viewpoint classification learning; (b) the deep architecture of
the DVCNN.

Appl. Sci. 2019, 9, 2478 12 of 23

The final step to build up the 3D scene model is the selection of templates that play an important
role in the estimation of camera external parameters for the input RGB image captured by a moving
RGB camera in a drone. Let VPi be the set of training RGB-D images that are labeled as the viewpoint i
by the DVCNN. The training RGB-D image Φi is defined to be the template of viewpoint i if

Φi = arg max
I j∈VPi

Pr(I j) (14)

where Pr(Ij) is the probability of the input RGB image Ij labeled as viewpoint i using the DVCNN.
The pose parameters of these templates are also stored in the 3D scene model for the purpose of
estimating the pose parameters of the input RGB image in the model updating phase.

2.2.2. The Pose Estimation Algorithm

The usage of a highly mobile drone facilitates the modeling task of a 3D outdoor scene. The selected
templates to model the target 3D scene also play an important role in the application of visual inspection
because the associated GPS information of templates is useful to define the checkpoints of the scene.
In the inspection phase, we navigate the drone to the GPS locations of the templates and capture
individual RGB images which can be used to detect abnormal events that occur in the real-world
scene. Furthermore, the scene under surveillance is often changing slightly along the timeline. It is
quite important to keep the model up-to-date when we load the model into a 3D scene surveillance
application. Basically, the 3D model records the background information which corresponds to the
normal situation of the scene under surveillance. On the contrary, an abnormal event can be detected in
a specific checkpoint if the matching error between the current input RGB image and the corresponding
RGB template is large. However, the detection accuracy is often limited by this simple scheme since
the captured RGB image in a checkpoint is often not the same as the corresponding template RGB
image as the location of the navigated drone contains an error using the prestored GPS information
of templates. This leads to the requirement of the pose estimation algorithm that recovers the depth
image and external camera parameters using an alignment algorithm between the input RGB image
and the corresponding template RGB image.

In the model updating phase, given an RGB image I captured from an unknown location of the
scene, the proposed pose estimation algorithm is an iterative procedure consisting of four major steps:
(1) search for a suitable template that samples the possible appearance of the model in the input image
I using the proposed DVCNN; (2) compute the point cloud of I for generating the super-points and the
super-pixels; (3) compute the transformation matrix that aligns the input image I with the template
in terms of the visual features of super-pixels; (4) fine tune the pose parameters and depth map of I
by an iterative closest point (ICP) algorithm [48,49]. Given an input RGB image, the pose estimation
algorithm uses the external camera parameters and depth map of the corresponding template as
the initial coarse parameters to compute the first 3D point cloud. Incorrect pose parameters would
generate a larger error when we register the current point cloud with the model point cloud in a 3D
space. The iterative pose estimation stops when the registration error is minimized.

With object inspection as an example, Figure 6 shows the proposed scheme to estimate the external
camera parameters of the input images, which are often unknown when we use a moving camera
to conduct 3D object inspection. To deal with this issue, the proposed image-based scene (object)
modeling can be used to accurately estimate the depth map as well as the external camera parameters
of the input image. The first step of the proposed drone-based surveillance scheme is to detect the
target objects in the input RGB Ij using the well-proved CNN object recognition system [43]. Next,
with the detected object O as the input data, the proposed MPAA returns a set of discriminative visual
features. Let i be the viewpoint class of the input image Ij which is annotated by the proposed DVCNN.
This implies that the i-th RGB-D template Φi would be retrieved from the image-based 3D model.
Initially, the depth map of the i-th template Φi is set to be the depth image Dj of Ij. We also set the
external camera parameters of Φi as the initial parameters for the test image Ij. Obviously, the external

Appl. Sci. 2019, 9, 2478 13 of 23

camera parameters should be modified because it is not possible for the positions of the cameras to
capture the test image and the template to be the same.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 23

image I using the proposed DVCNN; (2) compute the point cloud of I for generating the super-points

and the super-pixels; (3) compute the transformation matrix that aligns the input image I with the

template in terms of the visual features of super-pixels; (4) fine tune the pose parameters and depth

map of I by an iterative closest point (ICP) algorithm [48,49]. Given an input RGB image, the pose

estimation algorithm uses the external camera parameters and depth map of the corresponding

template as the initial coarse parameters to compute the first 3D point cloud. Incorrect pose

parameters would generate a larger error when we register the current point cloud with the model

point cloud in a 3D space. The iterative pose estimation stops when the registration error is

minimized.

With object inspection as an example, Figure 6 shows the proposed scheme to estimate the

external camera parameters of the input images, which are often unknown when we use a moving

camera to conduct 3D object inspection. To deal with this issue, the proposed image-based scene

(object) modeling can be used to accurately estimate the depth map as well as the external camera

parameters of the input image. The first step of the proposed drone-based surveillance scheme is to

detect the target objects in the input RGB Ij using the well-proved CNN object recognition system [43].

Next, with the detected object O as the input data, the proposed MPAA returns a set of discriminative

visual features. Let i be the viewpoint class of the input image Ij which is annotated by the proposed

DVCNN. This implies that the i-th RGB-D template Φi would be retrieved from the image-based 3D

model. Initially, the depth map of the i-th template Φi is set to be the depth image Dj of Ij. We also set

the external camera parameters of Φi as the initial parameters for the test image Ij. Obviously, the

external camera parameters should be modified because it is not possible for the positions of the

cameras to capture the test image and the template to be the same.

CNN
Object

Detection

Input
RGB
Image

Deep
Viewpoint

Classification

Feature Matching
of Super-pixels

External Camera
Parameters and

Depth Map
Estimation

Camera
Parameters

[R|t]

ImageNet
Weights

Image-Based 3D Object Model

Figure 6. Model-based estimation of the external camera parameters of an object in a single RGB

image.

In this work, we use the well-known RANSAC feature corresponding algorithm [50] to align the

set of discriminative visual features of ΦI, i.e., the features of the super-pixels, with those of Ij. Let the

output of the RANSAC algorithm be the corresponding collection of r tuples:

1

x , xji i

j

rO

O a a
a

 (15)

where x jO

a (x i

a

) is a pixel in Oj (Φi). Note that the intrinsic camera parameters of the moving camera

should be calibrated in advance in both the modeling and inspection phases. To initially estimate the

external camera parameters of Oj with those of the template Φi, for each pixel in Oj (Φi), the point set

Figure 6. Model-based estimation of the external camera parameters of an object in a single RGB image.

In this work, we use the well-known RANSAC feature corresponding algorithm [50] to align the
set of discriminative visual features of ΦI, i.e., the features of the super-pixels, with those of Ij. Let the
output of the RANSAC algorithm be the corresponding collection of r tuples:

ΩΦi
O j

=
(
x

O j
a , xΦi

a

)r

a=1
(15)

where x
O j
a (xΦi

a) is a pixel in Oj (Φi). Note that the intrinsic camera parameters of the moving camera
should be calibrated in advance in both the modeling and inspection phases. To initially estimate the
external camera parameters of Oj with those of the template Φi, for each pixel in Oj (Φi), the point set
pO j

= (pa)
r
a=1 (p′Φi

= (p′a)
r
a=1) in the world coordinate system is computed using (2) and (4). Next,

to register points in pO j
with those in p′Φi

, the ICP algorithm produces the transformation matrix

Mi
j = [Ri

j

∣∣∣∣ti
j] in the world coordinate system, where Ri

j and ti
j are the rotation matrix and the translation

vector, respectively. Mi
j = [Ri

j

∣∣∣∣ti
j] is actually the external camera parameters that transform the point

cloud pO j
to point cloud p′Φi

in the world coordinate system. Thus, the fine-tuned external camera

parameters of Oj for building up the real 3D point cloud using the depth map of Oj are:

M
O j

4×4 = Mi
jM

Φi
4×4 =

 Ri
j,3×3 ti

j,3
0 1

[RΦi
3×3 tΦi

3
0 1

]
(16)

where MΦi
4×4 are the external camera parameters of the template Φi. The underlying concept of the

proposed pose estimation algorithm is based on the assumption that a pair of correspondence pixels of
the same visual features in two images would be unprojected to the same point in 3D space. Moreover,
errors exist in the coarse estimated depth image and external camera parameters which are eliminated
by the transformation matrix Mi

j using the ICP algorithm.
The modified point cloud of the input image is then analyzed to generate the super-pixels

of the RGB and depth images. Inputting these new versions of super-pixel features into the pose
estimation algorithm, the registration error between the current point cloud and the model point cloud

Appl. Sci. 2019, 9, 2478 14 of 23

is minimized. To complete the discussion of the pose estimation, we design a method to compute the
error by registering the point cloud P of the target model with the current point cloud Pj of the input
image Ij. Once again, the RANSAC algorithm is used to establish the 3D super-point correspondence
set in terms of the feature vectors of super-points, which are defined in (6). Next, based on the

super-point correspondence set, the transformation M j = [R j,3×3

∣∣∣∣t j,3] between P and Pj is computed.
For each super-point p in Pj, we compute the super-point p′ in the model, which contains the point
M jp. Using their features, then the error between P and Pj is defined as

E =
1
n

n∑
i=1

∣∣∣∣∣∣∣∣∣∣→f i −
→

f
′

i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(17)

where n is the number of super-points in Pj;
→

f a is the feature vector of the i-th super-point pi in Pj;
→

f
′

i
is the feature vector of the corresponding super-point p′i in the model. The proposed model-based
pose estimation algorithm is summarized as shown in Algorithm 3.

Algorithm 3. Model-based Pose Estimation

Input: A single RGB image I
Output: The pose parameters of I and the registration error E
Method:

1. Input I to the DVCNN to obtain the viewpoint class v and retrieve the template Φv from the
prestored database.

2. Set the pose parameters of I to be depth image and external camera parameters of Φv.
3. Compute the 3D point clouds pI = (pa)

r
a=1 and p′Φv

= (p′a)
r
a=1 for I and Φv, respectively using (2) and

(4).
4. Perform the MPAA to compute the super-points and super-pixels of I and Φv.

5. Perform the RANSAC algorithm to generate the pixel correspondences ΩΦv
I =

(
xI

a, xΦv
a

)r

a=1
between I and

the RGB image in Φv in terms of their visual features of key points (super-pixels).
6. Perform the ICP algorithm to register PI and p′Φv

, and compute the transformation matrix

Mv
I = [Rv

I,3×3

∣∣∣∣tv
I,3] .

7. Fine tune the external camera parameters of I to be M4×4 using (16).
8. Compute the final point cloud PI of I and perform the RANSAC algorithm is used to establish the 3D

super-point correspondence set between PI and the model point cloud Pm in terms of the feature vectors
of super-points, which are defined in (6).

9. Perform the ICP algorithm to register PI and Pm, and compute the transformation matrix

Mm
I = [Rm

I,3×3

∣∣∣∣tm
I,3] .

10. Compute the inspection error E using (17).
11. if E is not changed again, return the pose parameters of I and E; else goto 4.

3. Results

The system is implemented on a PC with Intel Core i7 3.4 GHz CPU and NVIDIA GeForce 9800
GT. The RGB-D benchmark provided by the Technical University of Munich [44] is used to verify
the effectiveness of our approach in terms of the accuracy of the viewpoint classification and pose
estimation. In this benchmark, several datasets [51] including aligned color and depth sequences
captured with a single RGB-D moving camera are provided. The accurate ground-truth of each frame’s
camera pose is also provided, which is measured by an external motion capture system. The image
frames of each dataset are separated into two disjoint sets: a training dataset and a test dataset. Figure 7
shows an example of an RGB frame in each dataset.

Appl. Sci. 2019, 9, 2478 15 of 23

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 23

6. Perform the ICP algorithm to register PI and
v

 , and compute the transformation matrix

,3 3 ,3M [R | t]v v v
I I I .

7. Fine tune the external camera parameters of I to be 4 4M using (16).

8. Compute the final point cloud PI of I and perform the RANSAC algorithm is used to establish the

3D super-point correspondence set between PI and the model point cloud Pm in terms of the

feature vectors of super-points, which are defined in (6).

9. Perform the ICP algorithm to register PI and Pm, and compute the transformation matrix

,3 3 ,3M [R | t]m m m
I I I .

10. Compute the inspection error E using (17).

11. if E is not changed again, return the pose parameters of I and E; else goto 4.

3. Results

The system is implemented on a PC with Intel Core i7 3.4 GHz CPU and NVIDIA GeForce 9800

GT. The RGB-D benchmark provided by the Technical University of Munich [44] is used to verify the

effectiveness of our approach in terms of the accuracy of the viewpoint classification and pose

estimation. In this benchmark, several datasets [51] including aligned color and depth sequences

captured with a single RGB-D moving camera are provided. The accurate ground-truth of each

frame’s camera pose is also provided, which is measured by an external motion capture system. The

image frames of each dataset are separated into two disjoint sets: a training dataset and a test dataset.

Figure 7 shows an example of an RGB frame in each dataset.

Figure 7. Example image frames of the test datasets.

In the application of object modeling and inspection, the CNN object detector is applied to locate

the target objects in the RGB images. To train the CNN object detector, the set of bounding boxes that

locate the target objects in the training RGB image frames is obtained by human annotation. The

accuracy of the resulting CNN object detection obviously affects the accuracy of the modeled 3D

object. To verify the effectiveness of the usage of CNN object detector in our application, both the

model-specific and global CNN object detectors are trained using a single dataset and all datasets,

respectively. Figure 8 shows the performance comparison between these two modes of CNN object

detectors. One of the advantages of the usage of the global CNN object detector is that we just need

to train a single CNN object detector which detects all objects in different models. However, the

performance of the global CNN object detector is not good enough to provide accurate object

modeling results. On the contrary, the model-specific object detector achieves average accuracy of up

to 98.62% and thus guarantees the accuracy of the resulting 3D object model. Thus, we train multiple

model-specific CNN object detectors which are further integrated to achieve the goal of detecting all

objects under surveillance. The model-specific CNN object detector that gives the largest probability

on the detected object is used to annotate the object in a test RGB image. This preserves the high

Figure 7. Example image frames of the test datasets.

In the application of object modeling and inspection, the CNN object detector is applied to locate
the target objects in the RGB images. To train the CNN object detector, the set of bounding boxes
that locate the target objects in the training RGB image frames is obtained by human annotation.
The accuracy of the resulting CNN object detection obviously affects the accuracy of the modeled 3D
object. To verify the effectiveness of the usage of CNN object detector in our application, both the
model-specific and global CNN object detectors are trained using a single dataset and all datasets,
respectively. Figure 8 shows the performance comparison between these two modes of CNN object
detectors. One of the advantages of the usage of the global CNN object detector is that we just
need to train a single CNN object detector which detects all objects in different models. However,
the performance of the global CNN object detector is not good enough to provide accurate object
modeling results. On the contrary, the model-specific object detector achieves average accuracy of up
to 98.62% and thus guarantees the accuracy of the resulting 3D object model. Thus, we train multiple
model-specific CNN object detectors which are further integrated to achieve the goal of detecting all
objects under surveillance. The model-specific CNN object detector that gives the largest probability
on the detected object is used to annotate the object in a test RGB image. This preserves the high
accuracy advantage of the model-specific CNN object detector, which can be verified by the results
shown in Table 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 23

accuracy advantage of the model-specific CNN object detector, which can be verified by the results

shown in Table 1.

Figure 8. Performance comparison between the model-specific and global CNN object detectors using

example datasets: from left to right are the results of ‘freiburg1_plant’, ‘freiburg2_caninet’, and

‘freiburg3_teddy’. The left column and the right column in each cell are the results of the model-

specific and the global CNN object detectors, respectively.

Table 1. The confusion matrix of integrating multiple model-specific CNN object detectors for

detecting all objects under surveillance.

Classification

Results

Input Classes

Freiburg1_

Plant

Freiburg1_

Teddy

Freiburg2_

Coke

Freiburg2_

Flower

Freiburg3_

Cabinet

Freiburg3_

Teddy

freiburg1_plant 97 3 0 0 0 0

freiburg1_teddy 1 97 0 2 0 0

freiburg2_coke 0 0 98 2 0 0

freiburg2_flower 0 0 3 97 0 0

Freiburg3_cabinet 4 0 0 0 94 2

freiburg3_teddy 1 0 0 0 2 95

The second experiments demonstrate the effectiveness of the proposed viewpoint classification.

Figure 9 shows the view classification results using the dataset ‘freiburg3_teddy’. The RGB template

of a viewpoint and those of test images that are classified to the viewpoint class are very similar in

terms of subjective evaluation. Given the training dataset ‘freiburg3_teddy’, with the clustering

results as the viewpoint labels, the recognition accuracy of our viewpoint classifier achieves 98.24%

without suffering from the overfitting problem.

To compare the performance of our approach with other state-of-the-art methods in pose

estimation [39,40,52,53], five typical datasets are selected as test samples. In [39,52], the compared

approaches are model-based methods which are similar to our approach. In [40,53], the authors

proposed RGB-D SLAM systems. Some postprocessing methods, such as global optimization are

used to modify the global camera trajectory in these methods. Table 2 summarizes the experimental

results. The first column is the dataset name. The remaining columns are the results for the root mean

square error (RMSE) of the relative errors. The relative error is the translational drift in m/s between

the estimated pose and the ground-truth. The parameter k is the number of RGB training images in a

viewpoint class for training the viewpoint classifier. For each viewpoint class, we select a template; a

larger value of k implies that fewer templates are selected in the training sequences to build up the

3D model for inspecting the target scene or object in the testing phase. Since a large amount of

redundancy could exist in two consecutive frames of each sequence (dataset), we can actually use

very few frames to reconstruct a 3D model. The usage of fewer templates also highly reduces the time

complexity to estimate the pose of each frame in order to achieve the goal of 3D object reconstruction

in real-time. As shown in Figure 10, compared with other state-of-the-art approaches, the proposed

method is not sensitive to the value of k. Accordingly, the proposed method can use very few

99.85% 98.25% 97.76%

85.74%
70.65% 75.69%

F R 1 P L A N T F R 2 C A B I N E T F R 3 T E D D Y

Figure 8. Performance comparison between the model-specific and global CNN object detectors
using example datasets: from left to right are the results of ‘freiburg1_plant’, ‘freiburg2_caninet’,
and ‘freiburg3_teddy’. The left column and the right column in each cell are the results of the
model-specific and the global CNN object detectors, respectively.

Appl. Sci. 2019, 9, 2478 16 of 23

Table 1. The confusion matrix of integrating multiple model-specific CNN object detectors for detecting
all objects under surveillance.

Input Classes
Classification Results Freiburg1_Plant Freiburg1_Teddy Freiburg2_Coke Freiburg2_Flower Freiburg3_Cabinet Freiburg3_Teddy

freiburg1_plant 97 3 0 0 0 0
freiburg1_teddy 1 97 0 2 0 0
freiburg2_coke 0 0 98 2 0 0

freiburg2_flower 0 0 3 97 0 0
Freiburg3_cabinet 4 0 0 0 94 2
freiburg3_teddy 1 0 0 0 2 95

The second experiments demonstrate the effectiveness of the proposed viewpoint classification.
Figure 9 shows the view classification results using the dataset ‘freiburg3_teddy’. The RGB template
of a viewpoint and those of test images that are classified to the viewpoint class are very similar in
terms of subjective evaluation. Given the training dataset ‘freiburg3_teddy’, with the clustering results
as the viewpoint labels, the recognition accuracy of our viewpoint classifier achieves 98.24% without
suffering from the overfitting problem.

To compare the performance of our approach with other state-of-the-art methods in pose
estimation [39,40,52,53], five typical datasets are selected as test samples. In [39,52], the compared
approaches are model-based methods which are similar to our approach. In [40,53], the authors
proposed RGB-D SLAM systems. Some postprocessing methods, such as global optimization are used
to modify the global camera trajectory in these methods. Table 2 summarizes the experimental results.
The first column is the dataset name. The remaining columns are the results for the root mean square
error (RMSE) of the relative errors. The relative error is the translational drift in m/s between the
estimated pose and the ground-truth. The parameter k is the number of RGB training images in a
viewpoint class for training the viewpoint classifier. For each viewpoint class, we select a template;
a larger value of k implies that fewer templates are selected in the training sequences to build up the 3D
model for inspecting the target scene or object in the testing phase. Since a large amount of redundancy
could exist in two consecutive frames of each sequence (dataset), we can actually use very few frames
to reconstruct a 3D model. The usage of fewer templates also highly reduces the time complexity to
estimate the pose of each frame in order to achieve the goal of 3D object reconstruction in real-time.
As shown in Figure 10, compared with other state-of-the-art approaches, the proposed method is not
sensitive to the value of k. Accordingly, the proposed method can use very few templates to model a
3D scene without sacrificing the accuracy of pose estimation. Figure 11a shows an example of the 2D
trajectory error of the proposed method using the test sequence ‘freiburg1_desk’; the reconstructed 3D
scene using the selected templates is also shown in Figure 11b. Figure 11(a1,a2) are the 2D trajectory
error without and with the removement of the outliers of corresponding pairs, respectively, when using
Algorithm 3 to estimate the poses. In these two examples, the trajectory of the 3D poses is projection
to the xy plane. The black trajectory is the ground truth. The blue trajectory is the estimated poses.
The red lines are the error between the ground truth and the estimated poses. From Figure 11(a3),
the errors are reduced after removing the outliers of the corresponding pairs. With the usage of the
GPU, our system can process more than 30 frames per second. This ensure to apply our algorithms to
construct real-time video-based applications.

Appl. Sci. 2019, 9, 2478 17 of 23

Table 2. Camera pose error for datasets with ground-truth from [44] in terms of RMSE of the relative
error. The value of k is the number of training RGB images in a viewpoint class in our approach, and
the stride to select the key-frames from the training datasets in other approaches.

Sequence

RMSE of the Relative Camera Pose Error

Our Approach
Multiresolution Map [52] RGB-D SLAM [40]k = 1 k = 5 k = 10 k = 20

freiburg1 desk2 1.50 × 10−16 0.024 0.052 0.108 0.060 0.102

freiburg1 desk 1.39 × 10−16 0.019 0.041 0.086 0.044 0.049

freiburg1 plant 1.22 × 10−16 0.015 0.033 0.066 0.036 0.142

freiburg1 teddy 1.62 × 10−16 0.020 0.044 0.087 0.061 0.138

freiburg2 desk 2.84 × 10−16 0.005 0.010 0.018 0.091 0.143

1

(a)

(b)

 Figure 9. The view classification results using the dataset ‘freiburg3_teddy’: (a) example RGB templates
of viewpoints and those of test images that are classified to individual viewpoint classes; (b) the training
and testing learning curves of the proposed viewpoint classification neural network with cross-entropy
as the loss function.

Appl. Sci. 2019, 9, 2478 18 of 23

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 23

Figure 10. Performance comparison in terms of median of relative pose error using different values

of k which indicates the number of training RGB images in a viewpoint class in our approach, and the

stride to select the key-frames from the training datasets in other approaches. The test dataset is

‘freiburg1 desk’.

(a)

(a1)

(a2)

(a3)

Figure 10. Performance comparison in terms of median of relative pose error using different values of k
which indicates the number of training RGB images in a viewpoint class in our approach, and the stride to
select the key-frames from the training datasets in other approaches. The test dataset is ‘freiburg1 desk’.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 23

Figure 10. Performance comparison in terms of median of relative pose error using different values

of k which indicates the number of training RGB images in a viewpoint class in our approach, and the

stride to select the key-frames from the training datasets in other approaches. The test dataset is

‘freiburg1 desk’.

(a)

(a1)

(a2)

(a3)

Figure 11. Cont.

Appl. Sci. 2019, 9, 2478 19 of 23

Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 23

(b)

Figure 11. (a) An example of the 2D trajectory and error of the proposed method using the test dataset

‘freiburg1_desk’. (a1,a2) are the 2D trajectory error without and with the removement of the outliers

of corresponding pairs, respectively, when using Algorithm 3 to estimate the poses. (a3) is the

difference comparison of the bounding box in (a1,a2). (b) The reconstructed 3D scene using the

proposed template-to-frame registration technique.

Table 2. Camera pose error for datasets with ground-truth from [44] in terms of RMSE of the relative

error. The value of k is the number of training RGB images in a viewpoint class in our approach, and

the stride to select the key-frames from the training datasets in other approaches.

Sequence

RMSE of the Relative Camera Pose Error

Our Approach Multiresol

ution Map

[52]

RGB-D

SLAM

[40]
k = 1 k = 5 k = 10 k = 20

freiburg1 desk2 1.50 × 10−16 0.024 0.052 0.108 0.060 0.102

freiburg1 desk 1.39 × 10−16 0.019 0.041 0.086 0.044 0.049

freiburg1 plant 1.22 × 10−16 0.015 0.033 0.066 0.036 0.142

freiburg1 teddy 1.62 × 10−16 0.020 0.044 0.087 0.061 0.138

freiburg2 desk 2.84 × 10−16 0.005 0.010 0.018 0.091 0.143

4. Discussion

According to the experimental results, we can outline several interesting research findings for

3D computer vision:

Input

RGB-D

Images

Quantized

RGB-D

Images

3D Registration

Figure 11. (a) An example of the 2D trajectory and error of the proposed method using the test
dataset ‘freiburg1_desk’. (a1,a2) are the 2D trajectory error without and with the removement of the
outliers of corresponding pairs, respectively, when using Algorithm 3 to estimate the poses. (a3) is
the difference comparison of the bounding box in (a1,a2). (b) The reconstructed 3D scene using the
proposed template-to-frame registration technique.

4. Discussion

According to the experimental results, we can outline several interesting research findings for 3D
computer vision:

• To the best of our best knowledge, there are very few researchers working on the problem of pose
estimation using a single RGB image. Conventional pose estimation algorithms use a sequence of
RGB images to compute the depth map and the external camera parameters. However, this highly
increases the complexity of the resulting pose estimation. On the contrary, in this work, the input
to the model-based pose estimation algorithm is only a single image. This facilitates the real-time
reconstruction of 3D models.

• The tedious human annotation effort required to prepare a large amount of training data for
improving the recognition accuracy of the DVCNN is avoided by representing scene point clouds
as a collection of super-points using the MPPA algorithm. Although the number of training RGB-D
image frames for 3D scene modeling is often small, the average recognition rate for viewpoint
classification using the DVCNN achieves 98.34% according to our experimental results. Moreover,

Appl. Sci. 2019, 9, 2478 20 of 23

the learning curves of testing and learning for the DVCNN closely coincide with each other.
This implies the overfitting problem of conventional deep neural networks is solved even when
the training data is automatically labeled.

• The performance of the proposed pose estimation is obviously dependent on the number of
templates used to model a 3D scene. As shown in Table 2, the usage of fewer templates for 3D
scene modeling leads to more significant errors in registration between the current point cloud,
generated by the input RGB image, and the model point cloud. In the application of abnormal
event detection, the registration error introduced by the model-based pose estimation algorithm
should be minimized to a very small degree in order to reduce the number of false positives in
the construction of an event alarm system. Thus, we suggest using more templates in 3D model
reconstruction even though it increases the computational complexity.

• The usage of deep features obtained by the deep neural networks shown in Figure 4 is not
suggested when the training datasets are not large enough. The usage of features of super-points
and super-pixels offers good discrimination power in the learning of the DVCNN according
to our experimental results. The proposed MPAA is actually much like the conventional PCA
dimensionality reduction technique. This implies that the claim that deep learning outperforms
traditional learning schemes in all aspects of applications is a pitfall.

The proposed 3D scene modeling can model the background information fast and accurately.
Thus, a real-time vision-based scene surveillance system can be easily constructed using a simple
background subtraction algorithm. Moreover, the problem of unstable background degrading the
performance of the simple background subtraction scheme for visual inspection is avoided since our
pose estimation algorithm eliminates the slight changes in the model under surveillance along the
timeline using the model updating scheme.

5. Conclusions

In this paper, we have presented a model-based scalable 3D scene modeling system.
The contributions of the proposed method include: (1) starting from the computation of the point cloud
of an input RGB-D image, the MPPA automatically labels training image frames to prepare training
datasets for training deep viewpoint classification; (2) the fusion of multiple model-specific CNNs
can detect multiple objects under surveillance accurately; (3) the viewpoint classifier searches the best
template images for constructing a high quality image-based 3D model; (4) in the model updating
phase, the usage of the template-based 3D models speeds up the process of pose estimation by using a
single RGB image. In our experiments on publicly available datasets, we show that our approach gives
the lowest overall trajectory error and outperforms the state-of-the-art methods.

The proposed approach could be easily applied for geodesy and remote sensing. For example,
a high-quality 3D model of an area with frequent earth-rock flow could be built by traditional
methods [1,2]. After a hurricane, the damage of this area could be detected by pictures captured by a
low-cost unmanned drone. For AR or face recognition applications, the 3D scene model or face model
could be constructed from video captured by a low-cost RGB-D camera. The constructed 3D model
could also be used for 3D printing.

In the next step of our research, we plan to explore a large-scale AR interaction system based on
this template-based 3D scene or object modeling. Furthermore, based on the reconstruction models,
we want to extend our approach to 3D object recognition, detection, segmentation, reconstruction,
and printing.

Author Contributions: The individual contributions are “conceptualization, J.-Y.S. and S.-C.C.; methodology,
S.-C.C.; software, J.-Y.S. and J.-M.C.; validation, C.-C.C.; formal analysis, J.-Y.S.; investigation, S.-C.C.;
writing—original draft preparation, S.-C.C.; writing—review and editing, J.-Y.S.”.

Funding: This research work was funded in part by Minister of Science and Technology, Taiwan under grant
numbers MOST 107-2221-E-019-033-MY2 and MOST 107-2634-F-019-001.

Appl. Sci. 2019, 9, 2478 21 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolf, P.R.; Dewitt, B.A. Elements of Photogrammetry: With Applications in GIS; McGraw-Hill: New York, NY,
USA, 2000.

2. Ackermann, F. Airborne laser scanning–present status and further expectations. ISPRS J. Photogramm.
Remote Sens. 1999, 54, 64–67. [CrossRef]

3. Davison, A.; Reid, I.; Molton, N.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern
Anal. Mach. Intell. 2007, 29, 1052–1067. [CrossRef] [PubMed]

4. Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528.

5. Furukawa, Y.; Curless, B.; Seitz, S.M.; Szeliski, R. Towards internet-scale multi-view stereo. In Proceedings of
the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco,
CA, USA, 13–18 June 2010; pp. 1434–1441.

6. Furukawa, Y.; Ponce, J. Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal.
Mach. Intell. 2010, 32, 1362–1376. [CrossRef] [PubMed]

7. Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis.
2008, 80, 189–210. [CrossRef]

8. Guan, W.; You, S.; Neumann, U. Recognition-driven 3D navigation in large-scale virtual environments.
In Proceedings of the IEEE Virtual Reality, Singapore, 19–23 March 2011.

9. Alexiadis, D.S.; Zarpalas, D.; Daras, P. Real-time, full 3-D reconstruction of moving foreground objects from
multiple consumer depth cameras. IEEE Trans. Multimed. 2013, 15, 339–358. [CrossRef]

10. Chen, K.; Lai, Y.-K.; Hu, S.-M. 3D indoor scene modeling from RGB-D data: A survey. Comput. Vis. Media
2015, 1, 267–278. [CrossRef]

11. Schönberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

12. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.; Hodges, S.;
Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th
IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011.

13. Cheng, S.-C.; Su, J.-Y.; Chen, J.-M.; Hsieh, J.-W. Model-based 3D scene reconstruction using a moving RGB-D
camera. In Proceedings of the International Multimedia Modeling, Reykjavik, Iceland, 4–6 January 2017;
pp. 214–225.

14. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model-based training,
detection and pose estimation of texture-less objects in heavily cluttered scenes. In Lecture Notes in Computer
Science, Proceedings of the Asian Conference on Computer Vision, Daejeon, Korea, 5–9 November 2012; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7724, pp. 548–562.

15. Kerl, C.; Sturm, J.; Cremers, D. Robust odometry estimation for RGB-D cameras. In Proceedings of
the International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013;
pp. 3748–3754.

16. Li, J.N.; Wang, L.H.; Li, Y.; Zhang, J.F.; Li, D.X.; Zhang, M. Local Optimized and scalable frame-to-model
SLAM. Multimed. Tools Appl. 2016, 75, 8675–8694. [CrossRef]

17. Tong, J.; Zhou, J.; Liu, L.; Pan, Z.; Yan, H. Scanning 3D full human bodies using kinects. IEEE Trans. Vis.
Comput. Graph. 2012, 18, 643–650. [CrossRef]

18. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.;
Davison, A.; et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera.
In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa
Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

19. Xiao, J.; Furukawa, Y. Reconstructing the world’s museums. Int. J. Comput. Vis. 2014, 110, 243–258. [CrossRef]
20. Wang, K.; Zhang, G.; Bao, H. Robust 3D reconstruction with an RGB-D camera. IEEE Trans. Image Process.

2014, 23, 4893–4906. [CrossRef]

http://dx.doi.org/10.1016/S0924-2716(99)00009-X
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302
http://dx.doi.org/10.1109/TPAMI.2009.161
http://www.ncbi.nlm.nih.gov/pubmed/20558871
http://dx.doi.org/10.1007/s11263-007-0107-3
http://dx.doi.org/10.1109/TMM.2012.2229264
http://dx.doi.org/10.1007/s41095-015-0029-x
http://dx.doi.org/10.1007/s11042-015-2780-5
http://dx.doi.org/10.1109/TVCG.2012.56
http://dx.doi.org/10.1007/s11263-014-0711-y
http://dx.doi.org/10.1109/TIP.2014.2352851

Appl. Sci. 2019, 9, 2478 22 of 23

21. Bokaris, P.; Muselet, D.; Trémeau, A. 3D reconstruction of indoor scenes using a single RGB-D image.
In Proceedings of the 12th International Conference on Computer Vision Theory and Applications (VISAPP
2017), Porto, Portugal, 27 February–1 March 2017.

22. Li, C.; Lu, B.; Zhang, Y.; Liu, H.; Qu, Y. 3D reconstruction of indoor scenes via image registration. Neural Process.
Lett. 2018, 48, 1281–1304. [CrossRef]

23. Iddan, G.J.; Yahav, G. Three-dimensional imaging in the studio and elsewhere. In Proceedings of the
International Society for Optics and Photonics, San Jose, CA, USA, 20–26 January 2001; Volume 4289,
pp. 48–55.

24. Zhang, J.; Kan, C.; Schwing, A.G.; Urtasun, R. Estimating the 3D layout of indoor scenes and its clutter
from depth sensors. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney,
Australia, 1–8 December 2013; pp. 1273–1280.

25. Beardsley, P.; Zisserman, A.; Murray, D. Sequential updating of projective and affine structure from motion.
Int. J. Comput. Vis. 1997, 23, 235–259. [CrossRef]

26. Sato, T.; Kanbara, M.; Takemura, H.; Yokoya, N. 3-D reconstruction from a monocular image sequence
by tracking markers and natural features. In Proceedings of the 14th International Conference on Vision
Interface, Ottawa, Ontario, Canada, 7–9 June 2001; pp. 157–164.

27. Tomasi, C.; Kanade, T. Shape and motion from image streams under orthography: A factorization method.
Int. J. Comput. Vis. 1992, 9, 137–154. [CrossRef]

28. Sato, T.; Kanbara, M.; Yokoya, N.; Takemura, H. 3-D modeling of an outdoor scene by multi-baseline stereo
using a long sequence of images. In Proceedings of the 16th IAPR International Conference on Pattern
Recognition (ICPR2002), Quebec City, QC, Canada, 11–15 August 2002; Volume III, pp. 581–584.

29. Pixel4D: Professional Photogrammetry and Drone-Mapping. Available online: https://www.pix4d.com/

(accessed on 17 June 2019).
30. Tam, G.K.L.; Cheng, Z.-Q.; Lai, Y.-K.; Langbein, F.C.; Liu, Y.; Marshall, D.; Martin, R.R.; Sun, X.-F.; Rosin, P.L.

Registration of 3d point clouds and meshes: A survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Gr.
2013, 19, 1199–1217. [CrossRef] [PubMed]

31. Bazin, J.C.; Seo, Y.; Demonceaux, C.; Vasseur, P.; Ikeuchi, K.; Kweon, I.; Pollefeys, M. Globally optimal line
clustering and vanishing point estimation in manhattan world. In Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 638–645.

32. Szeliski, R. Computer Vision: Algorithms and Applications; Springer-Verlag London Limited: London, UK, 2011.
33. Rashwan, H.A.; Chambon, S.; Gurdjos, P.; Morin, G.; Charvillat, V. Using curvilinear features in focus for

registering a single image to a 3D Object. arXiv 2018, arXiv:1802.09384.
34. Elbaz, G.; Avraham, T.; Fischer, A. 3D point cloud registration for localization using a deep neural network

auto-encoder. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017.

35. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.;
et al. Towards fully autonomous driving: Systems and algorithms. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 163–168.

36. Wu, H.; Fan, H. Registration of airborne Lidar point clouds by matching the linear plane features of building
roof facets. Remote Sens. 2016, 8, 447. [CrossRef]

37. Open3D: A Modern Library for 3D Data Processing. 2019. Available online: http://www.open3d.org/docs/
index.html (accessed on 17 June 2019).

38. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892.
[CrossRef]

39. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems (RSS)
Conference, Seattle, WA, USA, 28 June–1 July 2009.

40. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM
system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul,
MN, USA, 14–18 May 2012.

41. Choi, S.; Zhou, Q.-Y.; Koltun, V. Robust reconstruction of indoor scenes. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

http://dx.doi.org/10.1007/s11063-018-9781-0
http://dx.doi.org/10.1023/A:1007923216416
http://dx.doi.org/10.1007/BF00129684
https://www.pix4d.com/
http://dx.doi.org/10.1109/TVCG.2012.310
http://www.ncbi.nlm.nih.gov/pubmed/23661012
http://dx.doi.org/10.3390/rs8060447
http://www.open3d.org/docs/index.html
http://www.open3d.org/docs/index.html
http://dx.doi.org/10.1109/TPAMI.2002.1017616

Appl. Sci. 2019, 9, 2478 23 of 23

42. Johnson, A.E.; Kang, S.B. Registration and integration of textured 3D data. Image Vis. Comput. 1999, 17,
135–147. [CrossRef]

43. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations 2015 (ICLR 2015), San Diego,
CA, USA, 7–9 May 2015.

44. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM
systems. In Proceedings of the International Conference on Intelligent Robot Systems (IROS), Vilamoura,
Algarve, Portugal, 7–12 October 2012.

45. Žbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches.
J. Mach. Learn. Res. 2016, 17, 1–32.

46. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-View CNNs for object
classification on 3D data. arXiv 2016, arXiv:1604.03265.

47. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Trans. PAMI 2017, 39, 2481–2495. [CrossRef] [PubMed]

48. Besl, P.J.; McKay, N.D. Method for registration of 3-d shapes. Robot.-DL Tentat. 1992, 1611, 586–607. [CrossRef]
49. Makadia, A.A.P.; Daniilidis, K. Fully automatic registration of 3D point clouds. In Proceedings of the 2006

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY,
USA, 17–22 June 2006; Volume 1, pp. 1297–1304.

50. Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

51. Computer Vision Group—Dataset Download. Available online: https://vision.in.tum.de/data/datasets/rgbd-
dataset/download (accessed on 9 June 2019).

52. JörgStückler, J.; Behnke, S. Multi-resolution surfel maps for efficient dense 3D modeling and tracking. J. Vis.
Commun. Image Represent. 2014, 25, 137–147. [CrossRef]

53. Steinbruecker, F.; Sturm, J.; Cremers, D. Real-time visual odometry from dense RGB-D images. In
Proceedings of the Workshop on Live Dense Reconstruction with Moving Cameras at ICCV, Barcelona, Spain,
6–13 November 2011; pp. 719–722.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0262-8856(98)00117-6
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
http://dx.doi.org/10.1016/j.jvcir.2013.02.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Related Works
	Our Contributions

	Materials and Methods
	Notation and Preliminaries
	Our Approach
	Template-Based 3D Scene Modeling
	The Pose Estimation Algorithm

	Results
	Discussion
	Conclusions
	References

