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Featured Application: Emotion recognition from human speech is currently being used in a
variety of different domains: in call centers, for analysis of customer’s satisfaction from services,
in healthcare, monitoring stress or pain degree of patients in order to detect in an early stage of
diseases and for better treatment. Moreover, it makes interaction more natural between humans
and machines to analyze the behavior of drivers in cars with the teaching process.

Abstract: The most used and well-known acoustic features of a speech signal, the Mel frequency
cepstral coefficients (MFCC), cannot characterize emotions in speech sufficiently when a classification
is performed to classify both discrete emotions (i.e., anger, happiness, sadness, and neutral) and
emotions in valence dimension (positive and negative). The main reason for this is that some of
the discrete emotions, such as anger and happiness, share similar acoustic features in the arousal
dimension (high and low) but are different in the valence dimension. Timbre is a sound quality that
can discriminate between two sounds even with the same pitch and loudness. In this paper, we
analyzed timbre acoustic features to improve the classification performance of discrete emotions
as well as emotions in the valence dimension. Sequential forward selection (SFS) was used to
find the most relevant acoustic features among timbre acoustic features. The experiments were
carried out on the Berlin Emotional Speech Database and the Interactive Emotional Dyadic Motion
Capture Database. Support vector machine (SVM) and long short-term memory recurrent neural
network (LSTM-RNN) were used to classify emotions. The significant classification performance
improvements were achieved using a combination of baseline and the most relevant timbre acoustic
features, which were found by applying SFS on a classification of emotions for the Berlin Emotional
Speech Database. From extensive experiments, it was found that timbre acoustic features could
characterize emotions sufficiently in a speech in the valence dimension.

Keywords: timbre acoustic features; valence dimension; affective computing; emotion recognition;
neural networks; speech processing

1. Introduction

A speech signal carries information not only connected with the lexical content, but also with the
emotional state, age, and gender information of the speaker. Hence, speech signals can be used to
recognize the emotional state of the speaker during communication with a machine.

The automatic speech emotion recognition (SER) system needs an appropriate model to represent
emotions. Human emotions can be modelled via the categorical approach, dimensional approach, and
appraisal-based approach. In the categorical approach, emotions are divided into emotion categories:
anger, happiness, fear, sadness, and so on. In the dimensional approach, emotions are represented by
three major dimensions: valence (how positive or negative), arousal (how excited or apathetic) and

Appl. Sci. 2019, 9, 2470; doi:10.3390/app9122470 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7419-494X
https://orcid.org/0000-0001-5451-8815
http://www.mdpi.com/2076-3417/9/12/2470?type=check_update&version=1
http://dx.doi.org/10.3390/app9122470
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2470 2 of 18

dominance (dominant or submissive) [1,2]. Figure 1 illustrates seven basic emotions in arousal-valence
dimensions [2].
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positive emotions [14]. As the studies show, acoustic features related to the spectral and frequency of 
the speech signals can characterize emotions in the valence dimension better than acoustic features 
related to the intensity and energy of the speech signals. 

Nevertheless, these acoustic features are not perfect. Thus, problems remain in discriminating 
emotions in the valence dimension. There are more than a hundred acoustic features. Hence, they 
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Timbre is known as a complex set of auditory attributes that describes the quality of a sound. 
Usually, timbre incorporates spectral and harmonic features of a sound [15]. It allows us to 
distinguish sounds even though they have the same pitch and loudness. For instance, when a guitar 
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Furthermore, the effectiveness of timbre features has been explored for audio classification [19] 
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The emotional states of the users can be recognized by a machine that uses sensory data, which
comes from devices such as smartwatches, in order to detect the stress level of the users [3,4], or by
extracting useful acoustic features of a speech wave. The acoustic features of emotional speech signal
are well established in the arousal dimension and good results have been achieved in distinguishing
high- and low-arousal emotions. For instance, Eyben et al. studied acoustic features in detail and
proposed the geneva minimalistic acoustic parameter set (GeMAPS) [5]. In this study, more than ninety
percent accuracy was achieved in binary arousal classification, but the accuracy was less than eighty
percent with the binary valence classification. Several other studies [6–8] reported that discriminating
emotions in the valence dimension was the most challenging problem. This problem is not only with
the valence dimension but also with the discrimination of discrete emotions.

Communication between acoustic features of emotional speech and music was investigated
in [9]. Table 1 shows acoustic cues for discrete emotions expressed in speech and music performances.
From Table 1, it is clear that most of the acoustic features of anger and happiness expressed in speech
and music performances are similar. The prosodic, spectral, and excitation source features of emotional
speech signals were analyzed for anger, happiness, neutrality, and sadness, and it was reported that
those emotions share similar acoustic patterns [10–12]. Hence, there is more confusion in discriminating
between those emotions. Busso et al. reported that spectral and fundamental frequency (F0) features
discriminate emotions in the valence dimension more accurately [13].

Moreover, Goudbeek et al. reported that the mean value of the second formant was higher in
positive emotions [14]. As the studies show, acoustic features related to the spectral and frequency of
the speech signals can characterize emotions in the valence dimension better than acoustic features
related to the intensity and energy of the speech signals.

Nevertheless, these acoustic features are not perfect. Thus, problems remain in discriminating
emotions in the valence dimension. There are more than a hundred acoustic features. Hence, they need
to be analyzed in order to find the best features that can characterize emotions in the valence dimension.

Timbre is known as a complex set of auditory attributes that describes the quality of a sound.
Usually, timbre incorporates spectral and harmonic features of a sound [15]. It allows us to distinguish
sounds even though they have the same pitch and loudness. For instance, when a guitar and a flute
play the same note with the same amplitude, each instrument produces a sound that has a unique tone
color [16]. Recently, timbre features have been analyzed for music emotion classification [17,18].
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Table 1. Acoustic feature characteristics of discrete emotions expressed in speech and
music performances.

Vocal Expression

Acoustic Features Anger Fear Happiness Sadness Tenderness

speech rate fast fast fast slow slow
voice intensity high high high low low

voice intensity variability high high high low low
high-frequency energy high high high low low

F0 high high high low low
F0 variability high low high low low
F0 contours up up up down down
voice onsets fast fast fast slow slow

microstructural regularity irregular irregular regular irregular regular

Music Performance

tempo fast fast fast slow slow
sound level high low medium low low

sound level variability high high low low low
high-frequency energy high low medium low low

F0 sharp sharp sharp flat low
F0 variability high low high low low
pitch contours up up up down down

tone attack fast slow fast slow slow
microstructural regularity irregular irregular regular irregular regular

Furthermore, the effectiveness of timbre features has been explored for audio classification [19]
and music mood classification [20], but it has not been analyzed for speech emotion recognition. In this
paper, we analyzed timbre features to improve the recognition rate of emotions in a speech in the
valence dimension. Furthermore, sequential forward selection (SFS) was applied to find the best
feature subset among the timbre acoustic features. The effectiveness of the timbre features for speech
emotion recognition was evaluated by compared to well-known MFCC and energy features of the
speech signal.

Through the experiments, significant improvement was achieved using the selected best feature
subset. Timbre features proved to be effective with the classification of discrete emotions and in the
classification of emotions in the valence dimension. Average classification accuracy improvements of
24.06% and 18.77% were achieved with the binary valence classification and the classification of discrete
emotions using the combination of baseline and timbre acoustic features on the Berlin Emotional
Speech Database.

The rest of this paper is structured as follows: Section 2 gives information about related works
that investigated acoustic features of a speech signal for emotion recognition. Section 3 describes
general speech emotion recognition systems, acoustic feature extraction methods, and classification
models. Emotion databases, the experiments, and the results are given in Section 4. Analysis of the
results and discussion is presented in Section 5. Finally, Section 6 presents the conclusion of this work
and future research directions.

2. Related Works

One of the most critical factors to consider when building an SER system is finding the most
effective speech features to discriminate emotions from a speech signal. To solve this challenge, many
researchers have investigated a massive number of speech features and achieved considerably good
results in the arousal dimension (excited versus calm). For instance, CEICES systematically analyzed
the acoustic features of speech to find the best acoustic feature set. They combined the acoustic features
which they had and chose the best feature set based on classification accuracy.
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In recent studies, the investigation of the acoustic features not only in the arousal dimension
(excited versus calm), but also in the valence dimension (positive versus negative) has increased.
Goudbeek and Scherer analyzed duration, F0, voice quality, and intensity features of an emotional
speech signal to determine the role of those acoustic features regarding the arousal, valence, and
potency/control emotional dimensions [21]. Their study showed that the variation of intensity of
positive emotions was less than the variation of intensity of negative emotions. Moreover, positive
emotions have a steeper spectral slope compared to negative emotions. Finally, they concluded that
spectral shape features, and the speaking rate, which is related to rhythm, are the critical acoustic
features for discriminating emotions in the valence dimension.

Eyben et al. [22] reported the importance of cepstral features (Mel frequency cepstral
coefficients—MFCC). MFCC is closely related to spectral shape features. Speech features, such
as energy, F0, voice quality, spectral, MFCC, and RASTA style-filtered auditory spectrum features of
speech were analyzed to determine the relative effectiveness of these acoustic features in the valence
dimension in [8]. They concluded that MFCC and RASTA style-filtered auditory spectra were the most
relevant acoustic features for the valence dimension. Furthermore, the vital role of spectral shape and
slope was studied and confirmed by [23,24].

Recently, Eyben et al. proposed the GeMAPS for voice research [5]. They chose acoustic
features based on physiological changes in voice production, automatic extractability, and theoretical
significance. This acoustic feature set included frequency-related (pitch, jitter), energy/amplitude
related (shimmer, loudness), spectral (alpha ratio, spectral slope), and temporal (mean length, a rate
of loudness peaks) features. They performed binary classification in the arousal and the valence
dimensions using their minimalistic acoustic feature set and achieved 95.3% accuracy in the arousal
dimension. Nevertheless, the highest accuracy was 78.1% in the valence dimension. This standard
minimalistic acoustic feature set is much more powerful than other large-scale brute-force acoustic
feature sets. Moreover, the most effective acoustic feature set in the field of SER so far was reviewed
in [25].

Yildirim et al. reported that the most acoustic features were shared between anger and happiness,
and between neutral and sad emotions [26]. Even though these pairs of emotions have a similar
correlation in the arousal dimension, they are different in the valence dimension. Moreover, Juslin
and Laukka investigated many acoustic features of speech and music to find the communication of
emotions in vocal expressions and music performances, and they reported that most of the acoustic
features of anger, happiness, and fear were the same (Table 1) [9], but we can differentiate between
them in the valence dimension. Therefore, it is crucial to find the acoustic features that can differentiate
emotions with similar energy, pitch, loudness, duration, and so on.

In recent years, along with exploring the speech features for SER, deep learning has been applied
to various speech-related tasks. A trend in the deep learning community has emerged towards deriving
a representation of the input signal directly from raw, unprocessed data. The motivation behind this
idea is that the deep learning models learn an intermediate representation of the raw input signal
automatically. For instance, in [27], a raw input signal and a log-mel spectrogram were used as an input
to a merged deep convolutional neural network (CNN) to recognize emotion in speech. Furthermore,
deep neural networks [28] and end-to-end multi-task learning for emotion recognition from raw
speech signal [29] are recent examples of this approach. However, these frameworks might suffer from
overfitting or from the limited size of the training data. In this work, we aimed to analyze the acoustic
features of audio signals, which has not been explored for SER tasks.

The timbre model is used to distinguish two sounds with the same pitch and loudness in research
into musical sounds. In general, timbre distinguishes between two sounds that have the same pitch
and loudness [16]. Peeters proposed audio descriptors along with the acoustic feature extraction
tool named Timbre Toolbox, which could potentially characterize the timbre of musical signals [30].
These audio descriptors comprise the temporal energy envelope (attack, decay, release), the spectral
(spectral centroid, spread, slope), and the harmonic (harmonic energy, inharmonicity). Based on the
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theoretical, as well as the practical significance of these acoustic features of an emotionally expressed
speech signal, we aimed to analyze them in the valence dimension as well as to classify discrete
emotions in this paper.

3. Methodology

3.1. General Speech Emotion Recognition System

To automatically recognize emotions from a speech signal, there must be an SER system.
The traditional SER system consists of three major parts, including pre-processing, feature extraction
and classification, as shown in Figure 2.
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In the pre-processing part, a signal processing technique, such as filtering, is performed to reduce
the noise in a speech signal. It helps to enhance the overall accuracy of the SER system. Moreover,
the speech signal is segregated into voiced and unvoiced regions in this part. The reason for this is to
decrease the computational cost of feature extraction, as well as to obtain the meaningful part of a
speech signal [31].

The objective of the feature extraction stage is to obtain a feature vector that can characterize the
speech signal. This part is crucial in building the SER system. There is still no prevailing agreement
regarding the features that are the most essential in discriminating emotions.

The final part of the SER system is classification. Generally, there are two primary classification
approaches. The first includes static classification models, support vector machines (SVM) [32], and
neural networks (NN) [33]. The second is the dynamic classification model, which is the hidden
Markov model (HMM) [34]. Currently, static classification approaches predominate. The classification
model is first trained with extracted features of an emotional speech signal on training data to optimize
the model parameters, and then it is tested with the testing data to predict the emotion.

3.2. Acoustic Features

Acoustic features of a speech signal can be extracted from the whole utterance or a small part
of a speech signal, which is called a frame. The acoustic features obtained from the entire utterance
are called statistical acoustic features. Statistical acoustic features include the arithmetic mean, the
standard deviation, the maximum, and the minimum. The advantage of these acoustic features is
their amount. Because it is faster to apply a feature selection algorithm, their classification time is
shorter. On the other hand, they may not be sufficient to optimize the parameters of complex classifiers,
such as NN. Another group of acoustic features is local acoustic features, which are extracted from
frames. These acoustic features can also be subdivided into frequency (pitch, jitter, formants), spectral
(spectral slope, spectral flux, spectral energy), harmonic (harmonic energy, inharmonicity), and cepstral
(MFCC) features, based on the domain extracted. For instance, MFCC is extracted after converting the
time-amplitude signal into a time-frequency-magnitude signal and then into cepstrum. It is extracted
from the cepstrum of a speech signal. Therefore, it is classified as a cepstral feature.

Many researchers have proved that MFCC is useful for distinguishing emotions on both the
arousal and the valence dimension. It is estimated from the frequency domain using the mel scale,
which is related to the human ear scale. The human ear scale is approximately linear up to around
1000 Hz, and logarithmic for frequencies above 1000 Hz [35].

To compute the MFCC feature vector, a speech signal is overtaken first through a filter to intensify
the energy of a speech signal at a higher frequency. Then it is divided into frames (usually 30 ms
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short-time speech segments), and each frame is windowed with a hamming window to retain the
continuity of the speech signal (1), where w[n] is the filter coefficient of the hamming window, L is the
total amount of samples, and n is the current sample. After that, to convert the time domain speech
signal into the frequency domain, as well as to obtain the magnitude frequency, Fast Fourier Transform
(FFT) is performed. The next step is applying the mel-scale filter bank (2), where f is the frequency in
Hertz, which is derived from a windowed frame of a speech signal.

w[n] =

 0.54− 0.46 cos
(

2πn
L

)
0 ≤ n ≤ L− 1

0 otherwise
(1)

mel( f ) = 1127 ln(1 + f /700) (2)

Then the log value of each of the mel spectrum is taken. Finally, a discrete cosine transform (DCT)
is carried out to acquire the MFCC feature vector. The complete process of extracting the MFCC feature
vector is shown in Figure 3.
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Spectral features are derived from the spectral domain by converting a time-amplitude signal
into a complex time-frequency-magnitude form using a short-term Fourier transform (STFT). STFT is
calculated by performing a sliding window analysis over the speech signal. Next, the extraction
method of the spectral features, which are analyzed in this work, is given. We indicate a speech signal
with s(n) or s(t), where n is the sample number, t = n/sr is the time expressed in seconds, and sr is the
sampling rate. We also indicate the frequency and magnitude of the spectrum of the speech signal as
f (k) and a(t), respectively, where k is the frequency value between one and sr. The normalized form of
a(t) is calculated with Equation (3).

p(t) =
a(t)∑K

k=1 a(t)
(3)

Spectral centroid is one of the statistical moments of the spectrum. It represents the spectral center
of gravity and is computed with Equation (4). pk(t) is the normalized value of the magnitude STFT at
frequency k and time t.

ucent(t) =
K∑

k=1

f (k) pk(t) (4)

Spectral spread is another statistical moment of the spectrum. It is the spread of the spectrum
around its mean value. It is calculated with Equation (5).

uspread(t) = (
K∑

k=1

( f (k) − ucent(t))
2 pk(t))

1/2

(5)

Spectral slope is how the energy of the spectral amplitude of a signal changes in different frequencies.
Linear regression is applied to the spectral amplitude of a signal to get the spectral slope value, as in
Equation (6). ak(t) is the amplitude value of the magnitude STFT at frequency k and time t.

uslop(t) =
K

∑K
k=1 f (k) ak(t) −

∑K
k=1 f (k)·

∑K
k=1 ak(t)

K
∑K

k=1 f (k)2
− (

∑K
k=1 f (k))

2 (6)
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Spectral flatness is a measure of how noisy the signal is. We can measure it by dividing the
geometrical mean by the arithmetical mean of the spectrum. If spectral flatness value is close to 1, the
signal is considered noisy. It is computed with Equation (7).

u f lat(t) =
(
∏K

k=1 ak(t))
1/K

1
K

∑K
k=1 ak(t)

(7)

We grouped the acoustic features derived from sinusoidal harmonic partials of the speech signal
as harmonic. They are calculated using a sinusoidal harmonic model. We indicate this with ah(t) and
fh(t), which are the amplitude and frequency of partial h at time t. H is the total number of partials.

Harmonic energy is the energy of the harmonic partials. It is calculated like computing the normal
signal energy. However, this time, it is calculated from harmonic partials at a time t (8).

EH(t) =
H∑

h=1

(ah(t))
2 (8)

Noise energy is the difference between the total energy and harmonic energy (9).

EN(t) = ET(t) − EH(t) (9)

Noiseness is the measure of the degree to which the signal is harmonic or non-harmonic. When the
value of noiseness is high, a signal is mainly non-harmonic. It is calculated using Equation (10).

nsr(t) =
EN(t)
ET(t)

(10)

Tristimulus is a timbral equivalent to color attributes in vision. It consists of three different types of
energy ratios. It helps to describe the first harmonics of the spectrum. It is calculated via Equation (11).

T1(t) =
a1(t)∑H

h=1 ah(t)
, T2(t) =

a2(t) + a3(t) + a4(t)∑H
h=1 ah(t)

, T3(t) =

∑H
h=5 ah(t)∑H
h=1 ah(t)

(11)

Inharmonicity measures the departure of the frequencies of the partials fh from purely harmonic
frequencies h f0. It is calculated as the weighted sum of deviation of each partial from harmonicity. It is
computed with Equation (12).

inharm(t) =
2

f0(t)

∑H
h=1( fh(t) − h f0(t))(ah(t))

2∑H
h=1 (ah(t))

2 (12)

3.3. Classification Models

In the SER system, another crucial factor is the classification model. Many researchers have
explored different types of classifiers, such as HMM, the Gaussian mixture model (GMM), k-nearest
neighbors (KNN), the artificial neural network (ANN), and the SVM for the speech emotion recognition
challenge [36]. Still, there is no common agreement on choosing the most powerful classifier for speech
emotion classification. Each classification model has its own advantages and limitations. For this
reason, the classification model must be selected depending on the problem.

In pattern recognition, as well as in classification problems, SVM is known to be one of the
most efficient, simple, and widely used machine learning algorithms, especially for binary (two-class
classification problems) classification (positive and negative, in our case) [37]. Moreover, it can also be
extended to use in multiple classes problems. The basic idea is that it creates a hyperplane (or line)
between the classes where the margin reaches the maximum value. The margin is the distance of
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the nearest training samples from the hyperplane. It can be trained through many training methods.
One of them is empirical risk minimization. In this method, a discriminant function g(x) is estimated
from a finite set of examples by minimizing an error function (Equation (13)), where Remp is the training
error, zk is the correct class, g(xk) is the predicted class, w1 and w2 are two different classes, and n is the
number of points in the dataset. This method is for linearly separable data. For the nonlinear problem,
the kernel trick is applied to maximum-margin hyperplanes.

Remp =
1
n

n∑
k=1

(zk − g(xk))
2; zk =

{
+1, xk ∈ w1

−1, xk ∈ w2
(13)

In many recent studies, recurrent neural networks (RNNs) have been used for the SER task [38–42].
Ruben and Gloria [43] investigated the discriminative capabilities of RNNs in SER using low-level
acoustic features of speech signals. RNNs are known to be useful in sequential data. Generally, deep
neural networks (DNNs) use different parameters at each layer, but RNNs share the same parameters
through all steps. However, they inadequately cover long context information because of the gradient
vanishing problem. To solve this problem, a long short-term memory (LSTM) RNN was proposed [44],
which consisted of recurrently connected memory blocks. In a recent study [45], different neural
network architectures were evaluated for the SER task. They used spectrograms to train and evaluate
deep learning models. The convolutional neural network (CNN) was used as a feature extractor
and an LSTM-RNN was used as a classifier. In addition, in [46], emotions were recognized in both
verbal and nonverbal speech sounds using DNN. In [38], statistical and local features were used to
recognize emotions from speech. They also evaluated SVM and LSTM-RNN models and reported
that the LSTM-RNN model outperformed the SVM with both the local and statistical features of an
emotional speech. We also used SVM and LSTM-RNN classification models in our work.

4. Experiments

The analysis of acoustic features was performed both on the Berlin Emotional Speech Database
(EMO-DB) and the Interactive Emotional Dyadic Motion Capture (IEMOCAP) database. Detailed
information about emotional databases, acoustic feature extraction, and selection, as well as experiments,
is given in the following sections.

4.1. Emotional Speech Databases

EMO-DB is one of the most frequently used emotional speech databases in SER, and it is a free
public database [47] consisting of seven emotions, namely anger, happiness, neutrality, sadness, fear,
boredom and disgust. The utterances in this database were created by ten (five male and five female)
professional actors by speaking ten sentences in seven emotional states. We chose four emotions,
namely anger, happiness, neutral, and sadness, for our experiments. The main reason for this was that
these four emotions share similar acoustic features, and it is hard to discriminate these emotions in
the valence dimension [26,48,49]. Moreover, these emotions are easily accessible in almost all other
emotional speech databases. The number of utterances in each emotion category is different, meaning
that the data are unbalanced. The number of utterances in the anger emotion is almost double that of
the rest of the chosen emotions (anger (127), happiness (69), neutrality (78), and sadness (60)). To reduce
data imbalance between numbers of instance in each emotion class, we randomly chose 78 utterances
for anger emotion, and the number of utterances for the rest of the chosen emotions remained the same
as mentioned above.

The IEMOCAP database is also popular and widely used to evaluate the proposed new methods
as well as to analyze acoustic features in the SER [50]. It comprises both audio and visual data.
This database is divided into five different sessions, and each session includes acted dialogues
performed by two people. Each utterance has three categorical labels that are labeled by three
annotators. We chose four emotions, namely anger, happiness, neutrality and sadness, and the
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utterances in each emotion category were chosen via the majority win method. This means that the
utterance was selected when it was labeled with the same emotion by at least two annotators out of 3.
We randomly chose 705 utterances for each selected emotion category to avoid an imbalanced data
problem. Information about the databases, emotion categories and the number of files in each emotion
category are given in Table 2.

Table 2. Detailed information about the databases, emotion categories, and the number of samples in
each emotion category.

Emotions
EMO-DB IEMOCAP

Number of Samples Number of Samples

Anger 78 705
Happiness 69 705

Neutral 78 705
Sadness 60 705

4.2. Acoustic Feature Extraction and Selection

First, we extracted the most popular and most used acoustic features in the SER field, which
include the MFCC, Energy, and their first-order derivatives, using open-source media interpretation by
large feature-space extraction (openSMILE) [51]. Several studies have used MFCC acoustic features
for speech emotion recognition [52–54]. We also considered those acoustic features as a baseline to
evaluate our acoustic features. To extract energy and its first-order derivative, a speech signal was
divided into short 30-ms frames with 10 ms overlapping. Then, the energy and its first-order derivative
were extracted from each frame. The MFCC and its first-order derivative were extracted as shown in
Figure 3.

We divided the acoustic features into three groups. The first group included MFCC, the energy
and their first-order derivatives. We named this group the baseline acoustic features. The second
group consisted of timbre features. The timbre features were extracted using the timbre toolbox [30]
with MATLAB. In the timbre toolbox, both global (i.e., derived from the whole utterance) and local
(i.e., extracted from frames) acoustic features can be extracted. Moreover, acoustic features can be
extracted from different input representations (e.g., audio signal, short-term Fourier transform (STFT)
amplitude and power, temporal energy envelope, and harmonic). We extracted local acoustic features
from different input representations and experimented with them to find the most suitable input
representation for our problem. The STFT (amplitude) and harmonic input representations were found
to be the most suitable in our case through experiments. Classification accuracy was the criterion for
choosing the most suitable input representations. Detailed information regarding extracting timbre
features can be found in [30]. Our extracted timbre features consisted of 11 spectral features, which were
derived from the STFT (amplitude), and 8 harmonic (the number of harmonics was set to 12) acoustic
features. After extracting the timbre features, we also performed SFS [55] to find the best feature
subset among all timbre acoustic features for the third group. In the SFS algorithm, the measure metric
must be specified. It can be a particular error rate or classification accuracy. We chose classification
accuracy as a measured metric. The working principle of this algorithm was as follows. In the first
step, each acoustic feature is individually measured and the best one is chosen based on classification
accuracy. A chosen feature remains in the second step, and then other features are added one by one.
The best feature combination is selected in this step. After that, those chosen features are retained, and
the others are added again one by one in the next step. The process goes on like this until the best
feature subset is found. After performing the SFS, we found five spectral and four harmonic features
for timbre. Finally, we had three groups of acoustic features. We named them baseline, timbre all, and
timbre selected. The names of the acoustic features and their dimensions are given in Table 3.
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Table 3. Detailed information about acoustic features and their dimension.

Groups Acoustic Feature Name Dimension

Baseline

MFCC 16
Delta MFCC 16
Energy 1
Delta Energy 1

Timbre all

Spectral Centroid 1
Spectral Spread 1
Spectral Skewness 1
Spectral Kurtosis 1
Spectral Slope 1
Spectral Decrease 1
Spectral Roll-off 1
Spectral Flux 1
Spectral Energy 1
Spectral Flatness 1
Spectral Crest 1
Harmonic Energy 1
Noise Energy 1
Noiseness 1
F0 1
Inharmonicity 1
Tristimulus 3
Harmonic spectral deviation 1
Odd to even harmonic ratio 1

Timbre selected

Spectral Centroid 1
Spectral Spread 1
Spectral Flux 1
Spectral Energy 1
Spectral Crest 1
Noiseness 1
F0 1
Inharmonicity 1
Tristimulus 3

4.3. Experimental Setup

To evaluate the four groups (baseline, timbre all, timbre selected, and combination of baseline and
timbre selected) of acoustic features, we performed classification using the SVM and the LSTM-RNN
classifiers. We divided the 4 categorical emotions into positive (happiness and neutral) and negative
(anger and sadness) emotions, the same as in [5], to perform the binary valence classification. We also
carried out classification for categorical emotions. SVM classification was carried out in MATLAB using
machine learning and a deep learning toolbox. The kernel function was set to a radial base function
(RBF) (Gaussian), gamma was set to automatic, and the c parameter was set to 1. Before feeding the
data into the classifier, the z-score normalization was applied to each acoustic feature. To obtain more
stable results, we performed a five-fold cross-validation (2 speakers in each fold) in our experiments.
The LSTM-RNN classifier was built in a python programming language using the Keras [56] library.
It consisted of 2 hidden layers with 256 nodes in each layer. For the activation function, relu was
chosen with a 0.6 regularization parameter. The optimization function was Adam, and the loss function
was a categorical cross entropy.

Firstly, classification was carried out for the baseline acoustic features. The average classification
rates in all experiments are given in Table 4 for the EMO-DB and in Table 5 for the IEMOCAP. All results
were obtained by testing each file and applying the majority win method. For instance, if the speech
signal with the anger emotion consisted of 190 frames and the classifier predicted 100 frames as an
anger emotion, we considered this file to be an anger emotion. We performed five-fold cross-validation
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(each fold consists of 2 speakers) to get more stable results. Each time 4 folds were used for training
and the remaining one was used for testing. The accuracy was taken from each fold, and the final
accuracy was calculated by adding the accuracies for each fold and dividing by 5.

Table 4. Average accuracy rate for all experiments for EMO-DB. (The bold numbers indicate the highest
accuracy rate).

Acoustic Feature Set Classifiers Binary Valence Discrete Emotions

Baseline
SVM 69.16% 74.72%

LSTM-RNN 73.81% 77.72%

Timbre all
SVM 84.75% 85.67%

LSTM-RNN 81.76% 86.58%

Timbre selected
SVM 85.58% 86.07%

LSTM-RNN 80.33% 84.24%

Baseline + timbre
selected

SVM 97.87% 96.2%
LSTM-RNN 97.46% 96.49%

Table 5. Average accuracy rate in all experiments for IEMOCAP. (The bold indicates the highest
accuracy rate).

Acoustic Feature Set Classifiers Binary Valence Discrete Emotions

Baseline
SVM 71% 57.3%

LSTM-RNN 72% 58.58%

Timbre all
SVM 71% 60.39%

LSTM-RNN 74% 65.06%

Timbre selected
SVM 68% 57.85%

LSTM-RNN 72% 62.07%

Baseline + timbre
selected

SVM 72% 59.75%
LSTM-RNN 73% 63.03%

The second experiment was performed using the timbre all acoustic feature set in order to
determine the efficiency of the feature set. After that, an SFS algorithm was applied to the timbre all
acoustic feature set to find the best feature subset. The third experiment was carried out with the
timbre selected acoustic feature set. Finally, the last experiment was performed using a combination
of the timbre selected and baseline acoustic feature sets in order to validate whether these acoustic
feature sets complemented each other or overlapped.

5. Results and Discussion

One of the primary challenges in pattern recognition is finding the best features that can be
correctly discriminated with recognition. In speech recognition, as well as in emotion recognition from
speech, MFCC and energy are known to be the most useful acoustic features. Moreover, GeMAPS
can be considered a standard acoustic feature set in music classification, speech recognition, and the
SER [5]. However, some emotions are difficult to discriminate using MFCC and energy, such as anger
and happiness. In most previous studies [48,49,57], classification accuracy of the happy emotion was
low. The best accuracy rate (86.7%) was achieved using a large-scale brute-force acoustic feature set
(6373 acoustic features), and 78.1% accuracy was achieved using extended GeMAPS for binary valence
classification on EMO-DB [5]. Although the highest accuracy rate was achieved using a large-scale
brute-force acoustic feature set, it is too difficult in terms of extraction time to use those features
for real-time speech emotion recognition systems. The numbers of extracted features, along with
the extraction time, are also crucial factors to consider when training pattern models and building a
real-time speech emotion recognition system.
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First, we examined the results for the EMO-DB. In our experiment, 97.87%, which was the highest
accuracy rate (Table 4), was obtained using the combination of baseline and timbre selected acoustic
features for binary valence classification. The combination of the baseline and timbre selected acoustic
features sets also gave the highest accuracy rate for discrete emotions classification. The difference
in accuracy rate between the timbre all and timbre selected acoustic feature sets was less than 2%.
However, the number of acoustic features in timbre selected was almost two times less than the number
of features in the timbre all feature set. This means that irrelevant features in timbre were all removed
when the SFS was applied. The results were improved for the combination of the baseline and timbre
selected acoustic feature sets compared to the rest of the acoustic feature sets. Consequently, it was
clear that baseline and timbre features complemented each other.

Figure 4 shows the recognition rates of positive and negative emotions obtained using all feature
sets for binary classification. The recognition rates of both positive and negative emotions improved
for the combination of the baseline and timbre selected feature set compared to the rest of feature sets
on both SVM and LSTM-RNN. Figure 5 shows the recognition rates of discrete emotions obtained
using SVM and LSTM-RNN for different acoustic feature sets. It is clear from Figure 5 that the
recognition rates for all emotions were significantly better for the combination of the baseline and
timbre selected acoustic feature sets compared to the recognition rates for the rest of the acoustic
feature sets. The recognition rates for angry and happy emotions increased substantially for the
timbre all acoustic feature set, but the changes in the results for neutral and sad emotions were not
significant. Timbre features improved the discrimination of emotions that have the same level of pitch
and loudness. Baseline acoustic features can discriminate emotions when the acoustic features of
emotions in speech, such as pitch and loudness, are different. In Table 6, comparison of the results in
the literature with a proposed feature set was given for EMO-DB. From Table 6, it can be seen that the
proposed feature set increased recognition accuracy for both the discrete emotions classification and
the binary valence classification.
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Table 6. Comparison of the results in literature with the proposed acoustic feature set for EMO-DB.

Literature Acoustic Features Classifier Highest
Accuracy Database Number of

Emotions

Discrete Emotions

Quan et al.
(2017) [58]

Correlation, cepstral
distance, MFCC,

prosodic
SVM <80% EMO-DB 3,4,6

Palo et al.
(2018) [33]

LPCCVQC MLP 83%
EMO-DB 4MFCCVQC RBFN 79%

PLPVQC PNN, DNN 76%

Proposed Baseline + timbre
selected

SVM,
LSTM-RNN 96.49% EMO-DB 4

Binary Valence

Eyben et al.
(2016) [5]

eGeMAPS
SVM

78.1%
EMO-DB 2ComParE 86.7%

proposed Baseline + timbre
selected

SVM,
LSTM-RNN 97.87% EMO-DB 2

The results on IEMOCAP were different from EMO-DB. As can be seen from Table 5, the highest
recognition rates for binary valence classification (74%) and the classification of discrete emotions
(65.06%) were achieved using the timbre all acoustic feature set. The results obtained using the timbre
selected acoustic feature set were higher than the baseline feature set and close to the timbre all feature
set. Although the recognition rates on a combination of the baseline and the timbre selected feature set
were better than the baseline feature set, they were lower than the results on the timbre all feature set.
The baseline and timbre selected feature sets complemented each other on the IEMOCAP database.
Figure 6 shows the recognition rates of positive and negative emotions achieved using the baseline,
timbre all, timbre selected, and the combination of baseline and timbre selected feature sets for binary
valence classification.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19 
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The highest recognition rate for positive emotion was obtained using the timbre all feature set
increased the recognition rate of positive emotion, but it decreased for the timbre selected feature set
when using SVM. The difference between recognition rates of negative emotion in all feature sets was
not significant. Figure 7 presents the recognition rates of anger, happiness, neutrality, and sadness
obtained using all feature sets. It is clear from Figure 7 that the timbre all feature set improved the
recognition rate of all emotions except anger compared to the baseline feature set. In both classifiers,
the recognition rate of emotions decreased with the timbre selected feature set compared to the timbre
all feature set. Table 7 shows the comparison of the results in literature with the proposed acoustic
feature set for IEMOCAP. It is clear from Table 7 that the accuracy obtained using the timbre all feature
set is higher than the other results in the literature. Acoustic features used in the literature is given in
Table 8.
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Table 7. Comparison of the results in the literature with the proposed acoustic feature set for IEMOCAP.

Literature Acoustic Features Classifier Highest Accuracy Database Number of Emotions

Discrete emotions

Lee et al. (2015) [59] LLDs BLSTM-ELM 63.89% IEMOCAP 4
Mirsamadi et al. (2017) [39] LLDs BLSTM-WPA 58.8% IEMOCAP 4

Fayek et al. (2017) [45] Spectrogram LSTM 58.05% IEMOCAP 4
Tzinis et al. (2017) [38] Statistical LSTM 60.02% IEMOCAP 4

Proposed Timbre all LSTM-RNN 65.06% IEMOCAP 4

Bidirectional LSTM with extreme learning machine (BLSTM-ELM) and weighted pooling attention (BLSTM-WPA).

Table 8. Acoustic features used in the literature [38].

Low Level Descriptors (LLDs) Statistical Features

Root mean square (RMS) Energy Position max/min
Quality of Voice Arithmetic mean, standard deviation

Zero crossing rate Skewness
Jitter Local Kurtosis

Jitter DDP (difference of periods) Linear regression coefficient 1/2
Shimmer Local Quadratic & Absolute linear regression error

F0 by Sub-Harmonic sum (SHS) Quartile 1/2/3
Loudness Quartile range 2-1/3-2/3-1

Probability of Voicing Percentile 99
Harmonics to noise ratio (HNR) by Autocorrelation function (ACF) Up-level time 75/90

MFCC Percentile 1
Line spectral pairs (LSP) Frequency Percentile range 1–99

Log mel frequency band (MFB) Onsets number
F0 Envelope Duration

During the experiments that applied the SFS method, it was found that some of the spectral shapes
(spectral skewness, kurtosis, slope, decrease, roll-off, flatness) and harmonic (harmonic energy, noise
energy, harmonic spectral deviation, and odd-to-even harmonic ratio) features of timbre were all unable
to characterize the emotions from speech as well as the features in the timbre that had been selected for
the EMO-DB. In addition, the timbre selected consisted of only nine acoustic features, which was very
useful in terms of dimensionality compared to a large-scale brute-force acoustic feature set for building
an automatic SER system. Furthermore, it can characterize emotions in the valence dimension. For the
EMO-DB, overall, the SVM and the LSTM-RNN gave good results for the combination of the baseline
and timbre selected acoustic feature sets.

The timbre features also improved the recognition rates of emotions for the IEMOCAP.
The improvement was not as high as for EMO-DB. The IEMOCAP database was originally designed
to research emotion recognition from multiple modalities, including facial expressions, gesture, and
speech. We only used speech to recognize the emotions, and this might not have been enough to
achieve higher results for this database. However, the results are comparable to the literature results.
We achieved higher results using the LSTM-RNN in terms of classifiers.
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The experimental results in this work showed the effectiveness of the timbre features, which
consisted of spectral and harmonic features. Timbre features can characterize emotions that share
similar acoustic contents in the arousal dimension, but are different in the valence dimensions, such
as anger and happiness. Moreover, we investigated whether timbre features can be used not only to
discriminate instrument sounds, music emotion recognition [17,18], and music mood classification [20],
but also to classify emotions in a speech signals. Spectral shape and harmonic features complement
each other to describe the voice quality of a sound. When we combined timbre selected and baseline
acoustic features, the results improved significantly compared to the rest of the acoustic feature sets
for EMO-DB. The difference between the results of timbre and the combination of the baseline and
timbre selected acoustic feature sets was not high (around 3%) for IEMOCAP. Timbre selected and the
baseline acoustic features complement each other for both databases.

6. Conclusions

The primary objective of this work was to analyze the timbral acoustic features to improve the
classification accuracy of emotions in the valence dimension. To accomplish this, timbre acoustic features
that consisted of spectral shape and harmonic features were extracted using a timbre toolbox [30].
To find the best feature subset among the timbre acoustic features, the SFS was applied. MFCC, energy,
and their first-order derivatives were also analyzed in order to compare the results. All acoustic features
were divided into four groups, namely baseline (MFCC, energy and their first-order derivatives),
timbre all, timbre selected and a combination of baseline and timbre selected acoustic features.

The classification was performed for binary valence and classification of categorical emotions
using SVM and LSTM-RNN on the EMO-DB and IEMOCAP emotional speech databases. The average
accuracy rates of 24.06% and 18.77% were improved for binary valence and discrete emotions
as compared to the results using the baseline acoustic features for the EMO-DB. Although the
improvement of the average classification rate for the IEMOCAP database was not high, the classification
accuracy of happy and neutral emotions was improved considerably using timbre all acoustic features.
The LSTM-RNN gave better results than SVM for the IEMOCAP.

In conclusion, timbre features showed their effectiveness in the classification of positive and
negative emotions, as well as the classification accuracy of happy emotion improved considerably.
For future work, timbre features should be analyzed for classification of fear and boredom emotions,
which are also a challenge to discriminate. Moreover, timbre features need to be analyzed with other
types of acoustic features to find an acoustic feature that complements timbre features.
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