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Abstract: We theoretically predict a novel oscillation that will be observed during the dynamical
processes of one-dimensional electronic photoinduced phase transitions. This oscillation is considered
to be a breathing mode of a quantum domain of a photoinduced phase in the background of the
initial phase. When the initial phase is sufficiently stable, being far apart from the phase boundary,
the domain feels a constant attractive force depending on its size or the distance between the two
domain walls. This fact allows an interpretation that this oscillation is essentially the same as a
so-called Bloch oscillation seen for the Stark ladder.
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1. Introduction

The phenomena of photoinduced electronic phase transitions (PIPT) have been attracting much
attention for decades [1–6]. In particular, their ultrafast aspects are important [7–10], because the
dynamics are considered to be mainly related to the electronic degrees of freedom. Their time
scales are of the order of several femto to several ten femto seconds, which are roughly the inverse
of electron transfer energies. The actual materials are, for instance, tetrathiafulvalene-p-chloranil
(TTF-CA) as a neutral-ionic transition system [7,11], one of the MX chains, [Pd(chxn)2Br]Br2 with M=Pd
and X=Br [9,10], which are both quasi-one-dimensional systems, and α-(BEDT-TTF)2I3 (BEDT-TTF:
bis(ethylenedithio)-tetrathiafulvalene) as a quasi-two-dimensional molecular solid [8]. To describe such
systems, we assume a model, which consists of only electronic degrees of freedom. The actual examples
are Hubbard models, extended Hubbard models, and other models that are appropriately modified
depending on each system [12–18]. What is crucial here is that the Hilbert space associated with the
model should have some special states originating from another phase embedded in a low-energy
region that can be accessed by photoexcitation. We call it Hilbert space anomaly. In our scenario, we think
that such states are excited by light and the system is inevitably changed into another phase.

Here, we must be cautious about the following point. In Figure 1a, we draw a situation very
schematically. The state |g〉 is the ground state from which we start a photodynamics, while |g′〉 is
that for another phase. In a finite-size cluster, their energies can be close to each other as drawn here.
However, in the thermodynamic limit, the energy difference becomes infinite, which means that the
photoexcitation with modest photon energy from |g〉 to |g′〉 never occurs. Furthermore, the matrix
element of photoexcitation, 〈g′| Ĵ|g〉, where Ĵ is the electric current operator, is considered to be very
small, assuming that they have completely different electronic configurations. Note that Ĵ is assumed
to have a short-range nature, like the model itself. For these reasons, the direct transition from |g〉
to |g′〉 is strictly prohibited in typical situations, and we think of another situation as illustrated in
Figure 1b. Again, we assume a model such as a Hubbard model or an extended Hubbard model

Appl. Sci. 2019, 9, 2461; doi:10.3390/app9122461 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/12/2461?type=check_update&version=1
http://dx.doi.org/10.3390/app9122461
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2461 2 of 12

with short-range interactions. In such models, the photoexcitation is described as a charge transfer
over only a few sites. From here on, we restrict ourselves to the simplest case where only one site
transfer is allowed, because the generalization is straightforward. Such a situation is realized with
a model in which only the nearest-neighbor electron hopping is assumed for the Hamiltonian and the
electric current operator. The excited electron and the hole are located at neighboring sites just after
photoexcitation. We consider this pair as a transition core of PIPT and think that this core evolves into
a spatially extended region, that is, a domain, as shown in Figure 1b. We emphasize that this domain
can be located anywhere, which property is nothing but a translational invariance. The true state is
a linear combination of individual states at different positions and keeps quantum coherence.

|g’ >

|g >

hν

(a) (b) (c)

Figure 1. Scenarios of photoinduced electronic phase transitions (PIPTs). (a) Direct transition from the
ground state of the initial phase to that of another phase. In a bulk system, this is strictly prohibited.
(b) Domain formation on the phase boundary and (c) the formation of a small domain in situations far
from the phase boundary. In (b), the domain grows persistently in the absence of dissipation, while the
growth saturates and a breathing oscillation remains in (c).

So far, we discussed the growth of such quantum domain [13,14]. Particular attention was paid to
the cases in which the initial state is in the vicinity of the phase boundary. In those cases, the domain
grows most effectively once it is created with sufficient energy. Such growth is associated with one
of its internal degrees of freedom, that is, the spatial size. In one dimension, this size is identical to
the distance between the two domain walls on both sides. In the higher dimensional cases, on the
other hand, the most fundamental degree of freedom is the radius of a domain, although the degrees
of the shape make the description more complicated. As is already mentioned, the quantum domain
can be dispersive. Such a feature is associated with its center of gravity, as was discussed in the past
studies [14,15]. Furthermore, the domain growth does not continue forever [16]. Briefly speaking,
the quantum domain is affected by other degrees of freedom, for instance, the phonons, which provide
incoherence to the growth process, and we expect that they possibly hinder the growth, as a similar
mechanism argued for quantum friction [19].

In this article, we focus on a more general case. We start the dynamics after the photoexcitation
from an initial state, which is chosen as a certain point in the ground-state phase diagram. We assume
that this point is not close to the phase boundary. In these cases, true PIPTs are not expected to occur.
However, we think that it is possible to observe a precursor. Here, the precursor is defined as a quantum
domain with a small spatial extension. One of its detections is of course via the difference spectrum
between the spectra before and after the photoexcitation. The problem will be a small signal because of
the relatively small converted fraction. We here propose another detection, which is via the oscillation
typical to the small quantum domain. As shown in Figure 1c, this oscillation is interpreted as a breathing
mode of the domain. It has at least two advantages in the detection. The first advantage is that the
frequency can be located within the optical gap, which makes the identification relatively feasible. As the
second advantage, when the system is one-dimensional, the oscillation is equivalent to the so-called
Bloch oscillation found for a wave packet in a uniform field, namely, in a Stark ladder [20–23], which
means that the oscillation frequency is basically identical to the step energy, that is, the energy difference
corresponding to the one-site growth. Such features are argued in detail in the following sections.
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2. Model and Method

We employ the same model that we used in past studies. This model has been used for describing
TTF-CA [12,24–27], and its model hamiltonian in the absence of lattice deformation is

H = −t0 ∑
lσ
(e−i(ea/h̄c)A(t)C†

l+1σClσ + H.c.) + U ∑
l

nl↑nl↓ + V ∑
l

nlnl+1 + ∆e f f ∑
l=even

nl , (1)

where Clσ is the electron operator at the lth site with spin σ, and nlσ is its number operator with
nl = nl↑ + nl↓. We adopt the periodic boundary condition. Here, we place TTF (CA) molecules at the
odd- (even-) numbered sites. The effect of light is incorporated via the Peierls phase, namely, the extra
phase factor in the first term, with A(t), −e, and a being the vector potential of light, the electronic
charge (e = |e|), and the lattice constant, respectively. TTF -CA is well known to have two fundamental
phases, which are the neutral phase and the ionic phase, as illustrated in Figure 2 [28–35]. In the neutral
phase, each molecule remains electrically neutral, while a charge transfer occurs from the donor (D) to
the acceptor (A), leading to a chain of D+ and A−. From here on, we assume that the initial state is in
the neutral phase. In this case, the excitation energies in the localized limit are V + nex(2V + ∆e f f −U)

with nex being the number of electron excitations, which are nearly degenerate around the phase
boundary, i.e., 2V + ∆e f f = U. The parameters appropriate for TTF-CA are estimated as U = 2.4080 eV,
V = 1.070 eV, and t0 = 0.17 eV [13,36,37]. The remaining parameter, ∆e f f , takes a value close to 0.27 eV,
which is the value on the phase boundary. In this article, we mainly assume much larger values
because we are interested in cases that are rather apart from the phase boundary. In the actual case,
lattice deformations such as the molecular dimerization are known to occur in the course of the
neutral-to-ionic transition, although we do not argue them here because we are interested in the early
stage of dynamics before the lattice deformations occur.
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Figure 2. Schematics for a neutral-ionic-transition system. (a) The neutral phase and (b) the ionic phase.
D and A mean a donor and an acceptor, which correspond to TTF and CA, respectively, for TTF-CA.
The green oval indicates molecular dimerization.

To discuss dynamical behaviors, namely, time evolutions after photoexcitation, we first determine
the ground state |g〉 by exact diagonalization and next perform exact time-dependent calculation,
using a N-site ring. For the extended Hubbard model, we choose N = 16. The vector potential along
the chain direction, A(t), is expressed by the electric field along the same direction, E(t) , as

A(t) = −c
∫ t

0
dt′E(t′) . (2)
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In this work, we assume a step function for the envelope of E(t), as

E(t) = E0 θ(t)θ(τd − t) sin(ωct) , (3)

where E0, ωc, and τd are the amplitude of the uniform electric field, the central frequency, and the
duration time of the pulse, respectively, and θ(t) is the step function. Using Equations (2) and (3),
the explicit functional form of A(t) for t < τd is

A(t) = cE0(cos(ωct)− 1)/ωc , (4)

and A(t) = A(τd) for t ≥ τd. Compared with other pulse forms, the present form has an advantage
that the check of the calculation is easy because the total energy is conserved after the pulse, i.e., t ≥ τd.
The method is based on a Taylor expansion of the time evolution operator [38]. We include the terms
up to 10th, which preserve the norm of the state vector with practically sufficient precision during the
time region treated in this article. Throughout this article, the unit of time is h̄/eV∼ 0.66 fs. In addition
to this model, we also use an effective model, that is, a domain model. The treatment of this model is
straightforward and allows us to calculate time evolutions in huge systems.

For the original model in Equation (1), we also calculate an ordinary optical conductivity spectrum,
which is expressed as

σ(ω) =
γ

ωN ∑
µ

|〈µ| Ĵ|g〉|2 1
(ω− Eµ + Eg)2 + γ2 , (5)

where Eg is the ground state energy, and |µ〉 is the eigenstate associated with the energy eigenvalue Eµ.
Here, the artificial broadening γ is set to 0.1t0. The current operator, Ĵ, takes the ordinary definition as

Ĵ = −ieat0 ∑
lσ
(C†

l+1σClσ − H.c.) . (6)

We calculate the optical conductivity by the method of a continued fraction [39].

3. Results

3.1. Extended Hubbard model

In Figure 3, We show the results of time-dependent calculations for ∆e f f = 0.28 eV. These results
correspond to the case slightly apart from the phase boundary, and we expect that the domain
grows most effectively in the absence of dissipation. In other words, this is a typical PIPT, in which
a macroscopic part of the sample is converted into another phase [40–42]. In Figure 3a, the electron site
density at the odd-numbered site (odd site, hereafter) is depicted. Here, τd and h̄ωc are 30 (h̄/eV) and
1.0 eV, respectively. The strength of the amplitude of the electric field is set at eaE0 = 0.2 eV throughout
this subsection. Since the initial state is in the neutral phase, the odd site is initially the charge-rich
site. The decrease in the density at the odd site consequently indicates the transition from the neutral
state to the ionic state. In experiments, the time dependency is typically observed for the photoinduced
reflectivity (∆R/R) at a fixed frequency, and the result is transformed into a spectrum via wavelet
analyses. Here, we avoid direct calculation of reflectivity and focus on the site density because the
latter affects the former very sensitively. By the way, the present system size is limited to 16 sites,
which is the reason that the curve of the conversion seems to be rather saturated despite the initial
state just on the phase boundary.

In addition to the overall decrease in the site density, we observe an oscillatory component.
To analyze the oscillatory component, we fit the smooth background to a function expressed by the
green curve and subtract it from the original curve. The extracted component is applied to wavelet
analysis, giving a spectrogram appearing in Figure 3b. Finally, we integrate this over the observation
time and obtain the frequency distribution (red curve) in Figure 3c. For comparison, we also show
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the ordinary optical conductivity spectrum (blue curve) and find that they are similar to each other.
This is understood in the following way. The general form of the time-dependent state vector is
|Ψ(t)〉 = ∑µ aµe−iωµt|µ〉, where |µ > and ωµ are the eigenstate and its eigenenergy, respectively.
Note that the coefficient aµ are constant after the pulse end, namely, t ≥ τd. When we take the matrix

element as 〈Ψ(t)|nl |Ψ(t)〉, the terms like a∗µ′ aµe−i(ωµ−ωµ′ )t appear, and the combinations of |µ〉 and |µ′〉
as |g〉 and any excited state give the oscillations corresponding to the optical conductivity spectrum.
Here, we make two remarks on the peaks around zero energy in the optical conductivity. Firstly,
the enhancement at zero energy originates from the prefactor of 1/ω in the optical conductivity formula
in Equation (5). Secondly, the peaks at less than 0.25 eV are attributable to the spin excitations from the
state of the ionic phase. As was mentioned in Ref. [13], the state of the ionic phase exists energetically
slightly higher than that of the neutral phase, that is, the ground state of this case. According to a past
study [43], the spin excitations from the ionic state are optically active due to the site-alternate potential
appearing as the last term of Equation (1). Anyway, the appearance of such low energy peaks is due to
a size effect, and we neglect them in the following.
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Figure 3. Dynamical behaviors for ∆e f f = 0.28 eV during and after the pulse excitation with h̄ωc = 1.0 eV
and τd = 30 (h̄/eV). (a) The site density at the odd-numbered site; (b) a spectrogram obtained from (a);
and (c) the time integration of (b) (red line) and optical conductivity (blue line). The two green arrows
in (c) show that the energy difference is the same at the two parts.

Meanwhile, we carefully inspect Figure 3c and notice an oscillatory component that is not seen in
the optical conductivity, which is located around 0.40 eV (hatched region), slightly below the lowest
peak of the optical conductivity. We consider this contribution as originating from the term as |µ〉
and |µ′〉 being the first and second optically excited states that correspond to the first and second
peaks in the optical conductivity, respectively. The energy difference between the peaks is around
0.4 eV, which is almost the same as the energy of the new oscillatory component, as specified by the
horizontal arrows. The appearance of this component is quite natural because the coherence between
the excited states is maintained in our calculation that assumes no dissipation. Regarding this new
oscillation, we add one more remark. We easily notice a repeated pattern in the region of t ≥ 30
(h̄/eV) and E ≥ 0.5 eV of Figure 3b. Checking the period of this time structure, we judge that this is
another manifestation of the new oscillation. As the last comment to Figure 3, the peak distribution
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of the optical conductivity is rather sparse. Since it is a continuum in an infinite system on the phase
boundary, this sparse distribution should be interpreted as due to the finite size effect.

We next argue the cases of which the initial states are far from the phase boundary. In Figure 4,
we summarize the results calculated for ∆e f f = 0.50 eV and h̄ωc = 1.5 eV. The larger value for ∆e f f
lowers the site energy of the odd sites, leading to the stabilization of the neutral phase. Again,
we show three figures that are analogous to those in Figure 3. In addition, in this case, we recognize an
oscillational component that is absent in the optical conductivity, around 0.5 eV. We again attribute this
to the energy difference between the first peak and the second energy band in the optical conductivity,
as specified by the horizontal arrows. We emphasize that the peak positions in the spectrum are
almost free from the size effect because the larger order parameter in this case makes the state rather
localized [13]. We, therefore, assure that the energy of the new oscillatory component is well below the
optical gap of about 1 eV, which suggests the feasibility of its detection. At this point, readers might
have a question related to the covered energy region. Namely, the present duration time is 30 (h̄/eV),
of which the inverse is roughly 0.03 eV. Even if we multiply it by 2π, it becomes only 0.2 eV, which
is much smaller than the concerned energy difference. We note that the present pulse form is a step
function and that the covered energy region extends widely obeying a function like 1/(E− h̄ωc)2.
We confirm this region in Figure 4d, which shows energy distribution in the excited states immediately
after the pulse, with the case of ∆e f f = 0.50 eV as an example. We find that not only the directly
excited region around h̄ω = 1.5 eV but also the state of the first peak is substantially excited due to this
wide extension. We also see at least two oscillatory components at 0.25 eV and 0.2 eV. While detailed
analyses are still required, we tentatively attribute the former to the interband coherence between the
second energy band and the third energy band and the latter to the intraband coherence within the
second energy band.
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Figure 4. (a–c) Same as Figure 3, but for ∆e f f = 0.50 eV and h̄ωc = 1.5 eV; (d) weight distribution at the
pulse end, i.e., t = τd.

Almost the same feature is also confirmed in a much more localized case with ∆e f f = 0.7 eV.
In Figure 5, we again show the calculated results, which are obtained with h̄ωc = 1.2 eV. The extra peak
appears around 0.7 eV, which coincides with the energy difference between the first and second peaks
in the optical conductivity. From these three cases, we judge that the coincidence is not accidental
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and that the newly appearing oscillatory components originate from the coherence between the
excited states.
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Figure 5. (a–c) Same as Figure 3, but for ∆e f f = 0.70 eV and h̄ωc = 1.2 eV.

3.2. Domain Model

As is already mentioned, the treatment based on the extended Hubbard model has a disadvantage
of a restricted system size. To understand the dynamical behaviors depending on ∆e f f , the use of the
domain model [12–14] is considered to be effective. The domain model is defined as

He f f = −t0 ∑
lD ,p
{(|lD, p + 1〉+ |lD − 1, p + 1〉)〈lD, p|+ h.c.}+ ∑

lD ,p
E(p)|lD, p〉〈lD, p| , (7)

where |lD, p〉 is the domain state of which the spacial size and the position of the leftmost site are p
and lD, respectively. The domain energy, E(p), is defined as E(p) = V + p(2V + ∆e f f −U), which
consists of the domain internal energy and the domain-wall energy. While this model considers only
the domain degree of freedom, it is known to reproduce the properties of the extended Hubbard model
close to the phase boundary when the problem is limited to the case in which only one domain exists,
that is, the limit of weak excitation. The advantage of this model is, of course, the nature of a one-body
problem, which makes calculations in large systems realistic. Another remark related to the treatment
of this model is the use of a first-order perturbational theory. Since we assume weak excitation as we
already mentioned, this treatment is considered to be appropriate. In actual numerical calculations,
we slightly modify the form of A(t) by adding a factor of exp(−γt) to avoid any accidental divergence
in the energy denominator. We set γ at 0.002 eV, and it is confirmed that the final result is almost
the same as the result with γ = 0 when the latter is safely obtained. Furthermore, we restrict our
calculation in the subspace of zero total momentum because the momentum of visible or infrared
light is negligible. In this case, the effective model is further reduced to that with only p, which is
expressed as

He f f = −2t0 ∑
p
((|p + 1〉〈p|+ h.c.) + ∑

p
E(p)|p〉〈p| . (8)
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We emphasize that the transfer energy is doubled due to the motions of the two domain walls on
both sides [14]. Regarding the effect of photoexcitation, it is expressed by the following perturbational
term as

He−ph = E0 θ(t)θ(τd − t) sin(ωct)(|p = 1〉〈g|+ h.c.) . (9)

Since we use the first-order perturbational theory and only discuss the motions in the excited states,
the magnitude of electric field E0 is irrelevant in the following.

In Figure 6a, we draw the time evolution of the averaged domain size, which is defined as
∑lD ,p p|〈Ψ(t)|lD, p〉|2, with |Ψ(t)〉 being the time-dependent state vector. h̄ωc and τd are 1.7 eV and
18 (h̄/eV), respectively. As is seen immediately, the oscillatory behavior is observed and its period
gradually increases toward the critical point at ∆e f f = 0.27 eV. From a different viewpoint, these are
interpreted as the motions of a wave packet along the relative coordinate of the two domain walls, as
schematically depicted in Figure 6b.

E
n

e
rg

y

1 2 4

A
v
e

ra
g

e
d

 D
m

a
in

 S
iz

e
 (

s
it
e

s
)

Δeff=0.27

Δeff=0.30

Δeff=0.35

Δeff=0.70

Δeff=0.40

Δeff=0.50

(a) (b)

5 6  ...3
Domain size pt ( / eV )

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100  120

Figure 6. Dynamical behaviors in the domain model. All the results are obtained with ωc = 1.7 eV and
τd = 18 (h̄/eV). (a) The time evolutions of the averaged domain size; (b) schematics of a real-space
motion of a wave packet defined along the relative coordinate of the two domain walls.

To understand the nature of these oscillations, we perform Fourier analyses, particularly,
for ∆e f f = 0.50 eV. In Figure 7a, we show the oscillatory components from which the background
components are already subtracted. The red curve is obtained from the corresponding curve in
Figure 6a, while the blue curve from the result with h̄ωc being as high as 10.2 eV. The comparison
of these two cases in Figure 7a does not give any meaningful information. However, their Fourier
transforms in Figure 7b show that the numbers of principal peaks are two and one for the former and
the latter, respectively. Closer analyses of the eigenenergies defined as e(i), which appear in Figure 7c,
indicate that the two peaks for h̄ωc = 1.7 eV are assigned to e(2)− e(1) and e(3)− e(2). As is easily
understood from the form of E(p), the present system is considered as a Stark ladder in a uniform
field. Only one modification is the boundary condition at the shortest distance between the domain
walls, which deforms the differences between the two consecutive eigenenergies at the lower edge
from an equidistant structure. In contrast, excitations with higher energies fall within in the ladder
more satisfactorily. The single frequency energy confirmed for h̄ωc = 10.2 eV corresponds to the unique
energy difference between the two consecutive eigenenergies in the high energy limit, although the
former energy is deviated from the latter because of the resolution of the Fourier transform. Hereafter
we define this energy difference as Ed.

Such a situation reminds us of a so-called Bloch oscillation that was first proposed for a particle
in a crystal under a uniform field [20–23]. In the case of a Bloch oscillation, a periodic motion in
real space is expected due to a crystal effect, which is similar to the cases in Figure 6a except that for
∆e f f = 0.27. For an infinite Stark ladder, it is well known that Ed coincides with the energy difference
between the two consecutive sites [22]. Applying this property to the present case, Ed is evaluated as
(2V + ∆e f f −U) for high-energy excitations. It is also known for the Stark ladder that the period and
the amplitude of the oscillation are given as 2πh̄/Ed [20] and 4t0/Ed [23], respectively. Since the critical
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point is given by (2V + ∆e f f −U) = 0, both the period and the amplitude diverge toward the critical
point. In particular, a more extended period, namely, a smaller oscillation frequency near the phase
boundary pushes the signal within the optical gap, because the optical gap remains finite even on the
phase boundary [29]. By the way, in the case of an ordinary Bloch oscillation, the wave packet almost
keeps its initial form when the form of the initial wave packet is a smooth Gaussian [23]. In the present
case, the wave packet gradually loses its original form defined at the pulse end (t = τd), which tendency
is attributed to the somewhat complicated form at the pulse end and the boundary condition. As the
last remark, we mention the value of Ed itself. As is already mentioned, for an infinite Stark ladder, Ed is
exactly the energy difference between the two consecutive sites. This fact suggests that the frequency
of the oscillatory component in high energy excitations gives us the value of (2V + ∆e f f −U) reliably.
This contrasts with general cases, where measured quantities are renormalized due to a finite amount
of transfer, and it is difficult to estimate the bare values of parameters directly.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100  120A
v
e

ra
g

e
d

 d
o

m
a

in
 s

iz
e

 
(s

u
b

tr
a

c
te

d
)

 0  1  2  3  4

Energy (eV)

e(1) e(3)e(2)

~Ed
(a) (c)

(b)

Energy (eV)

S
q

u
a

re
 o

f 
F

o
u

ri
e

r 
C

o
m

p
. 
(A

rb
. 
u

.)

 0

 100

 200

 300

 0  0.2  0.4  0.6  0.8  1

e(3)-e(2) e(2)-e(1)

~Ed

t ( / eV )

Figure 7. (a) Time evolutions of the averaged domain size from which the background component
is subtracted. Both the curves are obtained with ∆e f f = 0.50 eV. The red curve is the same as that in
Figure 6a, namely, with ωc = 1.7 eV. The blue curve is calculated assuming ωc = 10.2 eV. (b) Squared
magnitudes of Fourier components of each trajectory. Same colors as those in (a) are used for different
excitation energies. (c) Eigenenergies measured from the ground state, for ∆e f f = 0.50 eV.

4. Discussions

We discussed what we expect to observe in time-resolved measurement in the context of electronic
PIPTs. In particular, we focused on the oscillatory components seen in the time-dependent site density
in situations where the initial state is located far from the phase boundary. While our calculation is
restricted to one dimension, the present results demonstrate that the breathing mode of a domain can
be identified as an extra oscillation that is absent in the optical conductivity spectrum. In relation to
the experiments, we can choose a target system from various actual materials whose ground states are
considered to be far from the phase boundary. For instance, the systematic chart including TTF-CA
and other analogous materials [29] will help the exploration of this oscillation. From a theoretical point
of view, such oscillation emerges as coherence between optically excited states and is essentially the
same as that recognized as Bloch oscillation in a Stark ladder.

As future works, we propose various extensions from the present work. One is the case of higher
dimensional systems. In contrast to the one-dimensional case where only the linear size of a domain
is relevant, two- and three-dimensional domains can have many shape-related degrees of freedom [18].
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The exploration of them will be one of the crucial extensions. As another extension, we have concerns about
the generation of incoherence. As we already discussed, the concerned oscillation is directly related to
the coherence between optically excited states. In other words, the breathing motion of a domain persists
until the coherence is lost. Regarding this, the effect of incoherence was discussed in the context of a pure
Stark ladder [44]. As the source of incoherence, we think of several candidates such as phonons, magnons,
and independent excitations of electrons. The exploration of such interplays is also interesting and is
expected to deepen our understanding of PIPTs.
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