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Featured Application: The work discussed herein provides a reference for selecting appropriate
techniques to optimize and improve the performance of current fundamental frequency estimation
methods-based text-to-speech.

Abstract: Recent studies in text-to-speech synthesis have shown the benefit of using a continuous
pitch estimate; one that interpolates fundamental frequency (F0) even when voicing is not present.
However, continuous F0 is still sensitive to additive noise in speech signals and suffers from short-term
errors (when it changes rather quickly over time). To alleviate these issues, three adaptive techniques
have been developed in this article for achieving a robust and accurate F0: (1) we weight the pitch
estimates with state noise covariance using adaptive Kalman-filter framework, (2) we iteratively
apply a time axis warping on the input frame signal, (3) we optimize all F0 candidates using an
instantaneous-frequency-based approach. Additionally, the second goal of this study is to introduce
an extension of a novel continuous-based speech synthesis system (i.e., in which all parameters are
continuous). We propose adding a new excitation parameter named Harmonic-to-Noise Ratio (HNR)
to the voiced and unvoiced components to indicate the degree of voicing in the excitation and to
reduce the influence of buzziness caused by the vocoder. Results based on objective and perceptual
tests demonstrate that the voice built with the proposed framework gives state-of-the-art speech
synthesis performance while outperforming the previous baseline.

Keywords: continuous F0; speech synthesis; Kalman filter; time-warping; HNR

1. Introduction

Parametric representation of speech often implies a fundamental frequency (also referred to as F0
or pitch) contour as a part of the text-to-speech (TTS) synthesis. During voiced speech, such as vowels,
pitch values can be successfully estimated over a short time period (e.g., a speech frame of 25 ms).
Pitch observations are continuous and usually range from 60 Hz to 300 Hz for human speech [1].
However, in unvoiced speech, such as unvoiced consonants, the long-term spectrum of turbulent
airflow tends to be a weak function of frequency [2], which suggests that the identification of a single
reliable F0 value in unvoiced regions is not possible. Thus, a commonly accepted assumption is that
F0 values in unvoiced speech frames are undefined and must instead be represented by a sequence
of discrete unvoiced symbols [3]. In other words, F0 is a discontinuous function of time and voicing
classification is made through pitch estimation.

Appl. Sci. 2019, 9, 2460; doi:10.3390/app9122460 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3094-6916
https://orcid.org/0000-0002-2311-4858
http://www.mdpi.com/2076-3417/9/12/2460?type=check_update&version=1
http://dx.doi.org/10.3390/app9122460
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2460 2 of 23

In standard TTS with the mixed-excitation system, frames classified as voiced will be excited with
a combination of glottal pulses and noise while frames classified as unvoiced will just be excited with
noise. Consequently, any hard voiced/unvoiced (V/UV) classification gives two categories of errors:
false voiced, i.e., setting frames to voiced that should be unvoiced, and false unvoiced, i.e., setting
frames to unvoiced that are voiced. Perceptually, the synthesized speech with false voiced produces
buzziness, mostly in the higher frequencies, while false unvoiced introduces a hoarse quality in the
speech signal. Generally, both of them sound unnatural [4].

One solution is to directly model the discontinuous F0 observation with multi-space probability
distribution using hidden Markov models (MSD-HMM) [5]. However, MSD-HMM has some restrictions
with dynamic features that cannot be easily calculated due to the discontinuity at the boundary between
V/UV regions. Hence, separate streams are normally used to model static and dynamic features [6].
However, this also limits the model’s ability to correctly capture F0 trajectories. An alternative solution,
random values generated from a probability density with a large variance have been used for unvoiced
F0 observations [7], while setting all unvoiced F0 to be zero has been investigated in [8]. Once again,
both of these techniques are inappropriate for the TTS system, since it would lead to a synthesis of
random or meaningless F0 [9].

In recent years, there has been a rising trend of assuming that continuous F0 observations are
similarly present in unvoiced regions, and there have been various modeling schemes along these lines.
It was found in [3] that a continuous F0 creates more expressive F0 contours with HMM-based TTS
than one based on the MSD-HMM system. Zhang et al. [10] introduced a new approach to improve
piece-wise modeling of the continuous F0 trajectory with voicing strength and V/UV decision for
HMM-based TTS. Garner et al. [9], whose baseline method is used in this study, proposed a simple
continuous F0 tracker, where the measurement distribution is determined from the autocorrelation
coefficients. This algorithm is better suited to the Bayesian pitch estimation of Nielsen et al. [11].
Tóth and Csapó [12] have shown that continuous F0 contour can be better approximated with HMM
and deep neural network (DNN) than traditional discontinuous F0. In [13], an excitation model has
been proposed which combines continuous F0 modeling with Maximum Voiced Frequency (MVF).
This model has been shown to produce more natural synthesized speech for voiced sounds than
traditional vocoders based on standard pitch tracking, whereas it was also found that there is a room
for improvement in modeling unvoiced sounds.

Recently, Tsanas et al. [14] developed a robust method for adaptively weighting the estimates
of F0 values using an adaptive Kalman filter framework, while Stoter et al. [15] proposed an F0
method by applying a time warp on the input speech signal in each step. Both of these approaches
achieve significantly higher accuracy and smoother F0 trajectory on noisy and clean speech. Therefore,
we propose here an improvement to the continuous F0 algorithm in terms of temporal resolution and
accuracy by using adaptive the Kalman-filter, time-warping, and instantaneous-frequency approaches.
We show its effectiveness with regard to the background noise using some comprehensive evaluation
methods already existing in the literature.

Such a statistical framework is guided by the vocoder (which is also called speech analysis/synthesis
system) to reproduce human speech. A vocoder is the most important component of various speech
synthesis applications such as TTS synthesis [16], voice conversion [17], or singing synthesizers [18].
Although there are several different types of vocoders that use analysis/synthesis, they follow the same
main strategy. The analysis stage is used to convert the speech waveform into a set of parameters,
whereas in the synthesis stage, the entire parameter set is used to reconstruct the original speech signal.
Hu et al. [19] presented an experimental comparison of the wide range of important vocoder types
that had previously been invented. In general terms, we can group state-of-the art vocoder-based
TTS into three categories. (a) Source-filter models: STRAIGHT [20] and mixed excitation [21];
(b) sinusoidal models: Harmonic plus Noise Model [22] and Ahocoder [23]; (c) end-to-end complex
models: WaveNet-based waveform generation [24] and Tacotron [25]. Each model has the advantage of
working reasonably well for a particular speaker, which makes them attractive to researchers. Although
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they offer speech quality comparable to natural human speech, each of them has several drawbacks that
we should take into consideration. STRAIGHT synthesis is very slow to use in real-time applications,
since it depends on high-order fast Fourier transform for high-resolution spectral synthesis [26].
Sinusoidal vocoders like HNM, on the other hand, usually have more parameters (each frame has
to be represented by a set of frequencies, amplitude, and phase) than in the source-filter models,
in which more memory would be required to code and store the speech segments. Similarly, neural
models (e.g., WaveNet https://deepmind.com/blog/wavenet-generative-model-raw-audio/ [27]) require
a large quantity of voice data for each speaker, high-frequency, the autoregressive nature of the model,
and a great deal computation power for training the neural networks, making them difficult to use
in practice [28,29]. Therefore, we believe that vocoder-based statistical parametric speech synthesis
(SPSS) still offers a flexible and tractable solution to TTS that could be improved in terms of quality.
We attempt in this study to develop a vocoder-based high-quality TTS synthesis system, while still
maintaining the computational efficiency of the approach.

In our recent work in SPSS, we proposed a computationally feasible residual-based vocoder [13]
using a continuous F0 model [9] and maximum voiced frequency (MVF) [30]. In this method, the voiced
excitation consisting of pitch synchronous residual frames is low-pass filtered while the unvoiced part
is high-pass filtered according to the MVF contour as a cutoff frequency. This approach was especially
successful for modeling speech sounds with mixed excitation. In [31], we further controlled the time
structure of the high-frequency noise component by estimating a suitable true envelope. Similar to
other vocoders (e.g., a lack of noise in STRAIGHT [32]), the noise component in the continuous vocoder
is still not accurately modeled, and limits the overall perceived quality. To mitigate the problem above,
a valid and reliable method for calculating levels of noise in human speech would be required to give
appropriate information for SPSS. Existing methods of measuring noise in human speech divide the
acoustic signal into two parts: a harmonic and a noise component. Based on this assumption, estimates
of the harmonic-to-noise ratio (HNR) have been calculated. We expect that adding a HNR to the
voiced and unvoiced components that involve the presence of noise in voiced frames, the quality of
synthesized speech in the noisy time regions will be more accurate than the baseline [31]. This method
has a twofold advantage: (a) it makes it possible to eliminate most of the noise residuals; and (b) it
attempts to reproduce the voiced and unvoiced (V/UV) regions more precisely, that is, it resembles
natural sound signal-based TTS synthesis.

The goal of this article is to further improve our earlier vocoder [31] for high-quality speech
synthesis. Specifically: (a) it proposes three adaptive techniques that enhance the performance of
continuous F0; (b) it studies adding HNR as a new excitation parameter to the voiced and unvoiced
segments of speech; and (c) it explores a different methodology for the estimation of MVF. We will
finally show that the performance of the proposed vocoder is superior to state-of-the-art vocoder
performance (the one based on STRAIGHT) in synthesized speech. This paper is organized as follows:
In Section 2, continuous F0 and three refinements methods are described. Then, the new form of
continuous vocoder is presented in Section 3. Experimental setup with measurements metric is defined
in Section 4. Objective and subjective evaluations are discussed in Section 5. Finally, in Section 6,
we conclude this paper with a brief summary.

2. F0 Detection and Refinement

This section is comprised of a background continuous F0 (contF0) estimation algorithm, and a
description of three powerful adaptive frameworks for refining it. The effectiveness of these proposed
methods is evaluated in Section 5.

2.1. Contf0: Baseline

The contF0 estimator introduced in this paper as a baseline is an approach proposed by
Garner et al. [9] that is able to track fast changes. The algorithm starts simply with splitting the
speech signal into overlapping frames. The result of windowing each frame is then used to calculate
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the autocorrelation. Identifying a peak between two frequencies and calculating the variance are the
essential steps of the Kalman smoother to give a final sequence of continuous pitch estimates with no
voiced/unvoiced decision.

In view of this, contF0 can cause some tracking errors when the speech signal amplitude is low,
the voice is creaky, or there is low HNR. Therefore, further refinements were developed.

2.2. Adaptive Kalman Filtering

To begin with, the Kalman filter in its common form can be mathematically described as a simple
linear model

xt = Atxt−1 + wt−1, wt ∼ N(0, Qt) (1)

yt = Btxt + vt, vt ∼ N(0, Rt) (2)

Here t is a time index, xt is an unobserved (hidden) state variable, At is the state transition model
to update the previous state, wt (state noise with zero mean) and vt (measurement noise with zero
mean) are independent Gaussian random variables with covariance matrices Qt and Rt, respectively,
yt is the measurement derived from the observation state xt, Bt is the measurement model which maps
the underlying state to the observation. Alternatively, the Kalman filter operates by propagating the
mean and covariance of the state through time. Recently, this method has been used for obtaining
smoothed vocal tract parameters [33], and in speech synthesis systems [34,35].

It is known from the literature that the Kalman filter is one of the best state estimation methods
in several different senses when the noise of both wt, vt are Gaussian, and both covariances Qt, Rt are
expected to be known. However, this can be very difficult in practice. If the noise statistics (estimates
of the state and measurement noise covariance) are not as expected, the Kalman filter will be unstable
or give state estimates that are not close to the true state [36]. One promising approach to overcoming
this problem is the use of adaptive mechanisms in a Kalman filter. In particular, signal quality indices
(SQIs) have been proposed by [37], and recently used in [38], which give confidence in the measurements
of each source. When the SQI is low, the measurement should not be trusted; this can be achieved by
increasing the noise covariance. Tsanas et al. [14] proposed an approach to consider both the state noise
and the measurement noise covariance, which are adaptively determined based on the SQI (but in [37,38],
the state noise was fixed a priori). Therefore, to improve the contF0 estimation method, we used the
algorithm reported in [14] based on SQI in order to compute the confidence in both state noise and
measurement noise covariance. Thereby, their covariance matrices Qt and Rt are updated appropriately
at each time step until convergence. Detailed steps of this algorithm are summarized simply in Figure 1.
In this formulation, the aim of the adaptive Kalman filter is to use the measurements yt to update the
current state x̃t = xt−1 to the new estimated state xt when Qt and Rt are given at each time step.

Figure 2a shows the performance of this adaptive methodology, in which the resulting contour
is not influenced by the dips at frame 26, 74, and frame 295 occurring in the baseline. However,
in such cases, this approach may over-fit to the speech dataset due to the number of manually specified
parameters required for tuning. Thus, this technique should be used carefully.

2.3. Adaptive Time-Warping

In the speech signal, it is necessary that harmonic components are separated from each other
so that they can be easily found and extracted. Once F0 rapidly changes, harmonic components are
subject to overlapping each other, making it difficult to separate these components; closely neighboring
components can make separation through filtering very hard, especially with a low spectral voice
(such as male pitch) [39]. To overcome this problem, previous work in the literature has provided
methods by introducing a time-warping-based approach [40,41].
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Abe et al. [42] incorporate time-warping into instantaneous frequency spectrogram frame by
frame according to the change of the harmonic frequencies. In view of that, the observed F0 is seen
to be constant within each analysis frame. More recently, a time-warping pitch tracking algorithm
has also been proposed by [43] which apparently had a significant positive impact on the voicing
decision error and led to good results even in very noisy conditions. There has been another approach
introduced by Stoter et al. [15] based on iteratively time-warping the speech signal and updating F0
estimate on time-warped speech, which has a nearly constant F0 over a segment of short duration,
which sometimes leads to inaccurate pitch estimates. To achieve a further reduction in the amount of
contF0 trajectory deviation (deviate from their harmonic locations) and to avoid additional sideband
components generation when a fast movement of higher frequencies occurs, the adaptive time warping
approach combined with the instantaneous frequency can be used to refine the contF0 algorithm.

We refer to the warping function as p which defines the relationship between two axes

τ = p(t), t = p−1(τ) (3)

where τ represents a time stretching factor. The first step is to stretch the time axis in order to make the
observed contF0 value in the new temporal axis stay unchanged and preserve the harmonic structure
intact [40,41]. As the initial estimate of the contF0 is available, the second step of the refinement
procedure is to filter the input waveform using the bandpass filter bank h(τ) with different center
frequencies fc multiplied by Nuttall window w(τ) [44] to separate only the fundamental component in
the range near fc

h(τ) = w(τ) cos(2 jπ fcτ) (4)
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w(τ) = 0.338946 + 0.481973 cos
( jπ

2 fcτ
)
+ 0.161054 cos( jπ fcτ)

+0.018027 cos
( 3 jπ

2 fcτ
) (5)

Next, instantaneous frequencies IF(τ) of h(τ) have to be calculated. Flanagan’s equation [45] is
used to extract them from both the complex-valued signal and its derivative

IFk(τ) =
a db

dτ − b da
dτ

a2 + b2 (6)

where a and b are the real and imaginary parts of the spectrum of h(τ), respectively. k represents the
harmonic number. As the IF(τ) indicates the value close to F0, the ´contF0 is thus refined to a more
accurate F0 by using a linear interpolation between IF(τ) values and contF0 coordinates. Then, using a
weighted average

N∑
k=1

wk
´contF0k
k

(7)

where
∑N

k=1 wk = 1, provides a new contF0τ estimate on the warped time axis. The last step is unwarped
in time to return the estimated value to the original time axis. Recursively applying these steps gives
a final adaptive contF0 estimate (adContF0). An example of the proposed refinement based on the
time-warping method is depicted in Figure 2b. It can be seen that the adContF0 trajectory given by the
time-warping method is robust to the tracking error (dip at frame 30 and frame 138) to make it a more
accurate estimation than the baseline. Despite the good performance, this technique requires a little
tweaking the time-warp to achieve the desired results.

2.4. Adaptive StoneMask

Another method used to improve the noise robustness of the result estimated by contF0 is
called StoneMask. This approach is also used in WORLD [46], which is a high-quality speech
analysis/synthesis system, to adjust its fundamental frequency named DIO algorithm [47]. StoneMask
is similarly designed based on instantaneous frequency IF(t) that is calculated by Equation (6). Here,
a and b are the real and imaginary parts of the spectrum of a waveform S(w), respectively, windowed
by a Blackman window function w(t) defined in [−T0, T0] with the following form

w(t) = 0.42 + 0.5cos
πt

NT0
+ 0.08cos

2πt
NT0

(8)

where N is a positive integer, and T0 is the inverse of the contF0 candidate. Hence, contF0 can be
further refined by recursively using a formula given by

adContF0 =

∑k
k=1

∣∣∣S(kw0)
∣∣∣IF(kw0)∑k

k=1 k
∣∣∣S(kw0)

∣∣∣ (9)

where w0 represents the angular frequency of the contF0 candidate, and k represents the harmonic
number (we set k = 6 for further refinement of the methodology).

The impact of the proposed method on contF0 performance is illustrated in Figure 2c. It is quite
obvious that the adContF0 obtained by StoneMask almost matches the reference pitch contour much
better than others. It can also be seen here that the proposed adContF0 in the unvoiced region (frames
from 170 to 202) is significantly smaller than for the baseline, which is not the case with previous
refined methods.
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3. Continuous Speech Analysis/Synthesis System

To construct our proposed method, we adopt a robust and accurate continuous F0 estimator with
MVF as its base system, and extend it by proposing a new excitation HNR parameter so that it can
appropriately synthesize high-quality speech. In this section, we shortly describe first the baseline
of our proposed vocoder, then define the detail of calculating the HNR parameter, and later a new
estimate of the MVF parameter is explained. Figure 3 is a schematic diagram showing the main
components of the modified version of the continuous vocoder.

3.1. Baseline Vocoder

The baseline system in this paper is based on our previous work [31]. Throughout the analysis
phase, the continuous F0 estimator is calculated on the input waveforms using an approach proposed
by Garner et al. [9], which is able to track fast changes with no voiced/unvoiced decision. Additionally,
the Glottal Closure Instant (GCI) algorithm [48] is used to find the glottal period boundaries of
individual cycles in the voiced parts of the inverse filtered residual signal. From these F0 cycles,
a principal component analysis (PCA) residual is built which will be used in the synthesis phase
to yield better speech quality than those of the excitation pulses. During the production of voiced
sounds, MVF is used as the spectral boundary separating low-frequency periodic and high-frequency
aperiodic components. Our vocoder follows the algorithm proposed by [30], which has the potential to
discriminate harmonicity, exploits both amplitude and phase spectra, and use the maximum likelihood
criterion as a strategy to derive the MVF estimate. Finally, a simple spectral model represented by
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24-order Mel-Generalized Cepstral analysis (MGC) [49] was used with f rameshi f t = 5 ms, alpha = 0.42,
and gamma = −1/3.
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It was shown in [48] that the PCA-based residual yields better speech quality than pulse-noise
excitation. Therefore, during the synthesis phase, voiced excitation in the continuous vocoder is
composed of PCA residual overlap-added pitch synchronously based on the continuous F0. Then,
at the frequency given by the MVF contour, the voiced excitation is lowpass filtered, while white noise
is used at frequencies higher than the value of MVF. A true time envelope of the PCA residual has been
applied to further control the time structure of the high-frequency component in the excitation and
noise parts [31]. The voiced and the unvoiced excitation are overlap-added. The Mel generalized-log
spectrum approximation (MGLSA) filter [50] will finally be used to obtain a synthetic speech signal.
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Thus, continuous vocoder was designed to overcome the shortcomings of discontinuity in the speech
parameters and the computational complexity of modern vocoders.

3.2. Harmonic-to-Noise Ratio

The main goal of vocoders is to achieve high speech intelligibility. It has been shown previously
that the mixed excitation source model yields sufficiently good quality in the synthesized speech by
reducing buzziness and breathiness [51]. Such an analysis/synthesis system may also suffer from
some degradations: (1) loss of the high-frequency harmonic components, (2) high-frequency noise
components, and (3) noise components in the main formants. As the degree of these losses increases,
more noise appears, consequently degrading the speech quality greatly [52].

In this work, we propose adding a continuous harmonic-to-noise ratio (HNR) as a new excitation
parameter to our vocoder in order to alleviate previous problems. Consequently, the excitation model
in the proposed vocoder is represented by three continuous parameters: F0, MVF, and HNR. There are
various methods of time and frequency domain algorithms available in the literature to estimate HNR
in speech signals (for a comparison, see [53]). As we are dealing here with time domain processing,
we want to follow the algorithm by [54] to estimate the level of noise in human voice signals for the
following reasons: (1) the algorithm is very straightforward, flexible and robust, (2) it works equally
well for low, middle, and high pitches, and (3) it is correctly tested for periodic signals and for signals
with additive noise and jitter.

For a time signal x(t), the autocorrelation function rx(τ) can be defined as

rx(τ) �

∫
x(t)x(t + τ)dt (10)

This function has a global maximum for τ = 0. The fundamental period T0 = 1/F0 is defined as
the value of τ corresponding to the highest maximum of the rx(τ), and the normalized autocorrelation is

ŕx(τ) =
rx(τ)

rx(0)
(11)

We could make such a signal x(t) by taking a harmonic signal H(t) with a period T0 and adding a
noise N(t) to it. We can now write Equation (10) as

rx(τ) = rH(τ) + rN(τ) (12)

Because the autocorrelation of a signal at 0 equals the power in the signal, Equation (11) at τmax

represents the relative power of the harmonic component of the signal, and its complement represents
the relative power of the noise component:

ŕx(τmax) =
rH(0)
rx(0)

(13)

1− ŕx(τmax) =
rN(0)
rx(0)

(14)

Thus, the HNR is defined at τmax > 0

HNR ,
ŕx(τmax)

1− ŕx(τmax)
(15)

Accordingly, the HNR is positively infinite for purely harmonic sounds, while it is very low
for noise (see Figure 4). In a continuous vocoder, our approach here is to use the HNR to weight



Appl. Sci. 2019, 9, 2460 10 of 23

the excitation signal in both voiced and unvoiced frames. If we define the generation of the voiced
excitation frame v[k] as

v[k] = p[k] ∗wv (16)

then, the weighted voice wv value can be determined by

wv =

√
hnr[i]

hnr[i] + 1
, i =

K
Fshi f t ∗ fs

(17)

where p[k] is the residual PCA voiced signal, Fshi f t is 5 ms frame shift, fs is the sampling frequency,
and K is the location of impulse in original impulse excitation. Similarly, the unvoiced excitation frame
u[k] and the unvoiced weight wu value can also be computed by

u[k] = n[k] ∗wu (18)

wu =

√
1

hnr[i] + 1
, i = k (19)

where n[k] is the additive Gaussian noise. As a result, the voiced and unvoiced speech signal are
added in the ratio suggested by the HNR, and then used to excite the MGLSA filter as illustrated in the
bottom part of Figure 3.
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3.3. Maximum Voiced Frequency Estimation

In voiced sounds, MVF is used as the spectral boundary separating a low-frequency periodic and
high-frequency aperiodic components. It has been used in numerous speech models, such as [23,48,55],
which yields sufficiently better quality in the synthesized speech.

The preliminary version of our vocoder followed the Drugman and Stylianou [30] approach,
which exploits both amplitude and phase spectra. Although this approach tends to relatively reduce
the acoustic buzziness of the reconstructed signals, it cannot distinguish between a production noise
and a background noise. This means that MVF might be underestimated if the speech is recorded in a
pseudo noisy environment. Moreover, we found that the estimation-based MVF [30] lacks the ability to
capture some components of the sound that lie in the region of the higher frequencies (especially for the
females). For this reason, higher MVF is required in this work to yield more natural synthetic speech.
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Over the last few years, several attempts, with varying results, have already been made to
analyze the MVF parameter. In this paper, similar to [23], we used a sinusoidal likeness measure
(SLM) [56]-based approach to extract the MVF. A representative block diagram is shown in Figure 5
using five main functional steps:

(1) Consecutive frames of the input signal x[n] are obtained by using a 3-period-long Hanning
window w[n].

(2) N-point fast Fourier transform (FFT) of every analysis frame m is computed Xm[k]. N is equal or
greater than 4 times of the frame length L.

Xm[k] = log


∣∣∣FFTN

{
x[n].w[n− nm]

}∣∣∣√
L fs

 (20)

(3) The magnitude spectral peak detection for each frame is calculated, and their SLM score λi is
given through cross-correlation [56]

λi =

∣∣∣∑ S[k]·W∗i [k]
∣∣∣√∑∣∣∣S[k]∣∣∣2·∑∣∣∣Wi[k]

∣∣∣2 (21)

where W is the Fourier transform of w[n] multiplied by e− j2π f n, operator * denotes a complex
conjugation, and i is the index of the peak. The λ always lies in the range [0,1]. Consequently,

λ =

 1, pure sinusoid

otherwise, presence o f noise
(22)

(4) The error of the MVF position at each peak i is figured as

εm
i =

1
P

 i−1∑
j=1

(
1− λm

j

)2
+

P∑
j=i

(
λm

j

)2
 (23)

where P is the total number of spectral peaks.
(5) To give a final sequence of MVF estimates, a dynamic programming approach is used to eliminate

the spurious values and to minimize the following cost function

Cm
i =

K∑
k=1

εm
i + γ

K∑
k=2

 f m
i − f m−1

i−1
fs
2

2

(24)

where f m
i is the im candidate at frame k and γ = 1 at 5 ms.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 23 
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Figure 5. Workflow of the MVF estimation algorithm based on SLM method.

Figure 6 shows the spectrograms of an example of voiced speech with MVF estimation algorithm
obtained by the baseline [30] (blue line) and SLM (black line). It can be seen that the MVF-based SLM
approach capture wide frequency segments of data (e.g., between 0.75–1.3 s, and between 1.9–2.5 s).
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This observation suggests that the baseline often underestimates some of the voicing frequency in the
higher frequency regions of the spectrogram.
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4. Experimental setup

To evaluate the performance of the suggested methods, a database containing a few hours of
speech from several speakers recorded carefully under controlled conditions was required for giving
indicative results. Datasets are described in more detail in the first part of this section, while in the
second part, objective performance criteria are defined.

4.1. Datasets

The speech data used in the evaluation consist of a database recorded for the purpose of developing
TTS synthesis. Three English speakers were chosen from the CMU-ARCTIC (http://www.festvox.org/

cmu_arctic/) database [57], denoted BDL (American English, male), JMK (Canadian English, male),
and SLT (American English, female); each one can produce one hour of speech data segmented into 1132
sentences, restricting their length from 5 to 15 words per sentence (a total of 10,045 words with 39,153
phones). Moreover, CMU-ARCTIC are phonetically balanced utterances with 100% phonemes, 79.6%
diphones, and 13.7% triphones.

The speech waveform of this database was recorded at a 32 kHz sampling rate at a 16-bit resolution;
one channel was the waveform, the other laryngograph (from which a reliable pitch estimate can be
derived). 20 sentences from each speaker were chosen randomly to be analyzed and synthesized with
the baseline and proposed vocoders. These 60 utterances were subsequently down-sampled by a factor
of 2 in order to reduce its sampling rate from 32 kHz to 16 kHz, as this is a more typical use in the early
baseline vocoder [13].

With the purpose of assessing true performance of the refined contF0, a reference pitch contour
(ground truth) is required. The ground truth is estimated from the electro-glottal graph (EGG), as it
is directly derived from glottal vibration and is largely unaffected by the nonharmonic components
of speech [58]. In our evaluation, the ground truth is extracted from EGG signals using Praat [59].
Additionally, it is of the greatest importance to select some state-of-the-art algorithms for the purpose
of comparison. Although there is a lack of such algorithms dealing with the continuous F0 approach
in the literature, YANGsaf [60] is the only F0 estimator method that can be compared along with
adContF0 and the baseline. The choice of YANGsaf is confirmed by the fact that it was recently shown
in [61] to outperform other well-known F0 estimation approaches like YIN, RAPT, or DIO. Moreover,
TANDEM-STRAIGHT [62] vocoder that has mostly become the state-of-the-art model in SPSS was used
in this experiment as the highest quality vocoder. For all methods across all speakers, the floor and
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ceiling frequencies of the F0 estimation range were set to 50 and 250 Hz for a male speaker, while for a
female speaker, the default range was set to 150 and 350 Hz. The frame shift was set to 5 ms, while all
other parameters remain at their default values.

4.2. Error Measurement Metrics

Finding a meaningful objective metric is always a challenge in evaluating the performance of F0
detectors. In fact, one metric may possibly be suitable for a few pitches but not convenient for all.
The reason for this may be related to some factors which are influenced by the speed, complexity,
or accuracy of the pitch algorithms. Speaker types and environmental conditions should also be
taken into account when choosing these metrics. In this article, we try to adopt a series of distinct
measurements in accordance with [63,64] to assess the accuracy of the adContF0 estimation. The results
were averaged over the utterances for each speaker. The following three evaluation metrics were used:

(1) Gross Pitch Errors: GPE is the proportion of frames considered voiced Nv by both estimated and
referenced F0 for which the relative pitch error e(n) is higher than a certain threshold (usually set
to 20% for speech). The e(n) can be calculated as:

e(n) =
F0n,re f ined

F0n,re f erenced
− 1, n = 1, . . . , Nv (25)

where n is the frame index. If
∣∣∣e(n)∣∣∣ > 0.2, we classified the frame as a gross error NGE. Thus,

GPE can be defined as
GPE =

NGE
Nv
∗ 100% (26)

(2) Mean Fine Pitch Errors: Fine pitch error refers to all pitch errors that are not classified as GPE.
In other words, MFPE can be derived from Equation (25) when

∣∣∣e(n)∣∣∣ < 0.2

MFPE =
1

NFE

NFE∑
n=1

(
F0n, re f ined − F0n, re f erenced

)
(27)

where NFE is the number of remaining voiced frames that do not have gross error (Nv −NGE).
(3) Standard Deviation of the Fine Pitch Errors: STD is firstly stated in [64] as a measure of the

accuracy of the F0 detector during voiced intervals, then slightly modified in [63]. For better
analysis, STD can be calculated as

STD =

√√√
1

NFE

NFE∑
n=1

(
F0n,re f ined − F0n,re f erenced

)2
−MFPE2 (28)

Even if other error analyses are possible, like unvoiced error (UVE), pitch tracking error (which is
the mean of VE and UVE), and F0 frame error (based on all voiced/unvoiced frames), it was felt that
these metrics were not suitable to algorithms that deal with continuous F0, as there are no unvoiced
frames. Therefore, the above metrics are good for checking the performance strengths and weaknesses
of each method.

5. Evaluation Results and Discussion

The experimental evaluation has two main goals. First, it aims to evaluate the accuracy of the
contF0 using adaptive refinement methods. The second goal is to evaluate the proposed vocoder in the
context of statistical parametric speech synthesis and to compare its performance with baseline and
STRAIGHT vocoders.
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5.1. Objective Evaluation

5.1.1. Noise Robustness of F0 Estimation

We used white Gaussian noise and pink noise as the background noise to test the quality of
the adContF0 and also to clarify the effects of refinement. The amount of noise is specified by the
signal-to-noise ratio (SNR) ranged from 0 to 40 dB. We calculated the normalized root mean square
error (NRMSE) over selected sentences for each speaker.

Figure 7a,b shows the overall NRMSE values obtained from various methods as a function of
the SNR between speech signals and noise. We present the average NRMSE over all three speakers.
The smaller the value of NRMSE, the better the F0 estimation’s performance. The results of white and
pink noise suggest that the NRMSE for all proposed methods are smaller than the baseline, and the
time warping method becomes the best. This means that our proposed one is: (a) robust against white
and pink noise; and (b) superior to the one based on YANGsaf. Consequently, this positive result is
beneficial in TTS synthesis.

Furthermore, Figure 8 shows the power spectral density (PSD) calculated with the periodogram
method for all F0 estimators compared with ground truth. In this figure, the adContF0-based StoneMask
method gives a similar performance to that of the ground truth (F0_egg) and better than the baseline [9].
It can be concluded that all refined approaches were robust against the noise and outperformed the
conventional one as expected.
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5.1.2. Performance Comparison of F0 Estimation

Here, we show the results for the error metrics presented in Section 4.2. The improvement in this
work is possible since our refinement approaches use the concept of adaptive structure. We noted
several trends from the estimation error in Tables 1–3. The best value in each column is bold-faced.

Table 1 displays the results of the evaluation of the three methods for contF0, for female and male
speakers, in comparison to the YANGsaf algorithm. When refining the contF0 using the time-warping
(contF0_TWRP) technique, the GPE score shows an improvement of 4.46% for the BDL speaker, whereas
there is only a 1.07% improvement for the JMK speaker. Nevertheless, we did not see any enhancement
for the SLT speaker in the case of ContF0_TWRP. However, a 2.32% improvement was found in the
refinement of contF0 based on StonMask method (ContF0_STMSK). For YANGsaf, on the other hand,
the improvement was 8.52%, 7.8%, and 3.08% for the BDL, JMK, and SLT speakers, respectively,
in comparison with the baseline. Additionally, Table 1 shows that there is no significant difference
between ContF0_STMSK and the state-of-the-art YANGsaf approaches based on MFPE and STD
measures in all speakers.

Table 1. Average scores performance per each speaker in clean speech.

Method
GPE % MFPE STD

BDL JMK SLT BDL JMK SLT BDL JMK SLT

baseline 12.754 9.850 7.677 3.558 3.428 4.421 4.756 4.513 6.764
contF0_AKF 11.268 12.611 6.732 2.764 2.754 3.692 3.964 3.719 6.113

contF0_TWRP 8.294 8.777 7.827 2.764 3.024 3.656 3.873 4.188 5.788
contF0_STMSK 10.557 7.530 6.998 1.661 1.389 2.105 2.526 1.872 4.181

YANGsaf 4.231 2.049 4.592 1.658 1.452 2.142 2.239 1.575 4.160

In the same way, Tables 2 and 3 tabulate the GPE, MFPE, and STD measures averaged over all
utterances for BDL, JMK, and SLT speakers in the presence of additive white noise and pink noise,
respectively, at 0 dB of SNR to test the robustness of the contF0 tracker. adContF0-based Kalman filter
(contF0_AKF) is more accurate for the female speaker (as measured by GPE) than for the other two
candidates. However, this is not the case with pink noise. Moreover, adContF0-based time-warping
showed better performance in terms of GPE measurement in the presence of pink noise with all speakers.
In contrast, contF0_STMSK still had the lowest MFPE and STD under SNR conditions for all speakers.

It is interesting to emphasize that the baseline does not at all meet the performance of the other
refinement trackers in BDL, JMK, and SLT speakers; that the results reported in Table 1 yield results
comparable with state-of-the-art algorithm, while Tables 2 and 3 strongly support the use of the
proposed method-based StoneMask as the most accurate contF0 estimation algorithm. In other words,
the findings in Tables 2 and 3 might demonstrate the robustness of the proposed approaches to additive
Gaussian white and pink noise.

It is worth noting that the main advantage of using adaptive Kalman filter is that we can determine
our confidence in the estimates of contF0 algorithm-based TTS by adjusting SQIs to update both
the measurement noise covariance and the state noise covariance. For example, it can be used to
replace the one studied by Li et al. [37] in heart rate assessment applications. Meanwhile, the time
warping scheme has the ability to track the time-varying contF0 period, and reduce the amount of
contF0 trajectory deviation from their harmonic locations. By considering the system processing speed,
adContF0-based StoneMask is computationally inexpensive and can be useful in a practical speech
processing application.
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Table 2. Average performance score per each speaker in the presence of additive white noise (SNR = 0 dB).

Method
GPE % MFPE STD

BDL JMK SLT BDL JMK SLT BDL JMK SLT

baseline 33.170 40.057 27.502 4.050 3.901 3.512 4.393 4.293 3.912
contF0_AKF 31.728 40.865 26.122 3.211 3.241 2.898 3.465 3.627 3.448

contF0_TWRP 29.464 37.839 26.932 3.199 3.165 2.890 3.449 3.511 3.186
contF0_STMSK 31.418 37.052 26.352 2.128 1.896 2.067 2.103 1.658 2.058

YANGsaf 27.530 35.200 25.852 2.233 2.181 2.175 2.206 2.219 2.265

Table 3. Average performance score per each speaker in the presence of pink noise (SNR = 0 dB).

Method
GPE % MFPE STD

BDL JMK SLT BDL JMK SLT BDL JMK SLT

baseline 25.041 26.870 33.124 2.919 2.799 2.845 3.061 2.936 3.180
contF0_AKF 24.548 28.034 31.103 2.285 2.293 2.284 2.338 2.327 2.468

contF0_TWRP 21.512 22.329 29.893 2.256 2.482 2.472 2.253 2.702 2.787
contF0_STMSK 24.371 26.131 32.775 1.429 1.179 1.387 1.686 1.981 1.140

YANGsaf 15.401 12.509 22.186 1.419 1.307 1.393 2.282 2.732 2.022

5.1.3. Measuring Speech Quality after Analysis and Re-Synthesis

It is well-known that efficient methods for evaluating speech quality are typically based on
subjective listening tests. However, there are various issues related to the use of subjective testing.
It can sometimes be very expensive, time-consuming, and hard to find a sufficient number of suitable
volunteers [65,66]. For that reason, it can often be useful in this work to run objective tests in addition
to listening tests. A range of objective speech quality and intelligibility measures are considered to
evaluate the quality of synthesized speech based on the modified version of our continuous vocoder:

• One objective measure is the Weighted-Slope Spectral Distance (WSS) [67], which computes the
weighted difference between the spectral slopes in each frequency band. The spectral slope is
found as the difference between adjacent spectral magnitudes in decibels.

• As the speech production process can be modeled efficiently with Linear Predictive Coefficients
(LPC), another objective measure is called the Log-Likelihood Ratio (LLR) [65]. It is generally a
distance measure that can be directly calculated from the LPC vector of the clean and enhanced
speech. The segmental LLR values were limited in the range of [0, 1].

• We also adopt the frequency-weighted segmental SNR (fwSNRseg) for the error criterion to
measure speech quality, since it is said to be much more correlated with subjective speech quality
than classical SNR [68]. The fwSNRseg measure applies weights taken from the ANSI SII standard
to each frequency band [69]. Instead of working on the entire signal, only frames with segmental
SNR in the range of −10 to 35 dB were considered in the average.

• Moreover, Jensen and Taal introduced an effective objective measure, which they called the
Extended Short-Time Objective Intelligibility (ESTOI) measure [69]. The ESTOI calculates the
correlation between the temporal envelopes of clean and enhanced speech in short frame segments.

• The final objective measure used here is the Normalized Covariance Metric (NCM) [70], which is
based on the covariance between the clean and processed Hilbert envelope signals.

Before we proceed to further detail on examining the results, we will first describe our experiments.
Several experiments based on the HNR parameter were implemented to find out the best continuous
pitch algorithm that works well with our continuous vocoder, as well as to understand the behavior of
adding a new HNR excitation parameter in both voiced/unvoiced speech frames. The three experiments
are summarized in Table 4.
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Table 4. An overview of the three proposed methods based on HNR parameters.

Method Pitch Algorithm

Proposed #1 adContF0-based adaptive Kalman filter
Proposed #2 adContF0-based adaptive Time-warping
Proposed #3 adContF0-based adaptive StoneMask

The performance evaluations are summarized in Table 5. For all empirical measures, a calculation
is done frame by frame, and higher values indicate better performance, except for the WSS and LLR
measures (a lower value is better). From this table, several observations can be made. First, focusing
on the WSS, it is clear that all methods for refining contF0 appear to work quite well with the HNR
parameter. The fact is that proposed #3 can outperform the STRAIGHT vocoder for the JMK speaker.
In terms of fwSNRseg, it can also be seen that all refined methods can perform well with a continuous
vocoder (highest results were obtained); nevertheless, proposed #3 is shown to be the best. Similarly,
the NCM measure shows similar performance between proposed #3 and STRAIGHT. In terms of LLR,
the lowest correlation values were obtained with all proposed methods for all speakers. On the other
hand, a good improvement was noted for proposed #1, #2, and #3 in the ESTOI measure. Hence,
these experiments showing that adContF0 with HNR was beneficial.

Table 5. Average scores performance based on synthesized speech signal per each speaker.

Metric Speaker Baseline Proposed#1 Proposed#2 Proposed#3 STRAIGHT

fwSNRseg
BDL 8.083 11.812 11.807 13.033 15.062
JMK 6.816 9.505 9.784 10.621 13.094
SLT 7.605 9.906 9.736 11.079 15.295

NCM
BDL 0.650 0.850 0.854 0.913 0.992
JMK 0.620 0.847 0.860 0.906 0.963
SLT 0.673 0.850 0.854 0.910 0.991

ESTOI
BDL 0.642 0.856 0.861 0.892 0.923
JMK 0.620 0.831 0.847 0.873 0.895
SLT 0.679 0.848 0.846 0.894 0.945

LLR
BDL 0.820 0.457 0.456 0.453 0.219
JMK 0.814 0.635 0.631 0.628 0.391
SLT 0.744 0.639 0.640 0.636 0.194

WSS
BDL 48.569 32.875 32.559 24.013 22.144
JMK 51.788 36.236 32.175 26.238 29.748
SLT 58.043 42.789 45.254 26.906 23.614

5.1.4. Phase Distortion Deviation

Recent progress in synthesized speech showed that the phase distortion of the signal carries
all of the crucial information relevant to the shape of glottal pulses [71]. As the noise component
in our continuous vocoder is parameterized in terms of time envelopes and computed for every
pitch-synchronous residual frame, we compared the vocoded sentences to the natural and baseline by
measuring mean phase distortion deviation (M-PDD). Originally, PDD could be calculated based on
early Fisher’s standard-deviation [72]. However, [71] showed two issues related to variance and source
shape in voiced segments. By avoiding these limitations, M-PDD can be estimated in this experiment
at 5 ms frame shift as

MPDD = µi( f ) = ∠

 1
N

∑
n∈C

e jPDn( f )

 (29)

where C =
{
i− N−1

2 , . . . , i + N−1
2

}
, N is the number of frames, PD is the phase difference between two

consecutive frequency components, and we denote the phase by ∠.
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Figure 9 shows the means of the PDD values of the three speakers grouped by the 6 variants.
As can be seen, the M-PDD values of the baseline system are significantly lower in BDL and SLT
speakers and higher in JMK speaker compared to natural speech. It can also be noted from the JMK
speaker that proposed #3 appears to match the M-PDD value of natural speech, followed by proposed
#2. Similarly, the closed M-PDD value to natural speech is shown in proposed #3 and #2 for the female
speaker. For the BDL speaker, proposed #3 is the only one that is not different from the natural samples,
while the others seem to give lower M-PDD values. In summary, the various experiments result in
different M-PDD values, but in general they are closer to the natural speech than the STRAIGHT and
baseline vocoders.
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5.2. Subjective Evaluation

As a subjective evaluation, the idea was to select the closeness between the re-synthesized and
original speech signal that fits our goal. To evaluate which proposed system was closer to natural
speech, we conducted a web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and Anchor)
listening test [73].

The advantage of MUSHRA is that it enables evaluation of multiple samples in a single trial
without breaking the task into many pairwise comparisons. Our aim was to measure the perceived
correlation of the ratio of the voiced and unvoiced components; therefore, we compared natural
sentences with the synthesized sentences from the baseline, proposed and a hidden anchor system (the
latter being a vocoder with simple pulse-noise excitation). From the 60 sentences used in the objective
evaluation, 14 sentences were selected. Altogether, 84 utterances were included in the test (6 types
× 14 sentences). Before the test, listeners were asked to listen to an example from the male speaker
to adjust the volume. In the test, the listeners had to rate the naturalness of each stimulus relative
to the reference (which was the natural sentence), from 0 (highly unnatural) to 100 (highly natural).
The utterances were presented in a randomized order (different for each participant). The listening test
samples can be found online (http://smartlab.tmit.bme.hu/adContF0_2019). Twenty-one participants
(12 males, 9 females) with a mean age of 29 years, mostly with an engineering background, were asked
to conduct the online listening test. On average, the test took 10 min to complete. The MUSHRA scores
for all the systems are shown in Figure 10, showing both speaker by speaker and overall results.

According to the results, the proposed vocoders clearly outperformed the baseline system
(Mann-Whitney-Wilcoxon ranksum test, p < 0.05). In particular, one can see that in the case of the
female speaker (SLT), all proposed vocoders were significantly better than the STRAIGHT and baseline
vocoders (Figure 10c). For the male speaker (JMK), we found that proposed #3 reached the highest
naturalness scores in the listening test (Figure 10b). Meanwhile, for the BDL male speaker in Figure 10a,
proposed #3 and #2 were ranked as the second and third best choices, respectively. When taking
these overall results, the difference between STRAIGHT and the proposed system is not statistically
significant (Mann-Whitney-Wilcoxon ranksum test, p < 0.05), meaning that our methods reached the
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quality of the state-of-the-art vocoder. This positive result was confirmed by metric measures in the
statistical aspects of the objective’s experimental test.Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 23 
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6. Conclusions

This paper proposed a new approach with the aim of improving the accuracy of our continuous
vocoder. We have proposed a modified version of the simple continuous pitch estimation algorithm in
terms of adaptive Kalman filter, time-warping, and instantaneous-frequency methods. A relatively
large database containing simultaneous recordings of speech sounds and EGG was used for the
performance evaluation. According to our observations of the experiments, we found that refined
contF0 methods could provide the expected results for both clean speech and speech contaminated
with additive white and pink noise.

Another goal of the work reported here was to add a new excitation HNR parameter to the
continuous vocoder to reduce the buzziness caused by the vocoder. We used an algorithm for
measuring HNR which is more accurate, more reproducible, and more resistant to rapidly changing
sounds compared to other methods found in the literature. Using a variety of error measurements,
the performance strengths and weaknesses of the proposed method for different speakers were
highlighted. In a subjective (MUSHRA) listening test, experimental results demonstrated that our
proposed methods can improve the naturalness of the synthesized speech over our earlier baseline
and STRAIGHT vocoders. In particular, we found that proposed #3 was rated better and more closely
reached the state-of-the-art performance than the others under most objective and subjective measures.

The authors plan to train and evaluate all continuous parameters (F0, HNR, MVF, and MGC) using
deep learning algorithms, such as feed-forward and recurrent neural networks, to test the continuous
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vocoder in statistical parametric speech synthesis-based TTS. As the HNR parameter is not limited
only to our vocoder, we try to apply it to other types of modern parametric vocoders (such as Pulse
Model in Log-domain (PML) [32]) to deal with the case of noisy conditions.
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