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Abstract: The fatigue performance and healing ability of asphalt pavements are important for mixture
design, rehabilitation, and maintenance of the roads. By analyzing these parameters in an asphalt
mixture, it is possible to predict the crack formation and propagation in asphalt pavements and
healing of these cracks during the rest periods. The healing effect in asphalt mixtures has been
observed and verified by many researchers and different methods exist to evaluate this phenomenon.
However, current methods are still inadequate to fully observe and quantify the healing phenomenon
in asphalt mixtures. In this study, a digital image correlation (DIC) method is used to calculate the
strain map on the surface of cylindrical asphalt specimens during the indirect tensile fatigue test.
This strain map is used to detect the location of crack initiations and development of the microcracks
during the experiments. Next, the specimens are unloaded and the temperature of the climate
chamber is increased to 60 ◦C for 18 h to investigate the healing phenomenon on the surface of the
specimens. It is observed that the strain reduces near the microcrack areas especially at the tip of the
microcracks. Furthermore, using DIC it is possible to observe the healing rate and the minimum time
required to heal the microcracks on the surface of the specimens.
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1. Introduction

Asphalt mixtures are the most common types of pavements used in the world. They are
heterogeneous materials that consist of mineral aggregates, filler, bitumen, air voids, and possibly other
additives. These components constitute a complex microstructure with viscoelastic characteristics.
Asphalt mixtures suffer damages from many factors such as traffic load, temperature variations, and
oxidations. The dominant mechanism of damage in asphalt mixtures at low temperature is microcrack
formation, growth, and ultimately formation and propagation of macrocracks. However, once a
microcrack is initiated in the specimen, it starts healing and if it is in the proper condition for a certain
time it can even close completely [1]. This property is directly related to the temperature and rest time
and can strongly influence the fatigue life of the specimens [2]. To explain the healing phenomenon,
different healing mechanism and corresponding models have been proposed by scientists [3,4]. Healing
phenomenon is an intrinsic process of the molecular diffusion that occurs along the crack surfaces
and fills the discontinuities in the materials. During the healing process, asphalt molecules on
faces of the microcracks randomly approach, contact, wet, and diffuse to close the microcracks.
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The significance of healing has been proven by multiple researchers through different laboratory
tests [5]. In one experiment, the change in the stiffness of asphalt mixtures due to temperature and
fatigue damage growth and healing during rest periods were evaluated using the impact resonance
method. These experiments showed an increase in the dynamic modulus of the damaged specimens
after a rest period. It was also proven that a higher healing temperature increases the amount of healing
that occurred during the rest periods [6]. Another method to investigate the healing is through dynamic
mechanical analysis performed on asphalt mortar to characterize fatigue damage and healing under
strain-controlled torsional testing. These experiments illustrate the effects of microdamage healing
due to rest periods and the increase of the dynamic modulus after the rest period, and consequently
an increase in the fatigue life of asphalt mixtures [7]. However, damage formation and healing are
not the only important factors in fatigue experiments. During fatigue experiments, reversible and
non-reversible mechanisms happen at the same time. The non-reversible mechanisms are damages
caused by self-heating, permanent deformation, and structural damages, and the reversible mechanisms
are healing, thixotropy, and steric hardening. Currently, there are no models that can quantitatively
identify the contribution of all these phenomena [4,8]. However, while investigating the mechanical
recoveries of asphalt mixtures, it is important to take into account that healing is not the only influential
phenomenon. Non-linearity, thixotropy, and steric hardening can also generate similar mechanical
recoveries during the unloading stage.

Different methods have been suggested by researchers to quantify the healing in asphalt. Some
approaches introduce parameters that provide a relative comparison of healing between mixtures
and some provide a more absolute measure of healing through proposed parameters [9]. A popular
method is to use Schapery’s extended nonlinear elastic-viscoelastic correspondence principle [10] to
characterize both the microdamage and microdamage healing during the damage process. Using this
method, some healing indices have been defined and it has been demonstrated that longer rest periods
result in more healing, and consequently greater fatigue life [11]. In another study, this approach
has been used in the dynamic shear rheometer tests with a specifically designed intermittent loading
sequence to define a healing rate, as the rate of dissipated energy recovery per unit of rest time, to
quantify the healing potential of asphalt binders. The results of that study indicate that binder type,
strain level, and temperatures have an important impact on healing [12]. An alternative method to
determine the healing rate of asphalt mixtures is based on the recovered dissipated creep strain energy
(DCSE) per unit time. This method was used to determine the healing properties of different mixtures
and determine the influential factors on their healing capacity [13]. The healing factor currently
used by the Flemish road agency for mixture design was developed in 1974 [14] and is 7.1 for all
mixtures. This value is outdated and can lead to mistakes in design and faster deterioration of the road
construction [15]. Therefore, it is important to further investigate the healing of asphalt concrete with
modern instruments. Furthermore, during the past decade, different approaches were introduced to
induce the self-healing capacity of asphalt concrete. These methods include induction heating [16],
microwave heating [17], and rejuvenation [18,19].

Nowadays, strain gauges and linear variable differential transformers (LVDT) are the most
common measurement devices to perform mechanical tests on asphalt mixtures. These measurement
devices are simple to use, but they are only able to measure the average deformation in the central
region of the specimen and are not able to accurately measure the localized or non-uniform strain
distributions. Furthermore, with these sensors measurement locations must be decided prior to the
experiments. To solve these issues, two-dimensional digital image correlation (2D-DIC) has been
introduced to conduct mechanical testing on asphalt mixtures [20–22]. One of the applications of this
method is to investigate the crack formation and propagation in asphalt pavements [23,24]. For instance,
the cracking mechanism of different asphalt mixtures during three common fracture tests: the indirect
tensile (IDT) test, the semi-circular bending (SCB) test, and the three-point bending (3PB) test have
been investigated using the DIC technique [25]. DIC can be useful to validate the finite element
models predicting the propagation of the crack in pavements [26]. In another study, DIC has been
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applied for validation of hot mix asphalt mixtures (HMA) fracture mechanics model, a viscoelastic
fracture mechanics-based crack growth law, which identifies the fracture energy of the mixtures as a
fundamental crack growth threshold [27]. DIC has also been used to investigate the crack opening and
closing behavior of asphalt concrete specimens containing iron oxide nanoparticles in double torsion
tests and the effect of exposition of the specimens to an alternating magnetic field [28]. In another
study, DIC was used to detect damage occurrence and to select the right time to start an inductive
heating process to accomplish healing in the asphalt concrete specimens [29]. DIC was also used to
investigate the healing mechanism in other materials, like concrete [30].

The purpose of this research is to provide an insight into crack propagation and healing of asphalt
on its surface by measuring the strain map on the surface of a cylindrical asphalt mixture during
indirect tensile fatigue tests and to propose some healing indices based on the surface strain. Therefore,
a healing test, consisting of three stages, was developed. In the first stage, a cyclic load is applied
for microcrack formation and propagation until the module of elasticity of the specimen reaches a
certain termination value. In the second stage, the loading is stopped and the temperature is increased
to initiate the healing in the sample during the rest time. In the final stage, a fatigue test similar to
the test of the first stage is conducted until the module of elasticity reaches the same termination
value. Images are captured during the experiment and using the DIC technique crack propagation and
healing phenomenon are investigated.

The structure of this paper is as follows: In Section 2 a description of the material production and
preparation, experimental setup, and different methods used in this research are given. In Section 3
the overview of the measurement results and detailed analysis of the images to investigate crack
propagation and healing are summarized. The paper is finalized with some conclusions in Section 4.

2. Materials and Methods

2.1. Specimen Preparation

The specimens were manufactured in the laboratory according to EN 12697-35:2016 [31] and
compacted according to EN 12697-31:2007 [32] using a Gyratory Compactor. In this research, a typical
asphalt concrete mixture with a maximum aggregate size of 14 mm (AC14) was investigated. In total,
three identical cylindrical specimens (S1, S2, S3) with a diameter of 100 mm and a thickness of 40 mm
were made. The asphalt mixture contained 4.3% of bitumen by mass of aggregates. A common 35/50
penetration grade bitumen was used. Table 1 shows the basic properties of the used bitumen and
in Table 2 the composition of the mixture is presented. Figure 1 shows the final grading curve of
the mixture.

Table 1. Basic properties of the 35/50 penetration grade bitumen.

Penetration (1/10 mm) 37
Softening point (◦C) 54.3

Fraass breaking point (◦C) −10

Table 2. Mixture composition (by aggregate mass).

Limestone 6.3/14 39.8%
Limestone 2/6.3 14.0%
Limestone 0/2 30.0%
River sand 0/1 7.5%
Filler (filler 15) 8.7%

When using DIC, the surface of the specimen should be painted by some random speckles.
This speckle pattern strongly influences the accuracy of the strain field measurements [33]. Therefore,
to have a better accuracy in measurements on asphalt, usually, a thin white paint overprinted by a
speckle pattern of black is applied on the surface, resulting in a homogeneous randomly oriented
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texture [34]. However, this treatment will also cover the aggregate and asphalt distribution information,
which is important for local damage identification. Since the natural surface of asphalt mixture includes
natural speckles due to different materials inside [35], in this research, only a random black speckle
pattern was added to the already existing pattern on the surface. Using this method, the cut surface
of the specimen remains visible for further analysis of the crack’s growing path according to the
aggregate-binder structure of the specimen.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 13 
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After the paint had dried, two stripes were glued on the specimens according to the standard to
hold two LVDTs to measure the horizontal deformation during the experiments. Then the specimens
were conditioned inside the climate chamber of the universal testing machine (UTM).

2.2. Experimental Setup

The experiments were designed based on the test described in EN 12697-24:2012 [36], Annex
E (Indirect tensile fatigue test on cylindrical shape specimens) and were conducted according to
Figure 2 with a Pavetest DTS-30 servo-hydraulic dynamic testing system UTM. After the samples
were conditioned to the desired temperature (20 ◦C), fatigue tests with a 0.1 s haversine load with
a maximum load of 600 kPa followed by a rest period of 0.1 s were carried out. A Poisson’s ratio
of 0.35 was assumed for this asphalt mixture to determine its resilient modulus (stiffness). To stop
the tests at a certain point, termination conditions based on the resilient horizontal strain and the
resilient modulus were defined. According to the standard [36], the tests should stop when the resilient
horizontal strain and the resilient modulus reach 200% and 50% of their initial values, respectively.
However, in these experiments, to avoid having any macrocracks without the possibility of healing,
the termination value was defined as reaching 140% of the initial resilient horizontal strain or 71% of
the initial resilient modulus. Using these values, at the end of this step, there were no visible cracks on
the surface of the specimens. In the second step, the temperature of the climate chamber was raised to
60 ◦C. This temperature was chosen slightly higher than the softening point of the bitumen used in
this study. In previous research [1], samples were placed inside a wooden frame during the healing
stage at an elevated temperature. This can help the cracks to close when the specimen expands due to
the temperature increase. However, in this research, the samples were left at the exact same position
ensuring that the images captured during the healing process can be compared with the previous
images. After keeping the temperature of the climate chamber at 60 ◦C for 18 h it was lowered to 20 ◦C
again. The samples were kept at this temperature for three hours and then the final fatigue tests were
continued until the resilient modulus again reaches the termination value defined in the first step. It is
expected that this approach will lead to a lower healing degree compared to Reference [1].
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Figure 2. Experimental setup; (Left) schematic view of the setup, (Right) specimen, camera, and LED
spots placed in front of the UTM, only the top camera is active and the whole system is covered with a
black plastic cover.

The camera used in this research was a GigE uEye UI223xRE-M IDS, with a resolution of 1024
× 768 and frame rate of 30 fps in full resolution. The camera was aligned with four LED spots to
generate the proper lighting condition in the images (Figure 2). The load signal was measured by
the Pavetest’s compact control and data acquisition system (CDAS) and amplified using an AM 502
differential amplifier and sent to the national instrument NI USB-6343 Multifunction DAQ, as a trigger
signal. Using this signal, camera and LED spots were triggered at the desired cycles of the experiment
to capture the images. Moreover, the camera captures images with a 20 ms delay after receiving a
pulse; therefore, to have a perfect synchronization between the camera and LED spots, the camera
was triggered 20 ms before the LED spots. The camera was focused manually and the exposure time
was set to 18 ms in order to have the optimum brightness in the images. The camera was calibrated
using an AI-08-BMB_9*9 Dantec Dynamics calibration plate and the Istra 4D software. Using the
Istra 4D software it was possible to determine the projection parameter and take any distortion of
the imaging or tilting of the object into account. For each specimen, first, one image was captured
before the experiment starts as a reference image. Then, depending on the total duration of the fatigue
tests, approximately 100 images were acquired using a logarithmic relation between the number of
images and number of cycles so more images are captured at the end of the experiment when the
cracks propagate faster. Finally, 1080 images were captured during the 18 h rest time (one image per
minute). Figure 2 shows the experimental set up of the measurements. Only the top camera of this
system is active in this research. Moreover, to avoid any unwanted light reflection on the glass of the
UTM the whole system was covered with a black plastic cover.

2.3. Healing

During the tests, the resilient modulus and resilient horizontal strain of the specimens were
recorded by the UTM, according to EN 12697-24:2012 Annex E [36]. By plotting this information for
both fatigue tests before and after the healing procedure, it is possible to define the extension index
(EI) and recovery index (RI) based on Figure 3. The EI is defined in Equation (1) [37] and the RI is
calculated according to Equation (2) [2], where 100% means the complete recovery and 0% means no
recovery at all.

EI =
C2
C1

(1)

RI =
E2
E1

(2)
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C1 and C2 are numbers of loading cycles, and E1 and E2 are the averages of the resilient modulus for
the first 100 cycles of each step of the test. As explained in the introduction, these recoveries are not
only due to the healing phenomenon and include recoveries based on other mechanisms as well.
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In the next step, the acquired images during the experiments were processed using the Istra 4D
software. The facet size and grid spacing were set to 23 and 8 pixels, respectively. Using this software,
it is possible to calculate the horizontal strain on the surface of the specimen during the experiments.
To show the healing around each microcrack, a region of interest was defined around the areas with
high strain and the mean horizontal strains in those regions were calculated and compared through
the experiments. Furthermore, to define a general healing factor for the asphalt mixture, the number of
facets with horizontal strain higher than 10 µE (P) over the total number of facets (Ptotal) was calculated
for all images, see Figure 4. Three values were derived from this figure:

• Healing time (HT), which represents the time it takes for the surface strain to reach its
minimum value,

• Percentage of the strain recovery (H%) defined as the percentage of strain recovery on the surface
of the sample,

• Strain recovery speed (SR) which represents the speed of strain recovery on the surface of
the specimens.
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3. Results and Discussion

3.1. Full-Field Strain and Crack Detection

Figure 5 shows the horizontal strain map of the three samples, produced using the same asphalt
mixture, at the termination cycle of the first step of the experiment calculated by Istra 4D. As expected,
due to the difference between the module of elasticity of the aggregate and binder, the strain obtained
within the binders is larger than those within the aggregates. However, after some cycles and before the
appearance of any cracks, some locations with higher strain are observed on the surface. By continuing
the fatigue experiment, the strain all over the surface increases but the location of the maximum strain
remains the same. These are the locations where the cracks will initiate and grow. The increase of
strain near the crack location in different steps of the fatigue test can be seen in previous research and
is confirmed in this study [38]. It can be seen that the contour line of maximum strains matches very
well with the fracture path. Due to the anisotropic characteristics of the asphalt mixture, the strain
distribution and crack locations are closely related to the distribution of aggregates and the asphalt
mortar (In this research mortar is defined as the mixture of bitumen, filler, and sand). The cracks are
normally located at the interface of the aggregate-mortar matrix, but depending on the structure of the
mixture, in some cases, the crack passes through the stones as well.
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3.2. Healing Phenomenon Near the Microcracks

To investigate the healing, regions of interests around the areas with high strain where the
microcracks exist were selected (Region 1 to Region 5 in Figure 6 (left)). Figure 6 (right) shows the
mean horizontal strain inside the five specified areas during step 1 (the first fatigue test) and step 2 (rest
time in elevated temperature). The temperature evaluation on the surface of the specimen is presented
in Figure 6 (right). It can be seen that the strains in all the selected regions increase during step 1.
After the test is stopped, it takes about 32 min for the mean horizontal strain to reach its minimum.
The surface temperature at this time reaches approximately 54.7 ◦C. After this time the mean horizontal
strain fluctuates around that minimum value.

Next, to investigate the level of healing at different locations of a crack path, area 1 of Figure 6
is divided into five smaller areas (Figure 7), from the location with the highest strain (widest part
of the microcrack) to the locations with lower strains (tip of the microcrack). Figure 8 shows that
the mean horizontal strain is the highest in area 1.1 and it decreases towards area 1.5. Furthermore,
the strain reduction is less than 8% in areas 1.1 and 1.2 but it gets to between 50% to 60% for areas
1.3 and 1.4 and finally 100% for area 1.5. Thus, it is possible to conclude that the microcracks can
completely heal at their tip (area 1.5) where the faces of the microcracks are close to each other, but
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they heal much less in the places with a wider crack opening. This is in line with the primary step of
the healing process known as wetting of the two faces of the cracks according to the models described
in Reference [39]. It should be mentioned that in region 1.1 and 1.2 after the strain reaches a minimum,
it slightly increases again until the end of the rest time. This could be due to the fact that there is still a
loading plate left on top of the specimen that applies a small force in direction of the crack opening
and the creep of asphalt in high temperatures.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 13 
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3.3. Proposed Healing Indices

In this step, first, resilient modulus and resilient horizontal strain of the three samples are recorded
during the fatigue tests, before and after the healing procedure. The resilient modulus decreases during
the first fatigue test until it reaches the termination value. Then part of the mechanical properties of the
specimens recover during step 2 and a second fatigue test is conducted on the specimens. Recovery
indices based on these parameters are calculated using Equations (1) and (2) and are presented in
Table 3.

Table 3. Healing parameters of three identical asphalt samples using the data acquired by the UTM and DIC.

UTM DIC

EI RI HT [min] H% SR [µε/min]

S1 0.86 0.99 31 42.3 0.0028
S2 0.86 0.92 23 18.87 0.0020
S3 0.94 0.99 34 21.98 0.0018

Average 0.89 0.97 29.33 27.72 0.0022
SD 0.05 0.04 5.69 12.72 0.0005

Next, the diagrams of P/Ptotal are plotted for the samples during the first and second step of the
experiments (Figure 9). Based on these diagrams and with the procedure explained in Section 2.3, the
healing parameters of the samples based on the DIC method are calculated and presented in Table 3.
In this table, it can be seen that the average of RI for this mixture is 97%, but the H% value is only
27.7%. Therefore, it could be concluded that strain recovery on the surface does not fully represent the
recovery of the mechanical properties of the mixtures. This difference could be due to the fact that H%
only investigates the healing of the microcracks on the specimens, but some viscoelastic responses
such as non-linearity, thixotropy, and steric hardening can also generate mechanical recovery during
the second step of the experiments. Furthermore, H% is based on the microcracks on the surface of the
objects. However, healing occurs as well in the microcracks under the surface layer. This can explain
the high standard deviation value for H%. The two more interesting calculated parameters are HT,
which indicates the time in which all the strain recovery on the surface of the mixture happens, and SR,
which shows the speed of this recovery. Without DIC, multiple experiments with different healing
times should be conducted to estimate the required healing time for a mixture to achieve its optimum
recovery level. However, in this research, the healing level of the asphalt mixture was plotted in time
with only one experiment. This diagram was able to give the minimum time (29.33 min) to have the
optimum healing for this asphalt concrete in an efficient procedure. This could be useful in practice to
decide how much time a mixture needs to heal to an optimum level at a certain temperature. It is also
possible to use this method to calculate the SR of different asphalt mixtures and compare their healing
rates. However, it should be mentioned that HT and SR are not only dependent on the mixtures but
also the temperature increase rate. Thus, they can only be used to compare different mixtures if the
exact same healing procedure (step 2) is conducted.



Appl. Sci. 2019, 9, 2459 10 of 12
Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13 

 
Figure 9. P/Ptotal calculated by digital image correlation (DIC) for three identical asphalt concrete 

specimens (S1–S3). 

Table 3. Healing parameters of three identical asphalt samples using the data acquired by the UTM 
and DIC. 

 UTM DIC 
 EI RI HT [min] H% SR [µε/min] 

S1 0.86 0.99 31 42.3 0.0028 
S2 0.86 0.92 23 18.87 0.0020 
S3 0.94 0.99 34 21.98 0.0018 

Average 0.89 0.97 29.33 27.72 0.0022 
SD 0.05 0.04 5.69 12.72 0.0005 

4. Conclusions 

Healing is an important parameter of asphalt pavements for mixture design and service life 
prediction. However, there is still a lack of a proper method to observe and quantify this phenomenon 
for asphalt mixtures. In this study, the DIC method has been used to firstly predict the crack locations 
and secondly explore the possibility of observing and measuring the healing ability of asphalt 
mixtures from the strain map on the surface of the samples. According to the results,  

• This method is able to predict the location of the cracks and observe the healing phenomenon 
happening in the microcracks.  

• It is possible to observe the amount of healing of different microcracks on the surface of the 
specimens and it was shown that, as predicted in the healing models, the tip of the microcracks 
heals more than their widest part.  

• The amount of time it takes for the specimens to heal around the microcracks (HT) can be 
calculated. This value can be used to plan the minimum time that is required for an asphalt 
mixture to have its maximum healing at a certain temperature.  

Figure 9. P/Ptotal calculated by digital image correlation (DIC) for three identical asphalt concrete
specimens (S1–S3).

4. Conclusions

Healing is an important parameter of asphalt pavements for mixture design and service life
prediction. However, there is still a lack of a proper method to observe and quantify this phenomenon
for asphalt mixtures. In this study, the DIC method has been used to firstly predict the crack locations
and secondly explore the possibility of observing and measuring the healing ability of asphalt mixtures
from the strain map on the surface of the samples. According to the results,

• This method is able to predict the location of the cracks and observe the healing phenomenon
happening in the microcracks.

• It is possible to observe the amount of healing of different microcracks on the surface of the
specimens and it was shown that, as predicted in the healing models, the tip of the microcracks
heals more than their widest part.

• The amount of time it takes for the specimens to heal around the microcracks (HT) can be calculated.
This value can be used to plan the minimum time that is required for an asphalt mixture to have
its maximum healing at a certain temperature.

• Finally, two parameters of strain recovery (H%) and strain recovery speed (SR), which can be
used qualitatively to compare the healing ability and healing speed of different mixtures, were
proposed and calculated for a mixture.

Future research will focus on using this method to investigate the healing of different asphalt
mixtures at different temperatures and compare the proposed DIC method with other existing healing
identification methods.
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