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Abstract: The main benefits of fuzzy logic control (FLC) allow a qualitative knowledge of the desired
system’s behavior to be included as IF-THEN linguistic rules for the control of dynamical systems
where either an analytic model is not available or is too complex due, for instance, to the presence of
nonlinear terms. The computational structure requires the definition of the FLC parameters namely,
membership functions (MF) and a rule base (RB) defining the desired control policy. However,
the optimization of the FLC parameters is generally carried out by means of a trial and error procedure
or, more recently by using metaheuristic nature-inspired algorithms, for instance, particle swarm
optimization, genetic algorithms, ant colony optimization, cuckoo search, etc. In this regard, the cuckoo
search (CS) algorithm as one of the most promising and relatively recent developed nature-inspired
algorithms, has been used to optimize FLC parameters in a limited variety of applications to determine
the optimum FLC parameters of only the MF but not to the RB, as an extensive search in the literature
has shown. In this paper, an optimization procedure based on the CS algorithm is presented to
optimize all the parameters of the FLC, including the RB, and it is applied to a nonlinear magnetic
levitation system. Comparative simulation results are provided to validate the features improvement
of such an approach which can be extended to other FLC based control systems.

Keywords: fuzzy logic controller; meta-heuristics; cuckoo search algorithm; magnetic
levitation system

1. Introduction

Most problems in the real world are often very challenging to solve, and many applications have
to deal with non-deterministic polynomial-time hard (i.e., NP-hard) problems. To solve these problems,
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an optimization tool can be used even if there is no guarantee that the optimal solution can be obtained,
techniques such as trial and error methods may help to find “acceptable solutions” [1,2]. In this regard,
researchers have focused their efforts on developing algorithms capable of solving these problems in
a more efficient manner.

Real-life applications found in engineering, business activities, industrial designs, statistics,
decision making, optimal control, machine learning, etc., require optimization of (a set of) objective
functions that can be anything, for example, minimization of energy consumption and costs,
maximization of profit, output, performance, and efficiency, of a global optimization problem [3,4].
Moreover, optimization can be defined as a field of science in which the values of parameters of
the problem are explored under specified conditions (constraints) in order to find those particular
values which enable an objective or set of objective functions to generate the minimum or maximum
value [5,6].

In general, an optimization problem can be formulated in terms of a correctly defined cost/objective
function in which all the objectives of optimization related to the problem are involved. Moreover,
if any predefined constraints are to be used with respect of the parameters of the related problem,
these should be considered during the design of the optimization problem and its corresponding
cost/objective function [7].

During the last decades, meta-heuristic nature-inspired algorithms have been given special
attention due to their great capability in solving optimization problems in a wide range of
applications such as operation and control of electric power systems [8–12], chemical processes [13–15],
job scheduling [16–18], vehicle routing [19,20], autonomous vehicles control [21], mobile
networking [22,23], multi-objective optimization [24–26], image processing [27], etc. Some of these
algorithms found in the literature are cuckoo search, bat algorithm, particle swarm optimization, firefly
algorithm, ant algorithms, genetic algorithm, differential evolution, etc. However, recent studies have
shown that cuckoo search (CS) is potentially more efficient than other algorithms in solving optimization
problems in terms of better-obtained solutions [8], its well-balanced intensification/diversification
search strategies [3,28–30], robustness and precision of obtained results [7], and faster convergence
speed [31].

Like almost all nature-inspired algorithms, the CS algorithm can be referred to as a meta-heuristic
algorithm with two important features that make it so efficient at solving optimization problems, one
is intensification or exploitation and the other is diversification or exploration. Intensification refers to
focus on the search in a local region by exploiting information when a good solution has been found
while diversification means the generation of diverse solutions far enough from good solutions to
explore the search space on the global scale more efficiently [2,3,7,29,32,33].

On the other hand, in contrast to classical control theory that has been successful in controlling
well defined deterministic systems, many engineering problems require more sophisticated control
techniques due to the presence of strong non-linearities, embedded in a changing environment with
uncertainty, or are difficult to model [34]. Fuzzy logic control (FLC) technique provides a formal
methodology to represent, manipulate, compute and incorporate human intelligence directly into
automatic control systems [34,35] offering potential advantages over conventional control schemes in
less dependency on quantitative models, natural decision making, learning capability, a greater degree
of autonomy, ease of implementation, and a friendly user interface [34,36–39]. By using the linguistic
approach provided by the fuzzy theory [40], human knowledge about the system to be controlled can
be integrated into control theory [41].

An analysis of the literature about FLC parameter optimization using nature-inspired CS algorithm
reveals some works which will be briefly described next. In [8] CS is used to adjust the shape of the
controller’s triangular and trapezoidal MF for the energy management of a hybrid power system.
In [42] an image edge detection system based on a type-2 fuzzy is optimized by adjusting the shape
of Gaussian MF. In [43], CS is used to adjust the shape of the fuzzy controller for liquid level control.
In [11], a modified CS is used to tune MF’s positions of an FLC for a stationary battery storage system.
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In this regard, the objective of this paper is to propose a methodology to optimize FLC parameters
which involve not only the MF’s positions but also the RB, which is the novelty of the presented
approach, using for this purpose the CS algorithm. This procedure can be applied to any problem
which involves a system where this control technique is required. The CS is applied to a FLC to
achieve a better performance in comparison to conventional design and according to some predefined
objectives. Referring to the magnetic levitation system (MLS), these objectives are steady-state vertical
position, maximum overshoot, and settling time.

Based on the aim discussed above, the major contribution of this research is the new methodology
for FLC parameter optimization using CS, including the RB as another degree of freedom, in such
a way that a better solution for the problem to optimize is more feasible to achieve.

This paper is organized as follows: The mathematical model of the MLS system is detailed in
Section 2. In Section 3, The FLC design to control the MLS is presented. This FLC optimization
procedure using the CS algorithm is given in Section 4, with a detailed description of the algorithm
used. Finally, the simulation results and discussions are presented in Section 5.

2. Magnetic Levitation System Modeling

A magnetic levitator is a system formed by electromagnets that allow ferromagnetic objects to
remain in the air by means of a strong magnetic field opposite and equal to gravity. According to [44],
the model of the MLS systems using differential equations is described as follows:

r′ = v (1)

v′ = −
Fem

m
+ g (2)

i′ =
1

fi(r)
· (ki · u + ci − i) (3)

Fem = i2 ·
FemP1

FemP2
· e(−

r
FemP2

) (4)

fi(r) =
fiP1

fiP2
· e

(− r
fiP2

)
(5)

where r ε [0, 0.016] (m) is the vertical position range of the object according to [44], v the velocity,
i the current, and fi (r) is the electromagnet’s inductance as function of the distance r. The other
parameters that define the mathematical model of the MLS are: ki, ci are constants that determine the
static characteristic of the current i versus the control signal u, FemP1 and FemP2 are constants for the
electromagnetic force Fem calculation, fiP1 and fiP2 are constants to determine the inductance value fi
(xi), and, u represents the control signal. These equations include strong non-linearities and the control
can be analytically designed either by a linearization approach, thus not dealing with large signal
perturbations, or eventually by using complex nonlinear techniques.

For simulation purposes, a Simulink model representing—and the parameters defined in [44], has
been implemented. Both, the control system structure and the Simulink representation of the MLS real
model are illustrated in Figures 1 and 2, respectively.
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The fuzzification process module which takes the inputs to the controller and produces a degree of 
membership for each fuzzy set in the membership function, the inference engine which takes these 
fuzzy set memberships and determines which rules should be evaluated, and the defuzzification 
process which takes the output values from the inference mechanism and translates them into an 
output dispatch signal [8,35,38,39]. Mamdani-based inference and defuzzification of the center of 
gravity are used in this paper. 

A simple proportional-derivative (P-D) FLC type is chosen. The first input of the FLC is the 
position error, which represents the error between the desired sphere height and the actual sphere 
height. The second input of the FLC is the derivative of error, which indicates whether a 
positive/negative variation of the position is progressing or not. The controller will use this 
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3. Fuzzy Logic Controller Design

Due to the non-linear dynamics presented by the MLS [44], FLC is applied for maintaining
a ferromagnetic sphere at a specific vertical position r, providing two advantages: A simple and
robust non-linear control system and, an easy to implement controller since it is based on the linguistic
description of the global system behavior [8]. The FLC consists of three main modules: The fuzzification
process module which takes the inputs to the controller and produces a degree of membership for each
fuzzy set in the membership function, the inference engine which takes these fuzzy set memberships
and determines which rules should be evaluated, and the defuzzification process which takes the output
values from the inference mechanism and translates them into an output dispatch signal [8,35,38,39].
Mamdani-based inference and defuzzification of the center of gravity are used in this paper.

A simple proportional-derivative (P-D) FLC type is chosen. The first input of the FLC is the
position error, which represents the error between the desired sphere height and the actual sphere height.
The second input of the FLC is the derivative of error, which indicates whether a positive/negative
variation of the position is progressing or not. The controller will use this information to decide whether
a high/low control action is needed to accomplish a predefined group of performance parameters or
not. The output of the FLC is the control signal, which represents the control signal injected to the
electromagnet of the MLS. The controller will use this information to decide a higher/lower control
signal according to the value of its input.

The MF used for input and output data are shown in Figure 3 and the rules to be evaluated are
given in Table 1, leading to a simple 25 rules FLC to reduce the controller computational complexity
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and facilitate a subsequent implementation. At the beginning, following a current preset practice of
the FLC parameters, five triangular MF, uniformly distributed, are assigned to the FLC inputs and
output, whereas the initial RB is defined according to the heuristic knowledge of the MLS performance
and corresponds to a standard P-D based FLC.
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Figure 3. Membership functions (MF) used for inputs and output data: (a) Position error (input),
(b) derivative of error (input), (c) control signal (output).

Table 1. Fuzzy logic initial rules for magnetic levitation system (MLS) control.

Control Signal
Position Error

NB NS ZE PS PB

Derivative of error

NB PB PB PS PS ZE
NS PB PS PS ZE NS
ZE PS PS ZE NS NS
PS PS ZE NS NS NB
PB ZE NS NS NB NB

For MF, “NB” represents the “Negative Big” fuzzy set, “NS” represents the “Negative Small”
fuzzy set, “ZE” represents the “Zero” fuzzy set, “PS” represents the “Positive Small” fuzzy set and
“PB” represents the “Positive Big” fuzzy set.

The CS algorithm used to optimize the MF for the input and output and the RB of the FLC are
discussed next.
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4. Fuzzy Logic Controller Parameter Optimization Using Cuckoo Search Algorithm

The CS algorithm is one of the newest developed nature-inspired metaheuristic algorithms and
it is inspired in the obligate brood parasitism behavior of some cuckoo bird species which lay their
own eggs in nests of other birds [3,29,45]. If host birds realize that a cuckoo laid an egg in their nests,
they will either remove the egg from the nest or just abandon it and build a new one. In this regard,
some cuckoo species have developed skills to imitate patterns and colors of specific host bird’s species
increasing the probability of a cuckoo egg to survive [3,29,46].

The simplest approach of using new metaheuristic CS algorithm can be done through three ideal
rules [3,29,47], which are: Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.
Each egg represents a solution. The best nests with high quality of eggs (i.e., better solutions) will carry
over to the next generations. Additionally, the number of available host nests (i.e., number of solutions
per generation) is fixed and the egg laid by a cuckoo is discovered by the host bird with a probability,
pa ∈ [0, 1]. In general terms, CS is used to minimize/maximize an objective function, O (X), where X is
a candidate solution of dimension, d, selected from a population of length, n. It is worth to remark that
terms such as egg, nest, and solution represent the same in the context of the present study.

In short, CS algorithm involves two phases: At first, the initial random population is created and
then, CS goes into an iterative process where two random walks, Lévy flights, and biased/selective
random walk, are used to search for new solutions within the boundaries of the search space according
to the problem restrictions. CS selects the best solution obtained in every iterative process according to
the objective function value [3,29,48]. A detailed description of the different phases of the algorithm
and its application for the optimization of the FLC described in Section 3 is exposed next and is
illustrated in Figure 4.

4.1. Initialization

In the initialization phase, the CS algorithm initializes a set of solutions which are randomly
sampled from the search space. For this purpose, the dimension of the solution and the length of the
population must be defined.

The dimension of the solution, d, is defined according to the total number of parameters to
optimize. In accordance with the FLC designed in Section 3, these parameters are related to the MF’s
mapping and the RB. In this regard, both inputs (i.e., position error and derivative of error) and output
(i.e., control signal) comprise five fuzzy sets and eleven parameters (since every fuzzy set is represented
by a membership function of three variable positions except for both located at the maximum and
minimum universe of discourse limits that have two fixed positions and one variable) whereas the RB
includes twenty-five parameters. Considering all these values, each solution is represented with d = 58
parameters. The length of the population is fixed and a value of n = 25 is sufficient according to the
literature [3]. In this regard, the initial random population is formulated as a n x d matrix where every
row is a candidate solution of dimension d.

In order to preserve some order and symmetry in comparison with the MF’s mapping and RB
distribution, every initial random solution conforming the initial random population, is generated
according to the initial parameter distribution presented in Figure 3 and Table 1, as follows:

XGi = [XMFi, XRBi] (6)

XMFi = XMF(I) + R (7)

R = [U(−5% ·RInp(1), 5% ·RInp(1)), U(−5% ·RInp(2), 5% ·RInp(2)), U(−5% ·ROut, 5% ·ROut)] (8)

XRBi = XRB(I) + U(−1, 1) (9)

where XMFi represents a candidate initial solution for the MF’s mapping sampled randomly from
the search space which is limited according to the problem restrictions (i.e., inputs and output range
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values of FLC designed in Section 3) and of dimension equal to the total number of MF parameters
to optimize, XMF(I) represents initial membership function’s parameters according to Figure 3, R is
a set of displacements constituted of three different subsets that correspond to vectors of random
numbers drawn from a uniform distribution where RInp, RInp, and ROut are the defined range for
every input/output variable, respectively, and a design value of 5% has been defined with the aim
that randomly generated solutions result rather similar to initial distributed ones (Figure 3), XRBi
represents a candidate initial solution for the RB sampled randomly from the search space which
is limited according to the problem restrictions (i.e., linguistic labels corresponding to fuzzy sets
whose MF are depicted in Figure 3) and of dimension equal to the total number of RB parameters
to optimize, XRB(I) represents initial RB parameters according to Table 1, U (−1, 1) is a set of integer
rule-base displacements drawn from a uniform distribution, and XGi is a candidate initial solution
(nest) comprising of XMFi and XRBi at an initial generation Gi.
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Once the initial random population is created, the CS algorithm evaluates every candidate
solution, so the best ones obtained a pass to the next generations. It is worth pointing out that, during
a minimization/maximation process, the ‘selection of best’ step results crucial so the best solution
according to problem’s objectives of optimization can be obtained at the end of the algorithm.
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4.2. Lévy Flights Random Walk

After the initialization and with the information that possible good solutions were obtained
in a previous generation, CS starts an intensification (local search) process so that better solutions
can be obtained. CS intensification is carried out using a Lévy flights random walk with a step-size
drawn from a Lévy distribution that is characterized by its infinite mean and variance, enabling CS to
explore the search space more efficiently than other algorithms that use a standard Gaussian process.
At a generation G > 0, a new solution is generated using a random walk according to the following
expression [3,29]:

XMF(G+1) = XMF(G) + α · Levy(β) (10)

α = α0 ·
(
XMF(G) −XMF(best)

)
(11)

where XMF(G + 1) is a candidate new solution for MF’s parameters obtained after the intensification
process, XMF(G) is a candidate solution at a previous generation G selected from the cuckoo population,
α > 0 is a set of step-sizes that are related to the scale of the problem [3,29], Lévy(β) is a set of random
numbers drawn from a Lévy distribution, XMF(best) is the best solution for MF’s parameters obtained so
far in the iterative process and together with RB parameters, better optimizes the objective function,
and α0 is a scaling factor that generally is fixed and set to 0.001 or 0.1 although a varying scaling factor
has shown better performance for most optimization problems [48]. In the present work, a varying
scaling factor drawn from a uniform distribution is employed and formulated as follows:

α0 ∼ U(0.01, 0.1) (12)

In the implementation, Lévy flights are calculated via the so-called Mantegna’s algorithm for
a symmetric Lévy stable distribution, as follows [3,29].

Levy (β) =
φ ·w

|v|1/β
(13)

φ =


Γ(1 + β) · sin

(
π·β

2

)
Γ
(

1+β
2 ·β · 2

β−1
2

)


1/β

(14)

where β = 1.5 is the constant of the Lévy distribution [3], w and v are random numbers drawn from
a normal distribution with zero mean and unit standard deviation, and Γ is the gamma function [3,29,49].

It is worth pointing out that the aforementioned procedure is applied only to generate new
solutions for the MF’s mapping. Therefore, new solutions for the RB are calculated as follows.

XRB(G+1) = XRB(G) + S ·
(
XRB(G) −XRB(best)

)
(15)

where XRB(G + 1) is a candidate new solution for RB parameters obtained after the intensification
process, XRB(G) is a candidate solution at a previous generation G selected from the cuckoo population,
S is set of integer numbers drawn from a normal standard distribution N (0, 1) to displace the RB
values, and XRB(best) is the best solution for RB parameters obtained so far in the iterative process and
together with membership function’s parameters, better optimizes the objective function.

It is worth pointing out that intensification is applied to every solution of the population and
a solution is replaced by another one or carried through the next generations, according to the following
expression:

XG+1 =

{
XG+1; O(XG+1) < O(XG)

XG; otherwise
(16)

where O (X) is the objective of optimization function, and XG/XG+1 are candidate solutions comprising
of XMF(G)/XMF(G+1) and XRB(G)/XRB(G+1), respectively.
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4.3. Biased/selective Random Walk

In this step, new solutions far enough from the current best solutions are discovered by using
far-field randomization [29]. First, a random probability value of pa ∈ [0, 1] is assigned to every solution
in the cuckoo population after the intensification process and then biased/selective random walk is
implemented if the individual solution’s assigned probability fits the condition pa ≤ 0.25. In this regard,
a trial solution is built using a mutation of a candidate solution selected from the population and
a differential step size from two stochastically selected solutions and then, a new solution is generated
by a crossover operator from the candidate current solution and the trial solutions [48]. This procedure
is formulated as follows:

XG+1 =

 XG + r ·
(
Xp(G) −Xq(G)

)
; pa ≤ 0.25

XG; pa > 0.25
(17)

where XG + 1 is a candidate new solution for MF and RB parameters obtained after the diversification
process, XG is a candidate solution at a previous generation G selected from the cuckoo population
after the intensification process, p and q are random indexes so Xp(G) and Xq(G) are randomly selected
solutions from de cuckoo population, r ~ U (0, 1) is a random number drawn from a uniform distribution,
and pa = 0.25 is the solution discovery rate used for most optimization problems according to the
literature [3,48,50]. It is worth pointing out that with a value of pa = 0.25, the global search is slightly
intensive with about 1/4 of the search time, while local search takes about 3/4 of the total search time.
However, this parameter can be modified depending on the application to increase the probability to
find an optimum solution globally or locally [8].

5. Results and Discussion

Tuning procedure of fuzzy design variables using the CS algorithm presented in this paper
permitted not only to eliminate the requirement of expertise needed for setting these variables but also
to obtain an accurate FLC that enables MLS to perform according to a sort of pre-defined parameters.
The CS algorithm used MLS modeling to simulate the real performance of the system with an 8 mm
height set point and tuned the FLC according to MLS desired performance parameters. In this regard,
the typical parameters of a second-order linear system are overshoot, settling time and steady-state
output value. Overshoot represents the maximum response value (extremum), whereas settling time is
the time elapsed until the system response remains bounded around the set point tolerance usually
between ± 5%. The objective function and a minimum tolerance value as a finishing condition of the
optimization process, were defined as:

O = α1

∣∣∣%Mp,D −%Mp
∣∣∣

100
+ α2

∣∣∣ts,D − ts
∣∣∣

10
+ α3

∣∣∣rss,D − rss
∣∣∣ · 100 (18)

tolerance = 1% ·
(
%Mp,D + ts,D + rss,D

)
(19)

where %Mp,D is the desired percentage overshoot, %Mp is the actual percentage overshoot, ts,D is the
desired settling time, ts is the actual settling time, rss,D is the desired final position, ess is the actual final
position, and αx is the weight of each component. Note that α1 = α2 = α3 = 1 are used in this paper
to prioritize the minimization of every objective equally. In this regard, the aim is to minimize the
deviation of every performance parameter from its respective goal.

For purposes of comparison, both optimization procedures: For MF and RB, and with only MF
have been implemented. On one hand, the optimization process of MF and RB took approximately 8 h
on an Intel(R) Core(TM) i7-4510U CPU (2.00GHz) 12 GB of RAM computer using Matlab® program
(Matlab 2016b, MathWorks®, Natick, MA, USA, 2016), whereas most of the computation time is spent
on solving the 40 iterations required to reach the optimum solution that minimizes the objective
function according to the problem restrictions. On the other hand, the optimization process of only MF
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took approximately 12 h on in the same simulation platform, whereas most of the computation time is
spent for solving the 60 iterations required to reach the optimum solution that minimizes the objective
function according to the problem restrictions. In this regard, Figure 5 illustrates the average objective
function convergence for ten runs of each algorithm showing that optimizing MF and RB may lead to
a faster convergence speed of the optimization process.
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In Figure 6, the optimal fuzzy MF encountered by the optimization algorithm are superimposed
over non-optimized MF. The optimized MF maintain order and coherency with regards to the initial
distribution illustrated in Figure 3, which was one of the primary objectives. Furthermore, as is shown
in Table 2, the optimized RB distribution has been displaced in comparison to the initial RB shown
in Table 1.
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Table 2. Fuzzy Logic optimized rule base (RB) for MLS control.

Control Signal
Position Error

NB NS ZE PS PB

Derivative of error

NB PB PB PB PS PS
NS PB ZE PS NS NB
ZE ZE NS NS NS NB
PS NB NS NB NB NB
PB NB NS NB NB NB

As aforementioned, FLC is tuned using CS to enable MLS to accomplish a specific settling time,
overshoot, and steady-state vertical position. Moreover, MLS performance with optimized FLC can be
compared with linear controllers designed from the system’s linearized model around the desired
steady-state. For this purpose, and in order to fulfill as close as possible the required performance
parameters, full-state feedback controller referred to as “state-space (SS) controller” has also been
designed. In this concern, it should be pointed out that, instead of the FLC which only needs to sense
the position of the sphere, the SS controller should also require sensing both the velocity and the
electrical current.

It is worth pointing out that the main reason to optimize both the RB and the MF’s mapping is to
reach the optimal minimum of the objective function given by the overall FLC processing in comparison
to an only MF’s parameter optimization procedure, as in [8,11,42,43]. In this regard, both optimization
procedures (i.e., MFs and RB optimization and only MFs optimization) have been applied to the FLC
of the MLS (MLS-FLC). The obtained solutions of the aforementioned optimization procedures are
compared with the MLS using a non-optimized FLC and the MLS with a full state feedback controller
in terms of MLS’ performance parameters. MLS real model representation described in Section 2 is
used for simulations.

The objective of optimization was to accomplish a specific set of performance parameters for MLS
(i.e., %Mp,D = 5%, ts,D = 0.5 s, rss,D = 0.008 m) by minimizing the objective function defined by (18).
MF and RB optimization optimum solution shows a smaller deviation value of every defined goal in
comparison with an only MF optimization. Both optimization procedures’ results are also compared
with the performance of MLS with a SS controller. In this regard, according to resulting values listed in
Table 3, MF and RB optimization proposed in this paper converges to a better solution which results
in a set of slightly better performance parameters in comparison with only MF optimization and
the results are close to the ones obtained using an analytic design approach (i.e., full state feedback
controller). Furthermore, simulation results comparison is shown in Figure 7.



Appl. Sci. 2019, 9, 2458 12 of 15

Appl. Sci. 2019, 9, x 11 of 15 

 
(c) 

Figure 6. Optimized and non-optimized MF used for inputs and output data: (a) Position error 
(input), (b) derivative of error (input), (c) control signal (output). 

Table 2. Fuzzy Logic optimized rule base (RB) for MLS control. 

Control Signal 
Position Error 

NB NS ZE PS PB 

Derivative of error 

NB PB PB PB PS PS 
NS PB ZE PS NS NB 
ZE ZE NS NS NS NB 
PS NB NS NB NB NB 
PB NB NS NB NB NB 

 

As aforementioned, FLC is tuned using CS to enable MLS to accomplish a specific settling 
time, overshoot, and steady-state vertical position. Moreover, MLS performance with optimized 
FLC can be compared with linear controllers designed from the system’s linearized model around 
the desired steady-state. For this purpose, and in order to fulfill as close as possible the required 
performance parameters, full-state feedback controller referred to as “state-space (SS) controller” 
has also been designed. In this concern, it should be pointed out that, instead of the FLC which only 
needs to sense the position of the sphere, the SS controller should also require sensing both the 
velocity and the electrical current. 

It is worth pointing out that the main reason to optimize both the RB and the MF’s mapping is 
to reach the optimal minimum of the objective function given by the overall FLC processing in 
comparison to an only MF’s parameter optimization procedure, as in [8,11,42,43]. In this regard, 
both optimization procedures (i.e., MFs and RB optimization and only MFs optimization) have been 
applied to the FLC of the MLS (MLS-FLC). The obtained solutions of the aforementioned 
optimization procedures are compared with the MLS using a non-optimized FLC and the MLS with 
a full state feedback controller in terms of MLS’ performance parameters. MLS real model 
representation described in Section 2 is used for simulations. 

 
(a) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Control Signal

0

0.5

1

Output: Control Signal

Non-optimized Optimized
NB PBZENS PS

Appl. Sci. 2019, 9, x 12 of 15 

 
(b) 

Figure 7. Fuzzy logic control of the MLS (MLS-FLC) with only MF’s positions optimized, with 
membership function (MF) and rule base (RB) optimized, non-optimized and MLS with state-space 
(SS) controller step response: (a) Steady-state response, (b) dynamic response. 

The objective of optimization was to accomplish a specific set of performance parameters for 
MLS (i.e., %Mp,D = 5%, ts,D = 0.5 s, rss,D = 0.008 m) by minimizing the objective function defined by (18) 
. MF and RB optimization optimum solution shows a smaller deviation value of every defined goal 
in comparison with an only MF optimization. Both optimization procedures’ results are also 
compared with the performance of MLS with a SS controller. In this regard, according to resulting 
values listed in Table 3, MF and RB optimization proposed in this paper converges to a better 
solution which results in a set of slightly better performance parameters in comparison with only 
MF optimization and the results are close to the ones obtained using an analytic design approach 
(i.e., full state feedback controller). Furthermore, simulation results comparison is shown in Figure 
7. 

Table 3. Comparison results for the non-optimized fuzzy logic control (FLC), the optimized FLC, 
and the state-space (SS) controller. 

 Desired 
Non-Optimized MF Optimized MF and RB Optimized SS Controller 

Value Deviation Value Deviation Value Deviation Value Deviation 
rss (m)  0.008 Inf Inf 0.008 0 0.008 0 0.008 0 
Mp (%)  5 0 0 4.93 0.09 5.05 0.05 4.9 0.1 

ts (s)  0.5 Inf inf 0.54 0.04 0.5 0 0.53 0.03 

Table 4. Objective function values comparison. 

 
Objective Function Value 

MF optimized 0.0047 
MF and RB optimized 0.0005 

SS Controller 0.0040 

Table 4 presents the objective function values in terms of MLS performance parameters for the 
MF and RB optimized FLC, the MF optimized FLC, and the SS controller. Notice that the objective 
global optimum value obtained with the MF and RB optimization is approximately half the 
obtained value with only MF optimization and closer to the SS controller approach, being a better 
solution the one with its objective function value closer to zero. 

It is worth pointing out that the analytic design of any classic or modern controller for a non-
linear system (i.e., MLS) either by a linearization approach, thus not dealing with large signal 
perturbations, or eventually by using complex nonlinear techniques, requires a certain level of 
expertise for system parameter identification and the development of complex system modeling, 
resulting in a long implementation time. Consequently, by using the presented approach, these 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Time (s)

8

10-3 Step Response Comparison

MF and RB optimized MF optimized SS controller Setpoint

ts=0.5 ts=0.53 ts=0.54%Mp=4.93%%Mp=5.05% %Mp=4.9%

Figure 7. Fuzzy logic control of the MLS (MLS-FLC) with only MF’s positions optimized, with
membership function (MF) and rule base (RB) optimized, non-optimized and MLS with state-space
(SS) controller step response: (a) Steady-state response, (b) dynamic response.

Table 3. Comparison results for the non-optimized fuzzy logic control (FLC), the optimized FLC,
and the state-space (SS) controller.

Desired
Non-Optimized MF Optimized MF and RB Optimized SS Controller

Value Deviation Value Deviation Value Deviation Value Deviation

rss (m) 0.008 Inf Inf 0.008 0 0.008 0 0.008 0

Mp (%) 5 0 0 4.93 0.09 5.05 0.05 4.9 0.1

ts (s) 0.5 Inf inf 0.54 0.04 0.5 0 0.53 0.03

Table 4 presents the objective function values in terms of MLS performance parameters for the MF
and RB optimized FLC, the MF optimized FLC, and the SS controller. Notice that the objective global
optimum value obtained with the MF and RB optimization is approximately half the obtained value
with only MF optimization and closer to the SS controller approach, being a better solution the one
with its objective function value closer to zero.

Table 4. Objective function values comparison.

Objective Function Value

MF optimized 0.0047

MF and RB optimized 0.0005

SS Controller 0.0040



Appl. Sci. 2019, 9, 2458 13 of 15

It is worth pointing out that the analytic design of any classic or modern controller for a non-linear
system (i.e., MLS) either by a linearization approach, thus not dealing with large signal perturbations,
or eventually by using complex nonlinear techniques, requires a certain level of expertise for system
parameter identification and the development of complex system modeling, resulting in a long
implementation time. Consequently, by using the presented approach, these requirements are not
completely necessary to obtain similar results than other complex control techniques.

6. Conclusions

A procedure for optimizing the parameters of an FLC by means of cuckoo search algorithm has
been presented in this paper. The main advantage of this approach is that little or no expertise for
tuning FLC parameters is needed since by using CS as an optimization algorithm, a global convergence
to the optimum FLC according to the objective function is assured. An initial symmetrically defined set
of MF and RB has been required to obtain an optimum FLC with order and coherency of parameters.
By tuning the FLC MF’s mapping and RB distribution, the proposed approach has successfully reached
the optimization objectives such as settling time, overshoot and steady-state vertical position for
an FLC-MLS. The obtained results have highlighted that the proposed algorithm can be applied to
any system where the FLC technique is used, to optimize an objective function involving several
system parameters.

Current work is focused on applying the presented algorithm to improve the performance of
a fuzzy-based energy management strategy for a residential grid-connected microgrid considering
energy state forecasting, peak shaving, and demand management.
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