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Featured Application: Short-term hydrothermal scheduling is a physically existing problem
that deals with the combined operation of hydro and thermal generators. The two types of
generations are so dispatched that they do not violate the constraints related to thermal power
and water reservoirs related to hydro power, while serving the load demand and covering the
transmission power losses. It is a type of economic dispatch problem. The research is still
in progress to find algorithms that help in such an economic dispatch such that the fuel cost,
related to the thermal generators, is minimized and the water reservoirs are also not completely
depleted, which are primarily required for irrigation purposes. This research article is a
presentation of an effort to find an elegant metaheuristic optimization algorithm that robustly
finds the solution of two out of several types of short-term hydrothermal thermal scheduling
problems, while considering the standard test problems as already discussed in the literature.
The accelerated particle swarm optimization and its improved version are thus presented in this
research article, which are serve the defined purpose.

Abstract: The Accelerated Particle Swarm Optimization (APSO) algorithm is an efficient and the
easiest to implement variant of the famous Particle Swarm Optimization (PSO) algorithm. PSO
and its variant APSO have been implemented on the famous Short-Term Hydrothermal Scheduling
(STHTS) problem in recent research, and they have shown promising results. The APSO algorithm
can be further modified to enhance its optimizing capability by deploying dynamic search space
squeezing. This paper presents the implementation of the improved APSO algorithm that is based
on dynamic search space squeezing, on the short-term hydrothermal scheduling problem. To give a
quantitative comparison, a true statistical comparison based on comparing means is also presented to
draw conclusions.
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1. Introduction

The PSO algorithm has gained much popularity among the metaheuristic optimization algorithms
in the recent past due to its ease of implementation and promise towards finding good approximates
to global optimum solutions of complex optimization problems [1]. APSO is a simpler yet brilliant
variant of PSO, and it has be proven to find good approximates of global optimum solutions in
less time and fewer iterations as compared to PSO algorithms [2]. Dynamic search space squeezing
has been applied on PSO to make yet another variant of PSO named improved PSO, and it gives
better performance for some optimization problems as compared to PSO itself [3]. Short-term
hydrothermal scheduling is a non-linear and multi-modal optimization problem, which has many
forms. These can be of a non-cascaded form to a cascaded form. In the non-cascaded form, there is only
one reservoir of water, whereas in the cascaded form, there is a series of downstream reservoirs.
It can be single objective or multi-objective. In the single-objective Short-Term Hydrothermal
Scheduling (STHTS) problem, the objective is only to minimize the cost of the operation of the
thermal generating units, whereas in the multi-objective STHTS problem, the other objectives are
to reduce the emission of COx, NOx, and SOx gases, as well. The works in [3–27] discussed all
these types of the STHTS problem and the implementations of conventional and non-conventional
metaheuristic optimization algorithms on STHTS problems and presented the superiority of one
type of algorithm (usually metaheuristic) over other types. Improved PSO, PSO, cuckoo search
optimization, quantum behaved PSO, teaching-learning-based optimization, the multi-objective
differential algorithm, the gravitational search algorithm, the artificial bee colony algorithm, the
genetic algorithm, civilized swarm optimization algorithms, and gravitational search algorithms
are better choices for those types of STHTS problems as presented in [3–19]. The works in [20–27]
discussed specifically the non-cascaded and single-objective STHTS problems in which one hydel
and one equivalent thermal unit of a number of thermal units are dispatched to supply the power
demand. PSO and APSO have the shown best results for such problems. Specially, according
to [24,25], the APSO algorithm has outperformed the other previously-implemented deterministic and
metaheuristic optimization algorithms on non-cascaded and single-objective STHTS problems.

The works in [19–25] discussed specifically the non-cascaded problems in which one hydel and
one thermal unit are dispatched to supply the power demand. PSO and APSO have shown the best
results for such problems. Especially, according to [24,25], the APSO algorithm has outperformed the
other previously-implemented deterministic and metaheuristic optimization algorithms.

Due to the stochastic nature, it is required that there must be a true statistical comparison between
the implementations of various algorithms on one type of optimization problem, which was not
presented in previous works [3–27]. The work in [28] also presented this thesis while applying the PSO
algorithm using digital pheromones. In the STHTS problem, it is therefore also required to present the
quantitative analysis by applying statistical hypothesis tests.

This paper is an extended work of [24,25], already published by the authors, and presents the
implementation of the improved APSO algorithm on the non-cascaded STHTS problems (two cases)
and gives its statistical comparison with the previous APSO implementations on the same problems,
by the authors of this paper, in [24,25]. Independent sample t-tests will be performed on the dataset of
the two implementations to check the superiority one of the two APSO variants on the same STHTS
problems, as discussed in [24,25].

2. Accelerated Particle Swarm Optimization and Its Improved Version

Particle swarm optimization is now a very famous metaheuristic optimization algorithm that has
shown promising results when implemented on many types of complex, non-linear, and multi-modal
optimization problems. The canonical version of PSO is given in Equation (1) as:

νn+1
i = θνn

i + αε1 � [g
∗ − xn

i ] + βε2 � [x∗i − xn
i ]

xn+1
i = xn+1

i + νn+1
i

(1)
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In Equation (1), νn+1
i is the velocity update of particle i, at iteration n + 1. This velocity is added

to the particle position xn
i of particle i, at iteration n, to get the updated position xn+1

i of particle i. x∗i is
the local best position of particle i, in iteration history, and g∗ is the global best among all the particles,
at iteration n. ε1 and ε2 are random number ranging from 0–1.

There are almost more than two dozen variants of this canonical version of the PSO algorithm,
as discussed in [29,30]. Accelerated particle swarm optimization is its variant, presented in [1,2],
which is very elegant, i.e., easy to understand, the easiest to program, and proven itself to give
good approximates to global optimum solutions. Its single step particle update equation is given as
Equation (2):

xn+1
i = (1 − β)xn

i + βg
∗
+ α(ε − 0.5) (2)

As can be seen, this single step update equation has ignored the use of the velocity update and did
not use the local best position in the updating of particle i. The typical values of α and β are 0.2
and 0.5, respectively. ε is a random variable, and its value is between zero and one, as given in [1,2].
This variant has been proven to find the global optimum of highly complex multi-modal functions like
the Michaelwics2D function, as presented in [1,2]. There can be many possible variants of Equation (2),
as discussed in [1,2]. The variant discussed in this paper is related to the dynamic search space
squeezing method in which, at every iteration, the search space of the particles, in all dimensions,
is readjusted by taking the influence of the global best particle, i.e., of g∗, each iteration. This is how
the chance of each particle to oscillate in the search space is decreased, and there is a lesser chance to get
stuck to local optima. By reducing the search space, the range of particles at each dimension is reduced,
i.e., the constraints are readjusted, and new constraints are bounded by the original constraints of the
optimization problem, by using the dynamic search space squeezing Equations (3)–(7), as presented
in [25]. The work in [25] has applied the concept of the dynamic search squeezing technique on the
canonical form of PSO, i.e., on Equation (1), on the velocity update equation. These equations help
to squeeze the search space dynamically from the given constraints to newer constraints from one
iteration to the next iteration. This paper presents this concept of dynamic search space squeezing
on the APSO algorithm, i.e., Equation (2), to further enhance its performance. Therefore, rather than
squeezing the search space of velocity terms, the search space of particles themselves will be directly
squeezed. The dynamic search space squeezing phenomenon is shown in Figure 1.

∆n
low,i =

g∗n
i − xn

i,min

xn
i,max − xn

i,min
(3)

∆n
high,i =

xn
i,max − g∗n

i

xn
i,max − xn

i,min
(4)

∆n
low,i + ∆n

high,i = 1 (5)

xn+1
i,min = xn

i,min + (g∗n
i − xn

i,min)(∆
n
low,i) (6)

xn+1
i,max = xn

i,max + (xn
i,max − g∗n

i )(∆n
high,i) (7)

Figure 1. Dynamic search space squeezing under the influence of g∗ at iteration n + 1. The arrows
indicate the squeezing of the search space from iteration n–n + 1.
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3. Short-Term Hydrothermal Scheduling Problem

Short-term hydrothermal scheduling is a type of economic dispatch problem in which a parallel
operation of hydel power generating units is combined with thermal power generating units on a
generation bus. This problem can have several forms varying from single objective to multi-objective,
cascaded to non-cascaded, and pumped storage to non-pumped storage problems. The generation
model of the STHTS problem is presented in Figure 2, as taken from [24]. The complexities of
these problems can be further enhanced by considering the valve point loading effects of thermal
generating units. The detailed analysis of all these problem types was presented in [3–25]. This paper
considers two types of these problems as case studies, as already considered in [19–25], to implement
the improved APSO algorithm and its comparison with the previous implementations of APSO
algorithm in [24,25], in a formal quantitative hypothesis testing. The two problem cases belong to the
following two types of STHTS problem.

1. Non-cascaded pumped storage short-term hydrothermal scheduling [24].
2. Non-cascaded non-pumped storage short-term hydrothermal scheduling while considering

transmission losses [25].

Figure 2. Generation model of the Short-Term Hydrothermal Scheduling (STHTS) problem [25].

It seems more logical to check the performance of one type of algorithm by implementing it on
as many types of problems as possible. However, according to the “no free lunch theorem”, as given
in [29–34], if one algorithm performs best on a Type A problem, it does not necessarily mean that it
performs the best for a Type B problem, i.e., an algorithm cannot be proven to be the best optimization
algorithm for all types of problems. Therefore, it is required to find a good performing algorithm for
every type of optimization problem. Problems 1 and 2 belong to the same class of single objective and
non-cascaded STHTS problems and are different in terms of structure from the remaining types of
STHTS problems. Any algorithm, providing the best optimum to these problems, will perform well on
all similar types of STHTS problems.

APSO algorithms are the simplest and most elegant metaheuristic algorithms, which, without
having a lot of tuning parameters and having just a single-step particle update equation, are able to
solve non-linear and multi-modal objective functions like Michaelwicz 2D functions, as given in [1,2].
Therefore, the elegance and robustness of these APSO algorithms make them the first choice out of
many metaheuristic algorithms to implement on optimization problems. The other types of STHTS
problems, for example the cascaded STHTS of a single objective-type problem, requires metaheuristic
algorithms with more tuning parameters instead of the APSO algorithm, like PSO and improved
PSO. Another type is the multi-objective STHTS problem, which requires variants of metaheuristic
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algorithms specially designed for multi-objective problems, like multi-objective PSO, ant colony
and genetic algorithms, cuckoo search, the gravitational search algorithm, teaching-learning-based
algorithms, and water cycle algorithms [3–19].

The problems taken into consideration in this paper have been solved using the APSO algorithm
by the authors of this paper already in [23,24], which outperformed the other algorithms implemented
on the same problems given in [22,26,27]. In this enhanced research, the improved APSO algorithm has
been implemented on the same problems that used dynamic search space squeezing, and this modified
APSO has shown even better results than the APSO algorithm, as presented in the Results Section.
Figure 2 presents the basic generation model of the STHTS problem, which was also considered
in [23,24].

4. Hypothesis Testing

Due to their stochastic nature, metaheuristic algorithms are destined to give different results for
different trials on the same optimization problem. It is therefore required to test the performance of
the implementations by performing a statistical analysis on a dataset of the results obtained. To check
whether Algorithm A is superior to Algorithm B in terms of performance, there are hypothesis tests
that quantitatively establish the superiority. The works in [3–27] have not taken into consideration
this point, and though the performance of algorithms presented in those references was the best, the
quantitative proof has not been established. This proof can be established by performing hypothesis
testing to compare the means of the performances. For this purpose, a null hypothesis is established.
The null hypothesis states that there is no difference in the performance of the two algorithms.
By performing independent sample t-tests, the null hypothesis can either be accepted or rejected
[28,35]. If the null hypothesis is rejected, this means that there is a significant difference between the
performances of the two algorithms. If the null hypothesis is accepted, this means that, statistically,
there is no difference between the performances of the two algorithms [28,35].

5. Methodology

According to [19–27], the non-cascaded hydrothermal scheduling problem can be described by
Equations (8)–(14).

min( f ) =
N

∑
j=1

njFj (cost f unction or objective f unction) (8)

subject to:
Phyd + PT = PDemand + PLosses (Power balance equality constraint) (9)

N

∑
j=1

njDisj = Distotal (Discharge rate equality constraint) (10)

Vmin < Vj < Vmax (Water reservoir volume limits) (11)

Dismin < Disj < Dismax (Discharge rate limits) (12)

PT,min < PT,j < PT,max (Thermal power limits) (13)

Phyd,min < Phyd,j < Phyd,max (Hydro power limits) (14)

The reservoir’s volume and the discharges are balanced by the continuity Equation (15) given as:

Vj = Vj−1 + nj(Rj − Disj − Sj) (15)

To implement APSO or improved APSO algorithms on the non-cascaded STHTS problem,
the following steps can be implemented;
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1. Randomly initialize the volume vectors (particles) within the given volume constraints. In this
paper, uniform random number generators have been used.

2. Calculate the water discharge rate, hydro power, and thermal power using the values in Step 1.
3. Check the limits in the constraints. If the limits are not met, restart from Step 1. If the limits are

met, proceed to Step 4.
4. Find the total cost using the thermal power values found in Step 2, against each particle.
5. Take the minimum cost value and its corresponding volume vector. That volume vector will be

the global best particle.
6. Update all the particles using APSO/improved APSO updating “(10)”.
7. Dynamically squeeze the volume constraints by applying search space squeezing equations for

the improved APSO algorithm
8. Iterate from Steps 2–6 till the stopping criterion is reached.
9. Get the results.

6. Results and Discussions

This paper presents the essence and importance of true statistical quantitative tests to check the
superiority of one type of algorithm over another type of algorithm. This is because, the metaheuristic
optimization algorithms are stochastic, as well as deterministic in nature. Due to the stochastic nature,
there is an in-built randomness, and therefore, no metaheuristic optimization algorithm the gives same
redundant results when implemented on one type of problem. Therefore, to check if one algorithm
is performing that same on the same problem every time, the performance is judged by standard
deviations among the trials. To check the performance of two different types of algorithms, on the
same problem, the data taken from an equal number of trials are hypothetically tested for significant
differences in the means of all the trials. This type of testing is known as independent sample t-tests.
This t-test was performed with the software SPSS, i.e., Statistical Package for Social Sciences. To test
the performance of APSO and improved APSO, two test cases have been taken, as already discussed
in [24,25].

6.1. Case 1: Non-Cascaded Pumped Storage Hydrothermal Scheduling [24,27]

This is a two-unit hydrothermal scheduling problem as given in [24]. The total number of scheduling
periods was six, out of which three periods were pumping, i.e., discharged water is pumped back
to the reservoir, while three periods were generating. The thermal unit characteristics are given in
Equation (16):

FT = 3877.5 + 3.9795PT + 0.00204P2
T $/h (16)

200MW ≤ PT ≤ 2500MW (17)

The generating and pumping models are given by Equations (18) and (19), respectively.

Dis(Phyd) = 200 + 2Phyd(acre. f t/h) f or 0 ≤ Phyd ≤ 300 MW (Generatingcharacteristics) (18)

Dis(PH,pump) = −600(acre. f t/h) with PH,pump = −300 MW (Dischargingcharacteristics) (19)

The starting and ending volume of the reservoir = 8000 (acre-ft/h). The load demand at every
interval is given in Table 1.

The problem is implemented using both the APSO algorithm and improved APSO algorithm.
The work in [24] has already discussed the implementation of APSO on this problem; however,
this paper presents its comparison with the improved APSO algorithm on hypothetical testing.
The improved APSO algorithm has shown even more promising results as compared to APSO
algorithm. Table 2 presents the comparison between the two implementations.
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Both algorithms have been tested on the Case 1 problem for sets of a hundred and two hundred
trials each to have a normally-distributed dataset. Their means were compared using the hypothesis
testing independent sample t-test. The results obtained from the SPSS software run are given in Table 3.

Table 1. Load demand for each scheduling interval of four hours each.

Interval 1 2 3 4 5 6

Demand MW 1600 1800 1600 500 500 500

Table 2. Comparison of some performance parameters between APSO and improved APSO on the
pumped storage STHTS problem.

Performance Parameter or Algorithm APSO Improved APSO

Minimum Cost 269,642.4001 269,642.4000
Average Cost 269,642.5318 269,642.4752

Maximum Cost 269,643.2336 269,642.402
No. of acceptable convergences 4 out of 100 trials 97 out of 100 trials

Standard deviation 6.2557539 0.0088976
Average No. of iterations 7 8

Average computation time * 0.462 s 0.506 s

* Average computation time is according to MATLAB 2015 on a Core i5 second-generation processor.

Table 3. SPSS results of independent sample t-test showing the comparison between simple APSO and
improved APSO on the pumped storage non-cascaded STHTS problem.

Independent Samples t-Test

Levene’s Test for the Equality
of Variances t-Test for the Equality of Means

Comparison
_APSO F Sig. t df Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval
of the Difference

Lower Upper

Equal
variances
assumed
(100 instances)

62.424 0.000 5.333 198 0.000 3.3361210 0.6255760 2.1024741 4.5697679

Equal
variances
assumed
(200 instances)

89.787 0.000 −5.768 398 0.000 −1.086 0.1883 −1.4564 −0.7159

Equal
variances
not assumed
(100 instances)

5.333 99.00 0.000 3.3361210 0.6255760 2.0948425 4.5773995

Equal
variances
not assumed
(200 instances)

−5.768 200.638 0.000 −1.08622 0.1883 −1.4575 −0.718

The null hypothesis was that there was no difference in the performance of the two algorithms
on the pumped storage STHTS problem. This hypothesis was tested on a confidence interval value
of 95%, giving a significance value (2-tailed) equal to 0.000, i.e., for both sets of a hundred and two
hundred trials lesser than 0.05 or 5% [35]. This value suggests that the null hypothesis is rejected,
and the statistical test quantitatively suggests that the improved APSO algorithm has performed
significantly differently from the simple APSO algorithm. Furthermore, Levine’s test of the equality
of variances suggest that for a significance value equal to 0.000, which is less than 0.05, variances are
also statistically different, significantly. Table 2 further elaborates the difference in performance by
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establishing the superiority of the improved APSO over the simple APSO algorithm. Table 2 also
presents that though the minimum values achieved by the two algorithms were the same, the improved
APSO algorithm converged to the acceptable result, i.e., this paper has considered an acceptable cost
value less than 269,642.4001, 97% of the time as compared to the simple APSO algorithm, which
converged to acceptable results 4% of the time. The number of iterations and computation time were
very low for both algorithms; however, due to the dynamic search space squeezing, improved APSO
took a slightly higher average time to converge to the solution as compared to the simple APSO
algorithm. However, the difference in computation time was not very significant. Although the APSO
algorithm has given promising results, the improved APSO algorithm has proven itself better for the
pumped storage non-cascaded STHTS problem, statistically. Table 4 presents the best results of the
improved APSO implementation on the non-cascaded pumped storage STHTS problem.

Table 4. Power flow and cost optimization with the improved APSO algorithm implementation on the
non-cascaded pumped storage STHTS problem.

Interval Demand (MW) PT (MW) Phyd (MW) Dis (ac-ft/h) V (ac-ft) Total Cost ($)

1 1600 1449.99 150 500 5999.95

269,642.4

2 1800 1500 300 800 2799.819
3 1600 1450 149.97 500 800
4 500 800 −300 −600 3200
5 500 800 −300 −600 5600
6 500 800 −300 −600 8000

The convergence characteristics of the simple APSO and improved APSO are given in
Figures 3 and 4, respectively. Figure 5 presents the convergence characteristics of the improved APSO
algorithm on the non-cascaded pumped STHTS problem for five different instances. The algorithm
has shown good performance in reaching the good approximates of the global optimum solution for
all the instances. These figures are taken as the successful trials for both algorithms. The number of
particles was taken to be equal to 200 for both implementations. The convergence characteristics of
both algorithms were quite similar and showed the general nature of PSO variants. The algorithms,
as their names suggest, are accelerated in nature, i.e., they are fast at finding good approximates of
global optima.

Figure 3. Convergence characteristics of the simple APSO algorithm on the non-cascaded pumped
STHTS problem.
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Figure 4. Convergence characteristics of the improved APSO algorithm on the non-cascaded pumped
STHTS problem.

Figure 5. Convergence characteristics of the improved APSO algorithm on the non-cascaded pumped
STHTS problem for five different instances.

6.2. Case 2: Non-Cascaded Non-Pumped STHTS Considering Transmission Losses [25]

This is a two-unit and non-pumped hydrothermal scheduling problem, as given in [25]. The total
number of scheduling periods is six, and the discharging characteristics of the thermal unit are given
in Equations (20) and (21); where the fuel cost is 1.15 $/MBTU.

FT = 500 + 8PT + 0.0016P2
T (MBTU/h) (20)

150 MW ≤ PT ≤ 1500 MW (21)

The water discharging constraints are given in Equations (22)–(25):

Dis(Phyd) = 330 + 4.97Phyd (acre − f t/h) (22)

for:
0 MW ≤ Phyd ≤ 1000 MW (23)

Dis(Phyd) = 5300 + 12(Phyd − 1000) + 0.05(Phyd − 1000)2 (acre − f t/h) (24)

for

1000 MW ≤ Phyd ≤ 1100 MW (25)

The transmission losses are given by Equation (26):
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(Ploss) = 0.0008P2
hyd (MW) (26)

The discharge rate characteristics are given in Equation (27):

5300 (acre − f t/hr) ≤ Dis ≤ 7000 (acre − f t/hr) (27)

The load demand in every interval is given in Table 5.

Table 5. Load demand for each scheduling interval (each interval is 12 hours, making a total scheduling
period of 3 days).

Interval 1 2 3 4 5 6

Demand MW 1200 1500 1100 1800 950 1300

The reservoir’s water volume flow constraints as given in [25,27] are:

1. 100,000 acre-feet constitute the volume of water in the reservoir prior to the first scheduling period.
2. 60,000 acre-feet constitute the volume of water in the reservoir in the last period.
3. Volume limit constraints in the first iteration are in acre-ft: 60,000 (acre ft) ≤ V ≤ 120,000 (acre-ft)
4. Continuous incoming flow into the reservoir is 2000 acre-feet/hour throughout the scheduling period.
5. The continuity equation as given in Equation (15) is to be met.

The problem was implemented using both APSO algorithm and the improved APSO algorithm.
The work in [25] already discussed the implementation of APSO for this problem; however, this paper
presents its comparison with the improved APSO algorithm on hypothetical testing. The improved
APSO algorithm has shown even more promising results as compared to the APSO algorithm. Table 6
presents the comparison between the two implementations.

Table 6. Comparison of some performance parameters between APSO and the improved APSO on
non-cascaded non-pumped STHTS problem.

Performance Parameter or Algorithm APSO Improved APSO

Minimum Cost 727,870.00 727,855.8
Average Cost 728,422.7 728,539.4

Maximum Cost 730,103.3 732,386.8
No. of acceptable convergences 15 out of 100 trials 15 out of 100 trials

Standard deviation 413.35 539.34
Average No. of iterations 6 7

Average computation time * 1.035 s 1.227 s

* Average computation time is according to MATLAB 2015 on a Core i5 second-generation processor.

Both algorithms have been tested on the Section 6.2 Case 2 problem for sets of a hundred and two
hundred trials each to have a normally-distributed dataset. Their means were compared using the
hypothesis testing independent sample t-test. The results obtained from the SPSS software run are
given in Table 7.

For this (Section 6.2 Case 2) problem, the value of significance of two-tailed t-test showed that both
algorithms were not significantly different in terms of performance because the value was greater than
5%. This means that for more than 25% of the time, the results were somewhat repeated. Therefore, at
the 95% confidence level, the null hypothesis could not be rejected, and the means were not statistically
different. However, the improved APSO has been able to find a better approximation to the global
best optima, as given in Table 6. The number of iterations and computation time were very low for
both of these algorithms; however, due to the dynamic search space squeezing, improved APSO took a
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slightly higher average time to converge to the solution as compared to the simple APSO algorithm.
However, the difference in computation time was not very significant.

Table 7. SPSS results of the independent sample t-test showing the comparison between simple APSO
and improved APSO on the non-cascaded non-pumped STHTS problem.

Independent Samples t-Test

Levene’s Test for the Equality
of Variances t-Test for the Equality of Means

Comparison
_APSO F Sig. t df Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval
of the Difference

Lower Upper

Equal
variances
assumed
(100 instances)

4.674 0.032 −1.133 198 0.259 −76.9991850 67.9525842 −211.0028687 57.0044987

Equal
variances
assumed
(200 instances)

14.501 0.000 1.605 398 0.109 77.2827 48.1474 −17.3722 171.93

Equal
variances
not assumed
(100 instances)

−1.133 185.468 0.259 −76.9991850 67.9525842 −211.0585712 57.0602012

Equal
variances
not assumed
(200 instances)

1.1605 367.693 0.109 77.2827 48.1474 −17.3960 171.9615

Therefore, if some more tuning parameters were properly adjusted, both algorithms would
have the capability to find robust approximations to global optimum solutions with low standard
deviations, for the non-cascaded non-pumped STHTS problem while considering transmission line
losses, improved APSO having more ability to find a better approximation to global minima. Table 8
gives the best cost result of improved APSO’s performance.

Table 8. Power flow and cost optimization with the improved APSO algorithm implementation.

Interval PT (MW) Phyd (MW) Ploss (MW) Dis (acre-ft/h) V (acre-ft) Total Cost ($)

1 833.91 377.4 11.399 2206 97,527.06

727,855.8

2 950.66 575.86 26.52 3192 83,222.43
3 813.76 293.10 6.87 1786.7 85,781.40
4 1091.94 753.47 45.41 4074.7 60,884.22
5 733.34 220.54 3.89 1426.1 67,770.92
6 851.08 466.313 17.395 2647.57 60,000

The convergence characteristics of the simple APSO and improved APSO are given in
Figures 6 and 7, respectively, on the non-cascaded non-pumped STHTS problem considering
transmission losses. These figures are taken for the successful trials for both the algorithms. Figure 8
presents the convergence characteristics of the improved APSO algorithm on the non-cascaded
non-pumped STHTS problem for five different instances. The algorithm has shown good performance
in reaching good approximates of the global optimum solution for four instances, whereas the
algorithm could not reach a good solution for one instance. The number of particles was taken
to be equal to 200 for both implementations. The convergence characteristics of both the algorithms
were quite similar and showed the general nature of PSO variants. The algorithms, as their names
suggest, are accelerated in nature, i.e., they are fast at finding good approximates of global optima.



Appl. Sci. 2019, 9, 2440 12 of 22

Figure 6. Convergence characteristics of the simple APSO algorithm on the non-cascaded non-pumped
STHTS problem taken from [25].

Figure 7. Convergence characteristics of the improved APSO algorithm on the non-cascaded
non-pumped STHTS problem.

Figure 8. Convergence characteristics of the improved APSO algorithm on the non-cascaded
non-pumped STHTS problem for five different instances.

7. Additional STHTS Problems (as Test Cases)

In this research paper, the two problems of interest were presented as Section 6.1 Case 1 and
Section 6.2 Case 2. These two problems were already solved by other algorithms, as can be seen in
[24,25]. For the interested reader, two new STHTS problems were added, which are quite similar
to the Section 6.1 Case 1 and Section 6.2 Case 2 problems discussed in the previous section. These
problems have not been solved in the literature and are very close to practical STHTS problems, as
are Section 6.1 Case 1 and Section 6.2 Case 2. The simple APSO and improved APSO algorithms have
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been implemented on these two problems, taking α and β equal to 0.5, and the statistical results are
presented.

7.1. Case 1: Non-Cascaded Pumped-Storage STHTS Problem Considering Valve Point Loading

In steam turbine-based thermal generators, valves control the steam entering the turbine through
separate nozzle groups. Each nozzle group achieves best efficiency when operated at full output.
Therefore, when increasing the output, valves are opened in sequence in order to achieve the highest
possible efficiency for a given output. This causes a rippled cost curve, which is usually a sinusoidal
wave riding on the quadratic cost function [19]. A valve point loading-based STHTS problem was
given to test the effectiveness of the proposed improved APSO algorithm in comparison with the
already tested simple APSO algorithm in the literature. The system taken was that of Case 1 with a
valve point loading-based cost function. The cost function is now as given in (28):

FT = 3877.5 + 3.9795PT + 0.00204P2
T + 500 sin(0.085(200 − PT)) $/h (28)

The rest of the problem data are the same as Section 6.1 Case 1 (Equations (17)–(19)) of the
previous section. The statistical results of both the simple APSO and improved APSO algorithms
are shown in Table 9. Table 10 shows the results of the SPSS results of the independent sample
t-test performed for the comparison of the simple APSO and improved APSO algorithms on the
non-cascaded pumped-storage STHTS problem considering valve point loading. Table 11 shows the
results of power flow and cost optimization with the improved APSO algorithm implementation on
the non-cascaded pumped-storage STHTS problem considering valve point loading. Convergence
results for the simple APSO and improved APSO are shown in Figures 9 and 10, respectively.

The results show that there is no significant difference between the performances of these two
algorithms, statistically; however, the improved APSO algorithm has reached acceptable solutions
more quickly than the simple APSO algorithm. If the tuning parameters of both algorithms are adjusted
properly, both algorithms can help in finding a good approximate of the global optimum solution.

Figure 9. Convergence characteristics of the simple APSO algorithm on the non-cascaded pumped-storage
STHTS problem considering valve point loading.
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Table 9. Comparison of some performance parameters between APSO and improved APSO on the
pumped storage STHTS problem considering valve point loading.

Performance Parameter or Algorithm APSO Improved APSO

Minimum Cost 265,200.2082 265,200.2082
Average Cost 265,433.4813 265,459.0192

Maximum Cost 265,781.3508 269,539.6085
No. of acceptable convergences 53 out of 100 trials 59 out of 100 trials

Standard deviation 174.6004 454.7182
Average No. of iterations 7 7

Average computation time * 0.5 s 0.6 s

* Average computation time is according to MATLAB 2015 on a Core i5 second-generation processor.

Table 10. SPSS results of the independent sample t-test showing the comparison between simple
APSO and improved APSO on the non-cascaded pumped-storage STHTS problem considering valve
point loading.

Independent Samples t-Test

Levene’s Test for the Equality
of Variances t-Test for the Equality of Means

Comparison
_APSO F Sig. t df Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval
of the Difference

Lower Upper

Equal
variances
assumed
(100 instances)

1.672 0.198 0.524 198 0.601 25.53785 48.70872 −70.51659 121.59230

Equal
variances
not assumed
(100 instances)

0.524 127.571 0.601 25.53785 48.70872 −70.84376 121.91947

Figure 10. Convergence characteristics of the improved APSO algorithm on the non-cascaded
pumped-storage STHTS problem considering valve point loading.
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Table 11. Power flow and cost optimization with the improved APSO algorithm implementation on
the non-cascaded pumped-storage STHTS problem considering valve point loading.

Interval Demand (MW) PT (MW) Phyd (MW) Dis (acre-ft/h) V (acre-ft) Total Cost ($)

1 1600 1392.80 207.13 614.27 5542.813

265,200.2

2 1800 1540.4 259.51 719.03 2666.47
3 1600 1466.6 133.34 466.68 800
4 500 800 −300 −600 3200
5 500 800 −300 −600 5600
6 500 800 −300 −600 8000

7.2. Case 2: Non-Cascaded and Non-Pumped Storage STHTS Problem While Not Considering
Transmission Losses

This problem is similar to the Section 6.2 Case 2 problem of the last section. However, in this new
system, the transmission line losses are considered as zero. The thermal and hydro units have the
following characteristics.

Thermal system: Equations (29) and (30):

FT = 700 + 4.8PT + 0.0005P2
T ($/h) (29)

200 MW ≤ PT ≤ 1200 MW (30)

Hydro system: Equations (31)–(33):

Dis(Phyd) = 260 + 10Phyd (acre − f t/h) (31)

for:
0 MW ≤ Phyd ≤ 350 MW (32)

Dis(PH,Pump) = 0 (acre − f t/h) with Phyd = 0 MW (33)

The starting and ending volume of the reservoir were 16,000 (acre-ft) and 12,000 (acre-ft) with
a maximum allowed volume of 18,000 (acre-ft) and a minimum allowed volume of 12,000 (acre-ft).
A constant water inflow of 2000 (acre-ft/h) was to be maintained in the reservoir for each scheduling
interval. It was considered that there were no electrical transmission power losses. The load demand
during each interval of four hours each is given in Table 12. Table 13 shows the SPSS results of the
independent sample t-test showing the comparison between simple APSO and improved APSO on the
non-pumped storage non-cascaded STHTS problem without transmission losses. Table 14 presents
the power flow and cost optimization with the improved APSO algorithm implementation on the
selected problem. Table 15 shows the comparison of some performance parameters between APSO and
improved APSO on the non-cascaded and non-pumped storage STHTS problem while not considering
transmission losses. Convergence results for the simple APSO and improved APSO for this case are
shown in Figures 11 and 12, respectively.

Table 12. Load demand for each scheduling interval of 4 hours each.

Interval 1 2 3 4 5 6

Demand MW 600 1000 900 500 400 500

The results from the t-test show that for this problem type, both the simple APSO and improved
APSO algorithms performed equally well, statistically. However, the improved APSO algorithm was
able to find a better approximate to the global minimum solution as compared to the simple APSO
algorithm. Moreover, the improved APSO algorithm has found the acceptable solution more times as
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compared to the simple APSO algorithm. If the tuning parameters of both the algorithms are adjusted
properly, both algorithms can help in finding a good approximate of the global optimum solution.

Table 13. SPSS results of the independent sample t-test showing the comparison between simple APSO
and improved APSO on the non-pumped storage non-cascaded STHTS problem without transmission losses.

Independent Samples t-Test

Levene’s Test for the Equality
of Variances t-Test for the Equality of Means

Comparison
_APSO F Sig. t df Sig.

(2-tailed)
Mean

Difference
Std. Error
Difference

95% Confidence Interval
of the Difference

Lower Upper

Equal
variances
assumed
(100 instances)

0.158 0.691 −0.853 198 0.395 −1.27093 1.48974 −4.20872 1.66686

Equal
variances
not assumed
(100 instances)

−0.853 199.946 0.395 −1.27093 1.48974 −4.20872 1.66686

Table 14. Power flow and cost optimization with the improved APSO algorithm implementation on
the non-cascaded non-pumped-storage STHTS problem while not considering transmission losses.

Interval PT (MW) Phyd (MW) Ploss (MW) Dis (acre-ft/h) V (acre-ft) Total Cost ($)

1 600 475.8 124.11 1501.10 17,995.58

72,658.09

2 1000 699.4 299.50 3255.49 12,973.58
3 900 702.7 197.96 2239.63 12,015.06
4 500 348.6 151.94 1779.47 12,897.18
5 400 282.7 117.46 1434.66 15,158.53
6 500 246.4 252.96 2789.63 12,000.00

Table 15. Comparison of some performance parameters between APSO and improved APSO on the
non-cascaded and non-pumped storage STHTS problem while not considering transmission losses.

Performance Parameter or Algorithm APSO Improved APSO

Minimum Cost 72,662.81 72,658.09
Average Cost 72,684.09 72,682.82

Maximum Cost 72,708.60 22,717.87
No. of acceptable convergences 72 out of 100 trials 80 out of 100 trials

Standard deviation 10.62 10.44
Average No. of iterations 50 50

Average computation time * 0.512 s 0.506 s

* Average computation time is according to MATLAB 2015 on a Core i5 second-generation processor.
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Figure 11. Convergence characteristics of the simple APSO algorithm on the non-cascaded non-pumped
STHTS problem without transmission loss.

Figure 12. Convergence characteristics of the improved APSO algorithm on the non-cascaded
non-pumped STHTS problem without transmission loss.

8. Optimization of Some General Deterministic Non-Linear Test Functions Using the Proposed
Improved APSO Algorithm

To check the performance of the proposed improved APSO algorithm, some hard and general
deterministic optimization problems have been solved using the APSO and improved APSO algorithms.
The problem functions are given in Table 16 and are plotted in Figure 13. Table 17 presents the results
of the implementations of APSO and the proposed improved APSO algorithm on these complex
optimization functions, showing the capability of these two algorithms to solve such non-linear and
multi-modal objective functions.
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Table 16. Selected functions for the validation of the proposed improved APSO.

Optimization Function Michaelwics 2D function

Mathematical form f (x, y) = −sin(x) sin20 ( x2

π ) + sin(y) sin20(
2y2

π )
(x, y) = [0, 4]× [0, 4]

Nature of the problem
and its global optimum value

Highly non-linear and multi-modal
Global optimum approximately at
(x, y, z) = (2.20319, 1.57049,−1.801)

Optimization Function Rosenbrock 2D function (Banana function)

Mathematical form f (x, y) = (1 − x)2 + 100 × (y − x2)2

(x, y) = [−5, 5]× [−5, 5]

Nature of the problem
and its global optimum value

Non-linear and convex
Global optimum at
(x, y, z) = (1, 1, 0)

Optimization Function De Jong 2D function

Mathematical form f (x, y) = x2 + y2

(x, y) = [−5, 5]× [−5, 5]

Nature of the problem
and its global optimum value

Non-linear and convex
Global optimum at
(x, y, z) = (0, 0, 0)

Optimization Function Egg crate 2D function

Mathematical form f (x, y) = x2 + y2 + 25[sin2(x) + sin2(y)]
(x, y) = [−5, 5]× [−5, 5]

Nature of the problem
and its global optimum value

Highly non-linear and multi-modal
Global optimum at
(x, y, z) = (0, 0, 0)

It can be seen that both the APSO and improved APSO algorithms have shown promising results
to find the good approximates to the determined or known global minima of the highly non-linear
and multi-modal test functions. The performances of both APSO and improved APSO were good;
however, the improved APSO had the capability to find closer results to the determined or known
values of the minima of these functions.

The average value of the set of minima obtained for the case of the egg-crate function was high,
as well as the value of standard deviation. The reason is that the egg-crate function had many local
minima quite near the global minimum, as can be seen in Figure 13. Therefore, due to the dependency
of the particle updating process, only on the g* value, and due to the presence of fewer tuning
parameters, both the simple APSO and improved APSO algorithms sometimes became stuck in the
local optima. If some chaotic maps are introduced, the stochastic nature of APSO and improved APSO
can be increased to allow the particles to escape from local peaks. However, the improved APSO
algorithm has still achieved a higher number of successful results for the egg-crate function. Similarly,
for the Michaelwicz 2D function, both improved APSO and APSO sometimes become stuck in the local
minima. However, for most of the time, good and robust solutions were achieved. If the neighborhood
topologies of particles and some stochastic term are dominantly added in the particle update equation,
the number of successful achievements of global optimum solution can be increased to more than 90%
of the time.
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Table 17. Performance of the proposed improved APSO compared with available references.

Optimization Function Michaelwics 2D Function

Minimum Using Improved APSO
(x, y, z) = (2.2010, 1.5710,−1.8012) Average = −1.6932
Standard deviation = 0.31429 Successful trials = 15/20
(−1.7950 and less taken as successful values)

Iterations Using Improved APSO 15 iterations to achieve nearest results to three decimal places.
Best result achieved after 70 trials.

Minimum Using Original Algorithm APSO in [1] with (x, y, z) = (2.20319, 1.57049,−1.801)

Iterations Using Previous Algorithms 15 iterations to achieve nearest result. Best result achieved
after 200 trials.

Optimization Function Rosenbrock/Banana 2D

Minimum Using Improved APSO
(x, y, z) = (1.0047, 1.0099, 0.000) Average = 0.09987
Standard deviation = 0.3389 Successful trials = 15/20
(0.001 and less taken as successful values)

Iterations Using Improved APSO 100 iterations to achieve nearest results to three decimal places.
Minimum Using Original Algorithm Harmony search in [1] with (x, y, z) = (1.005, 1.0605, 0.000)
Iterations Using Previous Algorithms 2500 iterations to achieve nearest result.

Optimization Function De-Jong 2D

Minimum Using Improved APSO
(x, y, z) = (0.0015, 0.0042, 0.000) Average = 0.000315
Standard deviation = 0.00055 Successful trials = 20/20
(0.001 and less taken as successful values)

Iterations Using Improved APSO 10 iterations to achieve nearest results to three decimal places.
Minimum Using Original Algorithm Simple APSO with (x, y, z) = (0.0203, 0.0197, 0.0008)
Iterations Using Previous Algorithms 10 iterations to achieve nearest result.

Optimization Function Egg-Crate 2D

Minimum Using Improved APSO
(x, y, z) = (0.0030, 0.0027, 0.0004) Average = 3.989945
Standard deviation = 5.0615 Successful trials = 12/20
(0.01 and less taken as successful values)

Iterations Using Improved APSO 10 iterations to achieve nearest results to three decimal places.
Minimum Using Original Algorithm Simulated annealing in [1]. (x, y, z) = (0, 0, 0)

Iterations Using Previous Algorithms 2500 trials of program and unknown number of iterations,
accurate to three decimal places.

Average computation time of improved and simple APSO is less than 1 s for each objective function.

The results obtained from the implementation of the improved APSO and the results taken
from [1] of the implementation of the simple APSO algorithm on the deterministic, non-linear, and
multi-modal functions show that both of these algorithms are a brilliant choice to obtain robust
solutions of the optimization problems. Moreover, the elegance of these APSO variants in terms of a
few tuning parameters and a single-step particle update equation make them a preferred choice as
optimization algorithms.
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Figure 13. Plots of selected functions.

9. Conclusions

Establishing the superiority of one type of algorithm over another type of algorithm,
while implementing them on one type of optimization problem, requires a proper statistical hypothesis
testing like the t-test. This paper has presented another modification of particle swarm optimization
as the improved accelerated particle swarm optimization algorithm, which dynamically squeezes
the search space for the particles in every iteration. Two out of many types of STHTS problems
were tested using simple APSO and improved APSO. The improved APSO algorithm has shown
very promising results as compared to the simple APSO algorithm for the non-cascaded pumped
storage STHTS case, whereas both algorithms have shown equivalent results in statistical terms for the
non-cascaded non-pumped STHTS problem. However, the improved APSO has successfully found
a better approximate to the global minimum for this problem. Further research can be done on the
tuning of these variants of PSO to find even more promising results for these problems and for other
types of STHTS problems.
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Abbreviations

The following symbols and abbreviations are used in this manuscript:

APSO Accelerated Particle Swarm Optimization
xn+1

i Particle position at iteration n + 1
g∗ Global best particle
∆n

low,i Lower increment to be added in the ith particle’s lower limit for search space squeezing at iteration n
∆n

low,j Higher increment to be added in the ith particle’s upper limit for search space squeezing at iteration n
xn+1

i,min Lower limit of the ith particle at iteration n + 1
xn+1

i,max upper limit of the ith particle at iteration n + 1
f Objective function/cost
Fj Cost of the jth generating unit
Vj Volume of the reservoir at the jth interval
Disj Discharge rate of the reservoir at the jth interval
PT,j Thermal power at the jth interval
Phyd,j Hydro power at the jth interval
Rj Constant water inflow into the reservoir at the jth interval
Sj Spillage of water from the reservoir at the jth interval
Ploss,j Power loss at any scheduling jth interval
α, β, ε Tuning parameters of APSO equation. Their value ranges between 0 and 1.
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