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Abstract: In the research and development of multiagent systems (MAS), one of the central issues
is how to conciliate the autonomy of the agents with a desirable and stable behavior of the MAS
as a whole. Agent organizations have been proposed as a suitable metaphor for engineering social
order in MAS. However, this emphasis has led to several proposals of organizational models for MAS
design, thus creating an organizational interoperability problem: How to ensure that agents, possibly
designed to work with different organizational models, could interact and collectively solve problems?
In this paper, we have adopted techniques from Model Driven Engineering to handle this problem.
In particular, we propose an abstract and integrated view of the main concepts that have been used
to specify agent organizations, based on several organizational models present in the literature.
We apply this integrated view to design MAORI, a model-based architecture for organizational
interoperability. We present a MAORI application example that has shown that our approach is
computationally feasible, enabling agents endowed with heterogeneous organizational models to
cooperatively solve a problem.
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1. Introduction

In the research and development of multiagent systems (MAS), one of the central issues is how to
conciliate the autonomy of the agents with a desirable and stable behavior of the MAS as a whole.
Borrowing ideas from the Social Sciences, some authors have named this issue the problem of social
order: “How to obtain from local design and programming, and from local actions, interests, and views,
some desirable and relatively predictable/stable emergent result” [1]. A closely related issue is the
problem of social consensus often characterized as how to reach agreement with regard to some aspect or
quantity of interest in a network of agents by combining the local preferences or states of individual
agents [2,3]. Both social order and social consensus are fundamental problems in the design of MAS.
While social order stresses the idea that agent behaviors must be coherent with the MAS global purpose,
social consensus highlights the need of agreement among agents working together for a global purpose.

Faced with these problems, especially in the context of open MAS (i.e., systems formed by
a dynamical population of agents provided by different developers), several researchers have argued
in favour of using the human organizations as a proper metaphor for engineering MAS [4–7]. Human
organizations, whose typical examples are firms, clubs, corporations, etc., are collectivities pursuing
specific goals and exhibiting formalized social structures [8]. Goals are specific to the extent that they
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are explicitly and clearly defined. Social structures are formalized in such a way that patterns of
structuring and behaving (such as roles, role relations, procedures, protocols, norms, etc.) are precisely
specified regardless of personal traits and relations of any individual part of the organization. Thus,
by conceiving a MAS as an organization—or more generally as a bigger system formed by several
organizations, hereafter called agent organizations—the basic idea is to promote social order and
consensus in a top-down fashion. The idea is to have the agents’ actions and interactions governed by
formalized “social structures”, defined above the agents level, in order to enable the MAS (seen as
a collective entity) to achieve definite global goals.

This emphasis on organizations as a suitable metaphor for engineering social order has led
to several proposals of organizational models for MAS design [4]. From the perspective of software
development, most of these organizational models can be characterized as domain specific modeling
languages [9]. That is, they provide a specialized conceptual structure (metamodel) embodied in some
concrete syntax (notation) by means of which the designer can write formal representations of the social
structure of agent organizations. Such representations, called organizational specifications, are then used
as specification artifacts driving the development of agents and MAS.

On the one hand, the existence of many organizational models favours the organizational design
of MAS since, with various proposals, experience and best practices are accumulated. On the other
hand, a great variety of organizational models introduces heterogeneity in the development of MAS.
As a direct consequence of this heterogeneity, mainly in the case of open MAS, a new and important
interoperability issue arises: If to enter and fully work in an organization the agents should be designed
to “understand” and comply with an organizational specification of a given kind (i.e., conforming
to some organizational model), then, in addition to the communication language and the domain
ontology, the organizational model is something that the agents are supposed to share in order to
properly work together. In other words, how can we provide means for a set of agents, immersed in
a common environment, to evolve, reason, decide and interact with each other based on organizational
concepts, since their organizational models may differ? In this paper, we call this issue the organizational
interoperability problem.

We can think about four basic approaches to solve the organizational interoperability problem:
Standardization, universal agents, delegation and adaptation. Standardization consists in providing
interoperability by eliminating the root of the problem, the diversity, by means of a standard model
that has to be accepted and used by all developers [10]. The universal agents approach implies the
creation of agents which are able to deal with several different organizational models [11]. Delegation
means creating specialized services in middleware layers (like proxies [12] and governors [13]) to
whom agents may delegate reasoning and decision mechanisms related to organizational issues.
Adaptation, by its turn, is a solution based on the possibility of defining mappings between models [14].
From these mappings, an adapter is created, a component that converts specifications from a model to
another model [15,16].

Each of these approaches have their pros and cons. Standardization fully eliminates the problem
but it is politically and economically difficult to achieve and lets aside legacy systems. Universal agents
must be updated every time a new model is created or changed. Delegation practically vanishes the
agents organizational autonomy. Adaptation deals with legacy systems but it is technically difficult to
achieve, if not impossible, when there are no meaningful mappings between the models.

Motivated by the organizational interoperability problem and the basic approaches to it,
all of which presuppose an integrated knowledge of the organizational models used to engineer
agent organizations, the objective of this paper is to analyze the conceptual structures of several
organizational models present in the literature and, based on this analysis, to propose an abstract and
integrated view of the main concepts that have been used to specify agent organizations. We believe
that the abstract view of organizational models we put forward can be used both as basis for defining
essential mappings and for future standardization efforts of organizational models.
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This work is based on a previous work [17] in which we did a review of several prominent
organizational models to answer the questions: How are the conceptual structures of the models
related? Are there basic similarities? What are they? The answers we have given to these
questions, in terms of modeling dimensions, are summarized in Section 2. The idea of modeling
dimensions describes the organizational models basic similarities in broad terms. It characterizes the
macrostructure of organizational models.

In this paper we deepen our analysis by further exploring the conceptual structure within each
modeling dimension. In this sense, we seek to characterize the common concepts and their relations
found in existing organizational models along the modeling dimensions. The specific questions
we propose to answer in this paper are: Inside each modeling dimension, what are the recurring
modeling concepts? Is it possible to combine these recurring concepts into a coherent whole? How this
can be used in a solution to the organizational interoperability problem? In approaching these
questions, we have used techniques from Model Driven Engineering (MDE) [18]. Specifically, we think
of organizational models as domain specific modeling languages whose conceptual structures are
represented by means of metamodels. Thus, to address the questions systematically, we propose
an iterative integration method, described in Section 3, aiming at building an integrated metamodel
out of particular metamodels.

A central step in the integration method is the identification of correspondences between the
conceptual structure of organizational models represented by metamodels. To assist this identification,
in Section 4, we analyze the recurring concepts of existing organizational models along the modeling
dimensions. The result is an abstract conceptual structure formed by the union of conceptual patterns found
by comparing the organizational models. Relying on this abstract conceptual structure and using the
proposed integration method, in Section 5 we show how to effectively integrate (part of) three existing
organizational models. To put into perspective the integration of organizational models, we then
discuss in Section 6 a solution based on adaptation for the organizational interoperability problem.
In this solution, named MAORI (Model-based Architecture for ORganizational Interoperability) [19],
the mappings between organizational models are defined indirectly by using the integration we
have proposed.

In Section 7, we compare our proposal to related work in the literature. To the best of our
knowledge, the systematic integrated analysis of organizational models we propose is novel,
constituting the main contribution of the paper. Its importance, as already hinted, lies on serving as
a common ground for aligning organizational models and as a starting point towards standardization.
The MDE approach we apply is also a contribution and advancement in the state of the art. Looking at
the literature, we found that few organizational models are defined in terms of explicit metamodels.
Then, our representation of existing organizational models and their integration by means of formal
metamodels helps in further the understanding of their features and limitations. Finally, in Section 8,
we present our conclusions and future work.

2. Organizational Models for MAS

This section presents organizational models for multiagent systems by classifying their content
in modeling dimensions that were adopted to define a method for the integration of organizational
models. As a result of using the method, we build an abstract conceptual structure to deal with the
organizational interoperability problem within MAS.

2.1. Modeling Dimensions

After a detailed analysis of a significant part of the existing organizational models, we have noted
a lot of similarities and complementary issues regarding their conceptual structures. The common
points identified were classified into some recurring themes we have called modeling dimensions for
agent organizations [17]. In what follows, we discuss the modeling dimensions identified. Then we
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move to a short overview of the various organizational models analyzed. Ending the section, we show
a comparative table summarizing the models analyzed along the modeling dimensions identified.

2.1.1. Fundamental Aspects of Systems

In general, designed systems exhibit some fundamental aspects that, from an engineering
standpoint, are natural candidates for modeling. Firstly, there is the functional behavior of the
system—the input (stimulus) to output (response) relations that couple the system to external elements
composing the environment in which the system is situated. In modeling this aspect, the system is
commonly depicted as a black box whose internal constitution, at first, does not matter. What really
matters is that the environment imposes functional requirements, such as operations or tasks, that the
system as a whole is supposed to perform. Further, these functional requirements may be subdivided
in a recursive way until reaching atomic operations or tasks arranged in a given ordering (dependency
graph). Later, when the innards are determined, the actual execution of the atomic operations or
tasks can be associated with specific components of the system and their interactions. Modeling the
functional behavior is a common practice both in developing computer systems and in representing
organizational processes. Modeling techniques such as DFD (Data Flow Diagram) [20], and the activity
diagrams of UML (Unified Modeling Language) [21] are typical examples of that.

Another fundamental aspect is the internal structure of the system. In contrast, to model the
internal structure of a system means to represent it as a transparent box. It means to represent the
break down of the system in its constituent parts (components and subsystems) and the relations
interconnecting these parts. Like functional modeling, modeling the internal structure of a system
is a recurring theme in system design. In software development, for example, the class diagrams
and the component diagrams of UML serve to this purpose. In the case of human organizations,
a traditional form of structural modeling is the creation of organograms describing the divisions,
roles and hierarchical relationships existing inside an organization.

A third candidate for modeling is the structural behavior of the system. Roughly, it consists of the
“movement” of the internal structure of a system towards the realization of some desired functional
behavior. Thus, when modeling the structural behavior, we also see the system as a transparent box.
What we try to represent is the ordering of interactions occurring over time among the constituent
parts of a system. These interactions make the system work, i.e., perform some expected task or
operation in its environment. Examples of this type of modeling are the sequence and collaboration
diagrams of UML.

2.1.2. Primary Modeling Dimensions

From the premise that designed systems in general, not only agent organizations, exhibit these
three fundamental aspects as natural modeling concerns, we have used them as a first classification
scheme for separating the modeling concepts of organizational models into cohesive categories.
Consequently, we define:

• The functional dimension, in which we place the modeling concepts used to represent the functional
behavior of agent organizations;

• the structural dimension, composed by modeling concepts used to represent the internal structure
of agent organizations; and

• the interactive or dialogical dimension, grouping the modeling concepts relative to the representation
of the structural behavior of agent organizations.

2.1.3. Social Systems and the Normative Dimension

While the functional, structural and interactive dimensions can be justified by analysing the
modeling of systems in general, they are not sufficient to classify all modeling concepts appearing in
organizational models.
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According to [22], three basic types of systems and corresponding models can be identified:
Deterministic, i.e., systems and models in which neither the parts nor the whole are purposeful; animated,
i.e., systems and models in which the whole is purposeful but the parts are not; and social, i.e., systems
and models in which both the whole and the parts are purposeful. A fourth type is also considered,
ecological, i.e., systems and models in which the parts are purposeful but the whole is not. Given this
classification, we can say that traditional software systems are deterministic, autonomous agents are
animated, and agent organizations are social. Bigger and more encompassing MAS aggregating agents
and agent organizations form ecological systems.

Being deterministic, traditional software systems tend to have an architecture in which the
functional behavior, the internal structure and the structural behavior are foreseen in detail.
Their components are not conceived as purposeful entities with autonomous behaviors. On the
contrary, they are designed to obey rigidly what is fixed in the architectural specification of the system.

Regarding agent organizations characterized as social systems, the idea of agents obeying rigidly
the prescriptions of functional, structural and interactive specifications is not realistic. Agents are
conceived as self interested components, especially in open MAS. Therefore, neither the functional,
structural and interactive specifications can be very detailed to the point of precisely determining the
minutiae of the joint structuring and behaving of the agents, nor one can assume benevolence from the
agents with respect to the organizational goals.

In this context our analysis is that the specification of norms (permissions, prohibitions, obligations,
etc.), as occurs in human organizations design, are also expected to show up in organizational models.
They will work as a complementary mechanism helping to couple more flexibly the agents to the
organization. On the one hand, norms provide explicit means to capture interdependencies among the
functional, structural and interactive aspects (e.g., agent playing a given role in the internal structure is
obliged to behave functionally or structurally in a given way). On the other hand, norms can be used
to explicitly regulate sanctions or penalties to deviant behavior.

Accordingly we define a fourth and last category for the analysis of organizational
modeling concepts:

• The normative dimension, characterized by modeling concepts to further restrict, regulate and
interrelate elements from the other modeling dimensions, given the expected autonomous behavior
of the agents.

2.2. Models Review

Now we pass to a quick description of concrete organizational models taking into account how
they cover the four dimensions of modeling identified. We describe six models—TAEMS [23], AGR [5],
STEAM [24], MOISE+ [25], ISLANDER [26] and OPERA [27]. We think of these as good exemplars
showing how models have evolved towards a full coverage of the organizational modeling dimensions.
Other models are mentioned at the end of the review.

2.2.1. TAEMS

In TAEMS (Task Analysis, Environment Modeling, and Simulation) the basic modeling concept
is the notion of task. In essence, by using TAEMS we can specify tasks structures composed by the
definition of tasks, resources, tasks relationships, and task groups. A task group is an independent collection
of interrelated tasks. There are two kinds of task relationships: Subtask and non-local effects relationships.
The subtask relationship links a parent task to child task explicitly defining a task decomposition tree.
Individual tasks that do not have child tasks are called methods. Methods are primitive tasks that
agents should be able to perform. Non-local effects are task relationships that have positive or negative
effects in the quality, costs or duration of the related tasks. Examples of possible non-local effects are:
Facilitates, enables, hinders, limits, etc.

TAEMS is a model specialized exclusively in the specification of the functional behavior of agent
organizations. A TEAMS specification, the task structure, only represents what should be done by
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the agents alone (method definitions) or in groups (task groups). It tells nothing about the internal
structuring or explicit interactions to realize the specified tasks.

2.2.2. ARG

AGR (Agent, Group, Role) is the evolution of the AALAADIN model [28]. In AGR agent, group
and role are the primitive modeling concepts. An agent is an active, communicating entity playing one
or more roles within one or more groups. No constraints are placed upon the architecture of an agent
or about its mental capabilities. A group is a set of agents sharing some common characteristics.
A group is the context for a pattern of activities and is used for partitioning organizations. An agent
can participate at the same time in one or more groups. Agents may communicate if and only if they
belong to the same group. A role is the abstract representation of a functional position of an agent in
a group. Roles are local to groups, and a role must be requested by an agent.

AGR is a model providing a minimalist structural view of organizations. There is no concepts for
modeling functional behavior. The specification of an organization, called organizational structure, is in
essence the depiction of the internal structure of the organization in terms of roles, roles constraints and
group structures. AGR also says that agents can have their joint behavior orchestrated by interaction
protocols, but the nature and the primitives to describe such protocols are left open.

2.2.3. STEAM

STEAM (a Shell for TEAMwork) is a model whose focus is teamwork. In STEAM an agent
organization is conceived as an agent team. Two separate hierarchies are used to specify the internal
structure and functional behavior of a team: A subteam and roles hierarchy (or organization hierarchy),
and a hierarchy of joint activities (or operator hierarchy). The subteam and roles hierarchy is a tree in
which the root represents a team, the internal nodes the possible subteams and the leaves the individual
agent roles. The joint activity hierarchy is also a tree whose nodes are called operators. Leaf operators
represent atomic activities. Internal operators represent a reactive plan, i.e., the decomposition of an
activity into interrelated subactivities. For each individual role or subteam, it is assigned one or more
operators from the activity hierarchy.

With STEAM we see a first model that combines the structural (subteams and role hierarchy) and
functional modeling dimensions (operator hierarchy).

2.2.4. MOISE+

MOISE+ (Model of Organization for multI-agent SystEms) is a model that explicitly divides
the specification of an agent organization in three parts: The structural, the functional and the deontic
specifications. The structural specification defines the internal structuring of agents through the
notions of roles, roles relations and group specifications. A role defines a set of constraints the agent has
to accept to enter in a group. Role relations are links (communication, acquaintance and authority) and
compatibilities from a source role to a target role. A group specification consists in role definitions,
subgroup definitions (group decomposition), links and compatibilities definitions, role cardinalities
and subgroup cardinalities. The functional specification describes how an agent organization usually
achieves its global goals, i.e., how these goals are decomposed (by plans) and distributed to the agents
(by missions). Global goals, plans and missions are specified by means of a social scheme. A social
scheme can be seen as a goal decomposition tree where the root is a global goal, the internal nodes are
plan operators (sequence, choice, parallel) to decompose goals into subgoals, and the leaves are atomic
goals that can be achieved by an individual agent. Missions are coherent sets of goals; hence, an agent
that is committed to a mission is responsible for the satisfaction of all its component goals. Finally,
the deontic specification associates roles to missions by means of permissions and obligations.

Like STEAM, MOISE+ addresses both the functional and structural dimensions of modeling.
However, MOISE+ goes further and provides concepts for modeling normative aspects (deontic
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specification). The deontic concepts allow a flexible coupling between the functional and structural
specifications that is not seen in STEAM.

2.2.5. ISLANDER

ISLANDER is a declarative language for specifying electronic institutions. According to ([26] p. 348),
“Institutions establish how interactions of a certain sort will and must be structured within
an organization”. In ISLANDER, an electronic institution is composed of four basic elements: A dialogic
framework, scenes definitions, a performative structure, and norms definitions. In the dialogic framework
it is defined the participating roles and their relationships. Each role defines a pattern of behavior
within the institution and any agent within an institution is required to adopt some of them. A scene
is a collection of agents playing different roles in interaction with each other in order to realize
a given activity. Every scene follows a well-defined communication protocol. The performative structure
establishes relationships among scenes. The idea is to specify a network of scenes that characterizes
more complex activities. The norms component of an electronic institution defines the commitments,
obligations and rights of participating roles.

With ISLANDER we perceive a change of focus from functional to structural behavior. Unlike the
previous models, there is no concepts for explicitly modeling goals and plans (goal decompositions).
All behavior is specified by means of direct interactions between roles (dialogs) and regulated by the
definitions of norms.

2.2.6. OPERA

In OperA (Organizations per Agents) an agent organization is specified in terms of four structures:
The social, the interaction, the normative and the communicative structures. In the social structure are
defined roles, objectives, groups and role dependencies. Roles identify activities and services necessary to
achieve social objectives. Groups provide means to collectively refer to a set of roles. Role dependencies
describe how the roles are related in terms of objective realization. The interaction structure defines
how the main activity of an agent organization is supposed to happen. This definition is done in
terms of scenes, scene scripts, scene transitions and role evolution relations. Scenes are representations of
specific interactions. A scene script is described by its players (roles or groups), scene norms (expected
behavior of actors in a scene) and a desired interaction pattern. Scene transitions are used to coordinate
scenes by defining the ordering and synchronization of the scenes. Role evolution relations specify
the constraints that hold for the role-enacting agents as they move from scene to scene respecting
the defined transitions. The normative structure gathers all the norms that are defined during the
specification of roles, groups, and scene scripts. Norms are specified as formal logical expressions.
Finally, the communicative structure describes the set of performatives and the domain concepts used
in the interaction structure by the role enacting agents.

OPERA is a model that addresses all the identified modeling dimensions. Nevertheless, we note
that the functional and structural modeling of OPERA is less developed than the others models,
the interactive modeling is comparable to what is found in ISLANDER, and the normative modeling is
the most elaborated of all models analysed. In OPERA norms are expressed in a formalism called LCR
(Logic for Contract Representation).

2.2.7. Other Models

The literature on organizational models is vast. For reasons of space and scope, we briefly mention
other models below:

• ODML—Organizational Design Modeling Language [29]—a minimalist organizational model that
provides elements to model and evaluate structural aspects of organizations.
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• AGRE—Agent, Group, Role, Environment [30]—an extension of AGR that takes into account
physical and social environments. The main idea is that agents are situated in domains called
spaces. The spaces can be physical (areas) or social (groups).

• MOISEInst [31]—an extension of MOISE+ that allows for Contextual Specifications (contexts
and transitions between contexts) and Normative Specifications (norms set) in the modeling of
an MAS organization.

• OMNI—Organizational Model for Normative Institutions [32]—an unification of two other models:
the OperA and the HarmonIA framework [33].

• MAS-ML—MAS Modeling Language [34]—a modeling language that extends UML with
elements of the TAO conceptual framework [35]. Regarding organizational modeling, one of
the distinguishing features of MAS-ML is that organization technically are an extension of
an AgentClass classifier. This means that organizations are conceived as kinds of agents.

• MACODO [36] is an organizational model for context-driven dynamic agent organizations
where organization, agent, role and context are abstract concepts related to the system structure;
capabilities, role positions and role contracts are related to the system functioning and there are
laws for governing inter-organizational (merge law) or intra-organizational (join law) interactions.
MACODO also provide a middleware that allows the implementation and execution of systems
modeled following the MACODO model.

In addition to these, we also find in the literature on agent oriented software engineering (AOSE)
methodologies a strong concern about organization modeling during the analysis and design of MAS.
The Gaia [37] and Tropos [38] are some examples of AOSE methodologies that incorporate the concept
of organization in their metamodels.

2.3. Models Comparison

More than large differences, we perceive several similarities and complementarity among the
conceptual structures of the organizational models analysed, as we show in Table 1. The commonalities
occur in two levels. In a first macro level, they occur as the dimensions of organizational modeling
that were identified. For example, all models except TAEMS present concepts to represent the internal
structure of organizations (structural dimension). All models except AGR and ISLANDER promote the
functional behavior modeling (functional dimension). ISLANDER and OPERA present very similar
concepts for representing the structural behavior of organizations (dialogical dimension). Normative
concepts appear in MOISE+, ISLANDER and OPERA (normative dimension).

Table 1. Organizational models comparison.

Model Functional Structural Dialogical Normative

TAEMS method, task, none none none
subtask relation,
non-local effect

AGR none role, group, interaction protocol none
role relation

STEAM operator, plan, team, individual role none none
dependency

MOISE+ goal, plan, mission role, group, role relations none deontic relations

ISLANDER none roles, role relations scene, transition, obligation
interaction protocols

OPERA objective, subobjective role, group, scene, transition, obligation
dependency interaction patterns
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On a more detailed level of analyses, one can still identify various modeling patterns within each
dimension. In the next section, we propose an iterative integration method that rely on these patterns,
whose formal description is presented in Section 4.

3. Method for the Integration of Organizational Models

We advocate that modeling dimensions for agent organizations are useful not only to analyse and
compare organizational models, but also they serve as a starting point for the conceptual integration
of organizational models. As we have mentioned in the Introduction, when the objective is to
provide organizational interoperability, a consistent conceptual integration of organizational models is
a fundamental and necessary element. In order to systematically perform such integration (having in
mind the problem of organizational interoperability), we have defined an iterative integration method
that is discussed in this section.

3.1. General Process

Let OM1, OM2, . . . , OMn be n organizational models to be integrated. In broad lines,
we understand by a conceptual integration of OM1, . . . , OMn the process of representing, correlating
and joining the conceptual structure (i.e., the modeling concepts and their interrelationships) of each
OMi obtaining as the final result an integrated metamodel MMint whose conceptual structure subsumes
the structure of all OMi. This idea of conceptual integration, as an iterative process, is depicted in
Figure 1.

Representation

Alignment

Merge

MM  ,  MM
1          2

Iteration #1

art( MM  ,  MM   )1          2

OM  ,  OM
1          2
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int

Representation

Alignment

Merge

MM
3

Iteration #2

OM
3

art(MM                )3 ,  MM
#1

int

Representation

Alignment

Merge

MM
n

Iteration #(n-1)

OM
n

art(MM                   )n,  MM
#(n-2)

int

MM
#2

int

End

MM
#(n-1)

int

. . .

Figure 1. General conceptual integration method.

More specifically, for n models we have n− 1 iterations. In the first one, three sequencial steps are
performed for OM1 and OM2:

1. Analysis and representation of the conceptual structure of OM1 and OM2 as metamodels MM1

and MM2, respectively. In the representation it is used a common metamodeling language.
2. Comparison of MM1 and MM2, and identification of correspondences between the conceptual

structure expressed in both metamodels. Such correspondences represent semantic overlapping
areas between MM1 and MM2, i.e., modeling concepts and concept relationships that are assumed
to have equivalent or similar interpretations. In general, the identified correspondences are
explicitly expressed as articulations art(MM1, MM2) between MM1 and MM2, as described next.

3. From MM1, MM2 and art(MM1, MM2), we produce an integrated metamodel MMint
#1 that (i) is as

expressive as both MM1 and MM2 (in the sense of retaining all concepts, relations and restrictions
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found in both MM1 and MM2); and (ii) avoids unnecessary replication of elements which were
declared equivalent or similar by means of the correspondences between MM1 and MM2.

From the second iteration onward, the same three steps are performed for each OM3≤i≤n with the
following differences: (1) Instead of MM1 and MM2 we have MMi and MMint

#(i−2), respectively; MMi

is the metamodel representing OMi and MMint
#(i−2) is the integrated metamodel from the previous

iteration; (2) in the place of art(MM1, MM2) we have art(MMi, MMint
#(i−2)) which is the articulation

between MMi and MMint
#(i−2); and (3) instead of MMint

#1 we produce MMint
#(i−1), i.e., the integrated

metamodel resulting from joining MMi to MMint
#(i−2).

3.2. Metamodel Representation

In the first step, we assume a metamodel based representation of the organizational models.
In this sense, our method adopts the way by which special purpose modeling languages are defined
in the area of Model-Driven Engineering. Given this assumption, there are several metamodeling
languages available for expressing the conceptual structure of the organizational models. Some of
these languages are KM3 [39], MOF/OCL [40,41], XMF [42] and Ecore [43]; this last is used in this
work, as illustrated in Sections 4 and 5.

3.3. Metamodel Alignment

In the second step, the definition of correspondences between modeling concepts is an inherently
heuristic process. One possible heuristic is to use the modeling dimensions identified in Section 2.
The basic idea is to divide the work along the modeling dimensions. For each model, we start by
classifying its modeling constructs in one or more dimensions. Then, for each dimension covered by
the models, we identify the corresponding modeling constructs. In this way, the functional modeling
concepts of one model are put into correspondence with the functional concepts of the other model,
the structural concepts of one model with the structural concepts of the other, and so on.

Another heuristic we put forward for aligning the conceptual structure of organizational models is
to take into account some basic conceptual patterns found in the models. These patterns are described
in Section 4 in the form of an abstract organizational model.

3.4. Metamodel Merging

Unlike the alignment, the merging of metamodels is a more deterministic process that can be fully
automated by using several algorithms reported in the literature [44–46]. In general, these proposals
for (meta)model merging can be described as merging based on graphs and morphisms. In this case,
the metamodels are abstractly conceived as graphs and the correspondences between two metamodels
assume the form of an articulation between graphs. If MM1 and MM2 are two metamodels viewed as
graphs, then an articulation art(MM1, MM2) between them is a triple composed of a graph Gart and
two morphisms m1 : Gart → MM1 and m2 : Gart → MM2:

art(MM1, MM2) =< Gart, m1, m2 >

Intuitively, the idea is that Gart is a representation of the common concepts and relations found in
M1 and M2, and the morphisms m1 and m2 are the links mapping this common concepts and relations
to their counterpart in both MM1 and MM2.

Once characterized as graphs, the merging of two metamodels MM1 and MM2 is in essence an
amalgamated sum (or pushout) of MM1 and MM2, modulo art(MM1, MM2):

merge(MM1, MM2) = MM1 ⊕art(MM1,MM2)
MM2 =< MMint, m′1, m′2 >
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where MMint is the resulting integrated metamodel at the end of the iteration and m′1 and m′2
are morphisms m′1 : MM1 → Gint, m′2 : MM2 → Gint. The integrated metamodel MMint

consists of the union of the nodes (concepts) and edges (concept relationships) of MM1 and MM2,
where correspondent elements as described via art(MM1, MM2) are treated as only one element [44,46].
In this way MMint retains all non-duplicate information in MM1 and MM2 collapsing the elements
that art(MM1, MM2) declares redundant. The morphisms m′1 : MM1 → Gint and m′2 : MM2 → Gint

describe how translating from the particular to the integrated metamodel. The inverse, translating
from the integrated to the particular metamodels, is performed via Gart, m1 and m2.

4. Abstract Conceptual Structure of Organizational Models

In this section we compare in detail the conceptual structure of the organization models discussed
in Section 2. With this comparison, we intend to explicitly show two main findings: (i) We can identify
patterns in the conceptual structure of organizational models inside each modeling dimension, if we
homogenize the terminology used and abstract some particularities of each model; and (ii) the patterns
identified can be consistently combined into a single conceptual structure (metamodel) that represents
in an essential and integrated way the conceptual structures of organizational models. In the next
subsections, we detail the basic patterns that emerge when one look more closely to the conceptual
structures of the organizational models proposed in the literature. Each subsection focus on a modeling
dimension previously discussed in Section 2. At the end, we combine the conceptual patterns obtaining
in this way the abstract organizational metamodel.

4.1. Functional Dimension

In the functional dimension, we found concepts for the specification of the functional behavior
of an agent organization, i.e., the collective behavior of agents when the internal structure of their
organization is not taken into account. Looking at Table 1, we can see that this dimension occurs in
TAEMS, STEAM, MOISE+ and OPERA. In these models, the functional specifications follow a general
pattern which is illustrated in Figure 2.

4.1.1. Graphs of Hierarchical Plans and Goal Relationships

In essence, the general pattern can be characterized as directed graphs where:

• The nodes correspond to goals (in MOISE+), operators (in STEAM), objectives (in OPERA) or tasks
(in TAEMS), to be achieved or done by the agents in an organization;

• the edges represent:
– Either the acyclic decomposition of a goal (operator, objective or task) into subgoals (suboperators,

subobjectives or subtasks), giving rise to the notion of hierarchical plans,
– or binary relationships between goals (operators, objectives or tasks), like the depends relation in

STEAM or the non-local effects in TAEMS.

Further, in each graph there is one root node that corresponds to a primary goal whose planning
and future achievement is prescribed by the structure of the graph. Such graphs of hierarchical plans
and goal relationships receive the names of “task group” in TAEMS, “operator hierarchy” in STEAM,
“social scheme” in MOISE+ and “role objective definition” in OPERA.

In Figure 2, the conceptual pattern identified in the functional dimension is represented by means
of an Ecore metamodel. The classes and references composing the metamodel are described in Table 2.
Additional contextual constraints are presented in Table 3. These are written in OCL and formalize the
static semantics of the metamodel (conceptual pattern).
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Figure 2. Similar functional specifications written in TAEMS, OPERA, STEAM and MOISE+,
which prescribe how an agent is supposed to proceed for buying a product in an electronic market
(example taken from [47]). The class diagram (Ecore metamodel) in the center of the figure represents
the conceptual pattern identifiable in the various approaches of functional modeling. The dotted
arrows detail what concepts are captured by what classes of the metamodel.
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Table 2. Functional specification pattern: Classes description.

Class Description

FSpec Represents the concept of functional specification, i.e., an organizational specification
restricted to the functional dimension.

GoalDef Part of a functional specification that represents the definition of a goal. Abstracts the concepts
of task in TAEMS, operator in STEAM, goal in MOISE+, or objective in OPERA.

HPlanDef Part of a functional specification that represents the definition of a graph of hierarchical plans
and goal relationships. HPlanDef is characterized by a unique root goal (the GoalDef referenced
by HPlanDef::rootGoal), one or more goal decompositions (referenced by HPlanDef::goalDec)
and zero or more goal relationships (referenced by HPlanDef::goalRel). Abstracts the concepts of
task group in TAEMS, operator hierarchy in STEAM, social scheme in MOISE+ and role objective
definition in OPERA.

GoalDec Part of a HPlanDef graph that represents the general concept of goal decomposition, i.e., the
decomposition of one major goal(GoalDec::goal reference) into one or more minor direct
subgoals(GoalDec::subGoal reference). Abstracts the relationship of subtasks or local effects
in TAEMS, the concept of plan in STEAM and MOISE+, and the subobjective definitions in
OPERA.

GoalRel Part of a HPlanDef graph that represents goal relationships directed from one source goal)
GoalRel::source reference) to one target goal (GoalRel::target reference. Abstracts the
concept of non-local effects (facilitates, enables, etc.) in TAEMS and the depends relation in STEAM.
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Table 3. Functional specification pattern: Contextual constraints.

Class Auxiliary Definitions

HPlanDef ::getAllSubGoal(goal:GoalDef) : Set(GoalDef), a query that returns the set of all subgoals in
which a given goal is direct or indirectly decomposed in the context of a HPlanDef graph, via
goal decomposition referenced by HPlanDef::goalDec

In OCL:
context HPlanDef
def: getAllSubGoal(goal : GoalDef) : Set(GoalDef)

= getSubGoal(goal) -> union(
getSubGoal(goal) -> collect (sg | getAllSubGoal(sg)));

def: getSubGoal(goal : GoalDef) : Set(GoalDef)
= getGoalDec(goal) -> collect (gd | gd.subGoal);

def: getGoalDec(goal : GoalDef) : Set(GoalDec)
= goalDec(goal) -> serlect (gd | gd.goal = goal);

Contextual Constraints

(1) In the context of a HPlanDef graph, all decompositions of a goal into subgoals must be
reachable from the root goal. In other words, each goal decomposed in subgoals in a
HPlanDef graph is either the root goal itself or a direct or indirect subgoal of the root goal.
In OCL:

context HPlanDef
inv: goalDec -> forAll (gd |

root.Goal = gd.goal or
getAllSubGoal(rootGoal) -> includes(gd.goal) )

(2) In the context of a HPlanDef graph, the source and target goals of all goal relationships
must pertain to the collection of subgoals of the root goal of the graph. In other words,
each goal relationship must connect only subgoals of the root goal of a HPlanDef graph.
In OCL:

context HPlanDef
inv: getAllSubGoal(rootGoal) -> includesAll(

goalRel -> collect (gr | Set(gr.source, gr.target)))

(3) Restricted to goal decomposition, all HPlanDef graphs must be acyclic. In other words,
in the context of a HPlanDef graph, no goal can be, direct or indirectly, a subgoal of itself.
In OCL:

context HPlanDef
inv: not getAllSubGoal(rootGoal) -> includes(rootGoal)

and getAllSubGoal(rootGoal) -> forallAll( sg |
not getAllSubGoal(sg) -> includes(sg) )

4.1.2. Particularities

Besides the common aspects represented in the functional specification pattern (Tables 2 and 3),
there are some particular aspects in the organizational models that should be highlighted.

In TAEMS, there are the concepts of resources and non-local effects between tasks and resources.
These concepts were not considered as part of the functional specification pattern presented because
they occur only in TAEMS.

In MOISE+, there is no notion of binary relationships between goals. There is, however, the particular
notions of mission and preferences among missions, which do not occur in the other organization models
analysed, but only in MOISE+. Thus, like the concepts of resources and resource non-local effects of
TAEMS, the notions of mission and mission preferences also do not appear in the functional specification
pattern presented.

In OPERA, the functional modeling is done implicitly as part of a role definition (structural
modeling). In this way, we have a functional modeling with little resources when compared to what
can be found in TAEMS, STEAM and MOISE+. Quoting [27], a role definition is done specifying one or
more role objectives γ and
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“[each] role objective γ can be further described by specifying a set of subobjectives that must
hold in order to achieve objective γ. Subobjectives give an indication of how an objective
should be achieved, that is, describe the states that must be part of any plan that an agent
enacting the role will specify to achieve that objective. However, subobjectives abstract from
any temporal issues that must be present in a plan, and as such must not be equated with
plans.” (pp. 60–61)

From this passage, we conclude that there is no explicit notion of hierarchical plans in OPERA.
Even so, the general notion of goal decomposition can be identified in OPERA, as we have done in the
previous subsection, by making it to correspond to the notion of subobjectives specification in OPERA
(see Figure 2).

Lastly, we note that the abstract concepts of goal decomposition and goal relationships admit concrete
subtypes of various kinds in the organizational models analysed. For instance, in TAEMS, the kinds
of goal decomposition are denominated quality accumulation functions (qafs) and the kinds of goal
relationships are named non-local effects (nles): Examples of qafs are q_seq_last (all subtasks must
be completed in order, and overall quality is the quality of last task), q_sum_all (all subtasks must
be completed in no specific order, and overall quality is the aggregate quality of all subtasks) and
q_exactly_one (only one subtask may be performed, and overall quality is the quality of the single task
performed); regarding specific nles, two of them are facilitates (when information from one task reduces
or changes the search space making some other task easier to solve) and enables (when information
from one task is a prerequisite for doing another task). In STEAM, there are two basic concrete subtypes
of goal decomposition: AND (when all suboperators must be done to realize a given operator), and OR
(when at least one suboperator must be done to realize a given operator), which are complemented
by the depends relationship (that establishes a partial order for doing operators). Finally, in MOISE+,
there is not the concept of goal relationship, only three subtypes of goal decomposition: Sequence
(when subgoals must be achieved in some order to achieve a given goal), choice (when only one subgoal
must be achieve to fulfill a given goal), and parallelism (when all subgoals can be pursued at the same
time in order to achieve a given goal).

4.2. Structural Dimension

Forming the structural dimension, we have modeling concepts used to specify the internal
structure of an agent organization in which the agents must engage to become an active member of
the organization. From Table 1, five organizational models provide concepts for creating structural
specifications. They are: AGR, TAEMS, MOISE+, ISLANDER and OPERA. Looking carefully at the
structural specifications one is able to produce using these models, like the ones shown in Figure 3,
we realize that the structural dimension of organizational modeling can also be characterized by
an abstract conceptual pattern.

4.2.1. Graphs of Roles and Groups

In the structural dimension, the organizational models present three fundamental concepts:
Role, group and role relationships. The instantiation of these three interrelated concepts forms the
specification of the internal structure of agent organizations.

In essence, structural specifications can be characterized directed graphs where:

• The nodes correspond
– either to the definition of groups (in AGR, MOISE+ and OPERA) or teams (in STEAMS),
– or to the definition of roles (in all models);

• the edges represent
– either the decomposition of a group in subgroups (or a team in subteams), forming a group

(team) hierarchy,
– or binary relationships between roles,
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– or links from a role to a group (or subteam) in which the role can be played by agents.
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Figure 3. Similar structural specifications written in STEAM, AGR, OPERA, MOISE+ and ISLANDER,
for a team of agents part of a simulated soccer game (example taken from [24,25]). The team is composed
of eleven players (one goalkeeper, three backs, five mid-filders and three attackers) and one coach, and is
divided in three groups: Defense, midfield and attack. The class diagram (Ecore metamodel) in the center
of the figure represents the conceptual pattern identifiable in the various approaches of structural
modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel.

With regard to the group (team) hierarchy, there are two situations present in the models. On the
one hand, we have a unique root group that represents the organization as a whole (the hierarchy is
a rooted tree), what occurs in STEAM, MOISE+ and OPERA. On the other hand, there is no explicit
root group, or even the decomposition of groups in subgroups, what is the case of AGR. Regarding the
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binary relationships between roles, in general they are directed and, in the models AGR, MOISE+ and
ISLANDER they are subdivided in various kinds with diverse interpretations.

Such graphs of roles and groups receive the names of “organization hierarchy” in STEAM,
“organizational structure” in AGR, “structural specification” in MOISE+. In ISLANDER, they are part
of the definition of a “dialogic framework”. In OPERA, they form the “social structure”.

In Figure 3, the conceptual pattern identified in the structural dimension is represented by means
of an Ecore metamodel. This metamodel is presented in more detail in Table 4.

Table 4. Structural specification pattern.

Class Description

SSpec Represents the concept of structural specification, i.e., organizational specifications restricted
to the structural dimension.

GroupDef Part of a structural specification that represents a group definition. Each group definition is
characterized by the declaration of the roles that agents can play in the group (the RoleDef
referenced by GroupDef::rootDef), and by possible subgroup definitions (referenced by
GroupDef::subGroup). Abstracts the concepts of group structure in AGR, subteam role in
STEAM, group specification in MOISE+, and group definition in OPERA.

RoleDef Part of a structural specification that represents a role definition. Abstracts the concepts of
role in AGR, MOISE+, ISLANDER and OPERA, and individual role in STAEMS.

RoleRel Part of a structural specification that represents a direct relationship between two roles:
a source role referenced by RoleRel::source, and a target role referenced by RoleRel::target.
Abstracts the concept of role constraints in AGR, role relations and inheritance in MOISE+,
static separation of duties (ssd) and subroles in ISLANDER.

Auxiliary definitions

GroupDef ::getAllSubGroup() : Set(GroupDef), a query that returns the set of all group
definitions that, direct or indirectly, are subgroups of a given GroupDef via
the GroupDef::subGroup reference. In OCL:

context GroupDef
def: getAllSubGroup( ) : Set(GroupDef)

= subGroup(goal) -> union(
subGroup -> collect (sg | sg.getAllSubGroup()));

Contextual Constraints

(1) All group definition shall reference at least one role definition or one subgroup definition, or both.
In OCL:

context GroupDef
inv: roleDef -> notEmpty() or subGroup -> notEmpty()

(2) No group definition can be, direct or indirectly, a subgroup of itself, i.e., the group definitions shall
form an acyclic directed graph.
In OCL:

context GroupDef
inv: not self.getAllSubGroup() -> includes(self)
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4.2.2. Particularities

Besides the similarities that give rise to the structural specification pattern, the organizational
models also differ in some particular points. Four of these points deserve mention.

The first one is related to the definition of subgroups. In STEAM and MOISE+, the definition
of subgroups forms a real hierarchy, i.e., an non cyclic graph. On the other hand, in AGR and
OPERA, there is no explicit subgroup relationships between group definitions. From structural
specification pattern perspective, this fact can be expressed in the following way: In AGR and
OPERA, for each group definition g (instance of GroupDef), the collection of its subgroups is empty,
i.e., g.subGroup = {}. On the other hand, in STEAM and MOISE+, there exist group definitions g
such that g.subGroup 6= {}.

The second point is the notion of cardinality that is found in AGR and MOISE+ but not in the other
models. Cardinalities can be defined for roles or subgroups. In the case of roles, cardinalities indicate
a maximum and a minimum number of agents allowed per role in the context of a group. Regarding
cardinalities of groups, they determine how many subgroups of a given type can be created in the
context of a group. In AGR, cardinalities are attributes of role and group. In MOISE+, they are attributes
of the association between role and group, or group and subgroup. For this reason, and observing
that they are not an explicitly feature of the majority of the models, we have chosen not to explicitly
represent cardinalities in the structural specification pattern.

As third point, we observe that the abstract notion of structural relationships between roles
(class RoleRel, Table 4) admits diverse concrete subtypes, analogously to what happens with the
notion of goal relationships (class RoleRel, Table 2). In AGR, for instance, there exist two subtypes:
Correspondence (which states that agents playing one role will automatically play another one) and
dependency (which rules out the possibility of an agent to play one role if it is not playing another role).
In MOISE+, three subtypes: Links (which declare the possible relationships of communication, authority
and acquaintance between roles), compatibility (which determines that two roles can be played at the
same time by the same agent) and inheritance (which states that one role, besides its own features,
also has all the features, like links and compatibilities, of another role). In ISLANDER, two subtypes:
The concept of subroles (which is similar to the concept of inheritance in MOISE+), and the concept of
static separation of duties (which means the opposite of the concept of compatibility in MOISE+).

In OPERA, there is only one type of binary directed relationship between roles: The dependency.
Nevertheless, differently from the other organizational models, the concept of dependency between roles
in OPERA is not properly a structural but rather a functional relationship. In other words, in OPERA,
the dependency relationship reflects directly the decomposition of a goal into subgoals, elements of the
functional dimension. When one of the subgoals defined in the scope of a role is a goal of another role,
then there exist the dependency relationship between the two roles in OPERA. Such idea is different
from the structural dependency present in AGR, which indicates that the fact of playing a given role is
a prerequisite for playing another role.

The last point that should be mentioned concerns the nature of the group definitions. In all
analysed models, except MOISE+, agents playing any roles in the same group may, in principle,
exchange messages. Further, in the absence of explicit constraints, such as incompatibilities or
dependencies, the agents are free to play the roles they wish in a given group. In MOISE+, we have
the opposite situation. If there is no explicitly stated communications links or compatibility relations
between roles, the agents are not allowed to exchange messages or play more than one role in the
same group. Moreover, in MOISE+, communication links or compatibility relations are not limited
to a single group, but can be specified between roles defined in different groups leading to possible
inter-group collaborations. In other models, such as AGR, this inter-group collaboration can also be
achieved by means explicitly defined correspondence links between two roles in different groups.
In this way, an agent playing one of the roles automatically plays the other role and can participate in
more than one group at the same time.
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4.3. Dialogical Dimension

The dialogical dimension is characterized by concepts to prescribe (or describe) the direct
interaction by means of message exchanging that occurs between role playing agents in order to achieve
organizational goals. Among the organizational models considered in this work, only ISLANDER and
OPERA offer explicit concepts for dialogical modeling (see Table 1). In these two models, the dialogical
specifications are written according to approximate conceptual structures, as can be seen in Figure 4.
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Figure 4. Similar dialogical specifications written in OPERA and ISLANDER for an agent based
conference management system (example taken from [27] chapter 3). The class diagram (Ecore
metamodel) in the center represents the conceptual pattern identifiable in the two approaches of dialogical
modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel.
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4.3.1. Hypergraphs of Scenes

On a macro level, both in ISLANDER and in OPERA, the direct interactions by message
exchanging are partitioned into scenes. Scenes are structured and coordinated by means of directed
hypergraphs (directed graphs where some edges, called hyperedges, can connect any number of sources
and target nodes)in which:

• Nodes correspond to the definitions of scenes;
• hiperedges represent partial ordering and/or synchronization relationships from many source

scenes to many target scenes, giving rise to the concept of scene transitions.

In a well formed hypergraph of scenes, there is:

• An initial scene, i.e., the node from which agents playing roles have access to the other scenes of
the hypergraph. Starting in the initial scene and following the transitions, all the scenes that make
up a hypergraph should be achievable;

• a final scene, i.e., the node in which the dialogic participation of agents within an organization
ends successfully. As the dual of the initial scene, the final scene has to be achievable from any
scene in a hypergraph, otherwise the hypergraph of scenes is not well formed.

In ISLANDER, the hypergraphs of scenes are named “performance structures”, and in OPERA
they are called “interaction structures”.

On a micro level, the interactions within each scene are governed by one or more predefined
dialogue scripts. These scripts correspond to the concepts of scene protocol in ISLANDER and interaction
pattern in OPERA. Dialogue scripts are not detailed in Figure 4. The reason is that the intra-scene
(micro level) dialogical specifications have distinct natures both in ISLANDER and in OPERA, as will
be discussed in the sequel.

In Figure 4, the conceptual pattern identified in the dialogical specifications of ISLANDER and
OPERA is captured by means of an Ecore metamodel. This metamodel is described in details in
Tables 5 and 6.

4.3.2. Particularities

In both ISLANDER and OPERA, the dialogical specification consists in a network of scenes in
which all possible or desirable episodes of direct interaction within an organization are planned and
orchestrated. As mentioned earlier, this common structure takes place at the macro level. This means
that the joint activity characteristic of agent organization, under a broad point of view, is ruled by the
presented hypergraphs of scenes.

The main difference between ISLANDER and OPERA occurs at the micro level. In other words,
restricting the point of view to each particular scene, instead of the network of scenes, the models
analyzed have different ways to specify how agents can or should interact.

On the one hand, in ISLANDER, there is the notion of scene protocol. In a scene protocol,
one represents in detail a communication protocol in which are specified all the involved roles, and the
sequencing of all possible message exchanges (illocution schemes), in On the other hand, in OPERA,
there is the notion of interaction pattern. Unlike scene protocols, an interaction pattern does not
determine in detail the exchange of messages in a given scene. Instead, it delimits a partial order
between scene states (landmarks) towards achieving the objectives related to the scene. Any detailed
communication protocol used in a scene should respect the established interaction pattern.
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4.4. Normative Dimension

The normative modeling dimension is characterized by the general concept of norm (permissions,
obligations, etc.). Norms occur in organizational specifications as a mechanism that interrelates and
complements the functional, structural and dialogical specifications. Three organizational models we
have analyzed present concepts to create normative specifications. They are: MOISE+, ISLANDER
and OPERA (see Table 1).

4.4.1. The Concept of Norm

In the organizational models analyzed, unlike the other dimensions, the normative specifications
are not created as graph like structures. Instead, they assume the form of textual normative expressions.
This general pattern is expressed in Table 7.

Table 5. Dialogical specification pattern: Classes description.

Class Description

DSpec Represents the concept of dialogical specification, i.e., an organizational specification
restricted to the dialogical dimension.

SceneGraph Part of a dialogical specification that represents the definition of a hypergraph of scenes.
SceneGraph is characterized by one or more scene definitions (referenced by
SceneGraph::sceneDef), and several scene relationships (referenced by SceneGraph::sceneRel).
Among the scenes, there are one initial scene (referenced by SceneGraph::initial) and one
final scene (referenced by SceneGraph:: final). Abstracts the concepts of performance
structure in ISLANDER and interaction structure in OPERA.

SceneDef Part of a hypergraph of scenes that represents the definition of a scene. Each scene definition
is characterized by the declaration of a dialogue script, via reference SceneDef::dialogDef.
Abstracts the concepts of scene definition in ISLANDER and in OPERA.

SceneRel Part of a hypergraph scene that represents a directed relationship from one or more source
scenes (referenced by SceneRel::source), to one or more target scenes (referenced by
SceneRel::target). Abstracts the concepts of scene transitions in OPERA and in ISLANDER.

DialogDef Part of of a dialogical specification that represents the definition of a dialogue script. Abstracts
the concepts of scene protocol in ISLANDER, and interaction pattern in OPERA.
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Table 6. Dialogical specification pattern: Contextual constraints.

Class Auxiliary Definitions

SceneGraph OCL queries that return immediate predecessors and successors of a scene definition
in the context of a hypergraph of scenes.

context SceneGraph
def: getSourceSceneDef(sceneDef : SceneDef): Set(SceneDef)

= getSceneRelHavingTarget(sceneDef) -> collect(sr | sr.source);

def: getTargetSceneDef(sceneDef : SceneDef): Set(SceneDef)
= getSceneRelHavingSource(sceneDef) -> collect(sr | sr.target);

def: getSceneRelHavingTarget(sceneDef : SceneDef): Set(SceneRel)
= sceneRel) -> select(sr | sr.target -> includes(sceneDef));

def: getSceneRelHavingSource(sceneDef : SceneDef): Set(SceneRel)
= sceneRel) -> select(sr | sr.source -> includes(sceneDef));

Contextual Constraints

(1) The initial and final scenes are scenes defined in the context of the same SceneGraph.
In OCL:

context SceneGraph
inv: sceneDef-> includes(initial) and
inv: sceneDef-> includes(final)

(2) In a SceneGraph, there should be no relationships arriving at the initial scene or departing
from the final scene. In OCL:

inv: getSceneRelHavingTarget(initial)-> isEmpty() and
inv: getSceneRelHavingSource(final)-> isEmpty()

(3) In a SceneGraph, all scene definitions must directly or indirectly be reachable from the
initial scene as well as lead to the final scene, via the scene relationships. In OCL:

context SceneGraph
inv: sceneDef-> forAll(sd |

getTargetClosure(Set{initial} -> includes(sd) and
getSourceClosure(Set{final} -> includes(sd))

def: getTargetClosure(sceneSet : Set(SceneDef)): Set(SceneDef)
= let newSceneSet = sceneSet-> collect(scene |

getTargetSceneDef(scene) -> including(scene)
) in

if sceneSet -> includesAll(newSceneSet)
sceneSet

else
getTargetClosure(newSceneSet)
endif;

def: getSourceClosure( sceneSet : Set(SceneDef)): Set(SceneDef)
= let newSceneSet = sceneSet-> collect(scene |

getSourceSceneDef(scene) -> including(scene)
) in

if sceneSet -> includesAll(newSceneSet)
sceneSet

else
getSourceClosure(newSceneSet)
endif;

(4) Every scene relationship must only involve scenes defined within the context of the same
SceneGraph. In OCL:

context SceneGraph
inv: sceneRel-> forAll(sr |

sceneDef -> includesAll(sr.source) and
sceneDef -> includesAll(sr.target))
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4.4.2. Particularities

In ISLANDER, norms are written as logical expressions in accordance with the format:
(s1, γ1) ∧ ...∧ (sm, γm) ∧ e1 ∧ ...∧ en ∧ ¬((sm+1, γm+1) ∧ ...∧ (sm+n, γm+n))→ obl1 ∧ ...∧ oblp

where (s1, γ1), ..., (sm+n, γm+n) are pairs of scenes and illocution schemes, e1, ..., en are boolean expressions
over illocution scheme variables, ¬ is a defeasible negation, and obl1, ..., oblp are obligations. “The meaning
of these rules is that if the illocutions (s1, γ1), ..., (sm+n, γm+n) have been uttered, the expressions
e1, ..., en are satisfied and the illocutions (sm+1, γm+1), ..., (sm+n, γm+n) have not been uttered,
the obligations obl1, ..., oblp hold” ([48] p. 38).

In OPERA, norms are specified using logical expressions written in a formalism called
LCR (Logic for Contract Representation). There are three types of norms: Obligations, permissions
and prohibitions. The following excerpt from ([27] p. 149) summarizes the syntax for writing
these modalities.

<Norm>::= OBLIGED(<id>,<Norm-Form>)|PERMITTED(<id>,<Norm-Form>)|
FORBIDDEN(<id>,<Norm-Form>)

OBLIGED(<id >,<Norm-Form>) represents an obligation of the agent playing the role referenced
by <id> in achieving the state <Norm-Form> described as an LCR formula ([27] chapter 4). Based on
the notion of obligation, the concepts of permission and prohibition are defined. A permission
PERMITTED<id>,<Norm-Form>) is an abbreviation for ¬OBLIGED(<id>,¬<Norm-Form>). In turn,
a prohibition FORBIDDEN(<id>,<Norm-Form>) means the same as OBLIGED(<id>, ¬<Norm-Form>).

Table 7. Normative specification pattern: Class description.

Class Description

NSpec Represents the concept of normative specification, i.e., organizational specifications restricted to the
normative dimension.

NormDef Central part of a normative specification. Represents the definition of a norm. In general, norm
definitions are characterized by a normative expression (attribute NormDef::normExp) that refers to
elements found in the structural, functional and dialogical dimensions. The form and meaning of
the normative expression vary considerably in the organizational models analyzed. Abstracts the
concepts of deontic relation found in MOISE +, and the particular concepts of norm found in
ISLANDER and OPERA.

Finally, in MOISE+, the general concept of norm is translated into the notion of deontic relations
that link roles to missions. There are two types of deontic relations, permissions and obligations:

“A permission per(ρ, m, tc) states that an agent within the role ρ may be committed to
the mission m. Temporal constraints (tc) are established for the permission, that is, they
determine a set of time periods when the permission is valid ... An obligation obl(ρ, m, tc)
states that an agent within the role ρ is required to commit to the mission m in the time
periods determined by tc.” ([49] pp. 46–47)

In this case, the normative expressions per(ρ, m, tc) and obl(ρ, m, tc) are less comprehensive than
what is found in OPERA and ISLANDER.
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4.5. Abstract Organizational Metamodel

All the patterns identified in the organizational modeling dimensions, and previously discussed
in Sections 4.1–4.4, can be combined to form an abstract organizational metamodel. This abstract
metamodel, as shown in Figure 5, characterizes the common conceptual structure of the organizational
models analyzed.

OSpec

DSpecNSpec
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RoleDef RoleRel

* roleDef

* subGroup

1

target

1source

DialogDef

SceneDef
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* sceneRel
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and/or
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Complementary

Viewpoints

Figure 5. Abstract organizational metamodel.

By means of this abstract organization metamodel, we can see that the normative dimension
works as a glue among the three others. It interrelates and/or regulates the organization behavior (be it
functional or dialogical) and the organizational internal structure (in the sense of allowing or forcing
the association of certain functional and/or dialogical elements with certain structural elements). Last,
but not least, it makes it clear that structuring of organizational modeling dimensions greatly helps in
making the notions independent and self-contained, while linked via normative bonds.



Appl. Sci. 2019, 9, 2420 25 of 38

5. Integration Method Application

In this section we present an application of the integration method described in Section 3, guided
by conceptual patterns identified in Section 4. We show how to apply the method to integrate the AGR,
STEAM and MOISE+ models. Since a complete description of the integration process involve many
details, we will restrict the discussion to the structural dimension.

As shown in Figure 1, we need to perform two iterations of the method to integrate three models.
First we merge AGR and STEAM. Then, we merge MOISE+ to the result of the previous iteration.

5.1. First Iteration

The representation of AGR and STEAM as Ecore/OCL metamodels is shown in Figure 6. Below,
on the left side, we have the AGR metamodel; on the right side, the STEAM metamodel (both restricted
to the structural dimension). Above, mediating the alignment of the metamodels, we see the conceptual
pattern of Section 4.2.

AGR::OrganizationalStructure STEAM::OrganizationHierarchy

Role

id: String

max: Integer

min: Integer

Role

id: String

GroupStructure

RoleConstraint

Dependency Correspondence

1 source

1

target

1..*

role

role

1..*

roleDef

*

subGroup*
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art
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Articulation Graph G
art

->  STEAMm2 : G
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RoleRel

* subGroup

*

roleDef
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1

source

1
GroupDef RoleDef
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supRoleDef

1

SubTeam

context  SubTeam

inv ST1: supRoleDef =  self.oclAsKind(Role)

inv ST2: roleDef     = role->select (r | r.oclIsKindOf(IndividualRole)) 

inv ST3: subGroup = role->select (r | r.oclIsKindOf(SubTeam)) 

                                                                         

context Role

inv R1: oclIsKindOf(IndividualRole)  

             implies  min = 1 and max = 1

Figure 6. Alignment between AGR and STEAM.

In the alignment, the organizational structure of AGR and the organization hierarchy of STEAM are
identified as similar specifications. The concepts of group (AGR) and subteam (STEAM) are declared
similar concepts, both identified with the general concept of group definition. The same happens with
the concepts of role (AGR) and role (STEAM), both identified with the general concept of role definition.

Intuitively, when we take into account only the terms used, these basic correspondences between
AGR and STEAM are reasonable. However, when we look more closely to the specific relationships
among the concepts, it is possible to see that there is a stronger coupling between subteam and
role in STEAM than the one that exists between the correspondent concepts of group and role
in AGR. In STEAM, the notion of role is abstract, being materialized both in the specification of
activities for groups of agents as a whole and in the specification of activities for individual agents
(individual role). This notion is represented in the metamodel as an abstract class STEAM::Role with two
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concrete subtypes STEAM::SubTeam and STEAM::IndividualRole. As a consequence, every instance
of STEAM::SubTeam besides corresponding to a group definition is also a kind of role definition.

This coupling between the concepts of group and role definitions is absent in AGR and is not foreseen
in the structural pattern of Section 4.2. To easy the merging of these different views regarding the nature
of the concepts, one possibility is to interpret the generalization relation between STEAM::SubTeam
and STEAM::Role as a composition relationship, similar to the application of the “replace inheritance
with delegation” refactoring, as proposed in [50]. When this is done we posit a derived reference
from STEAM::SubTeam to STEAM::Role named supRoleDef. This derived reference when used in the
place of the original generalization decouples the concepts of group definition and role definition while
permitting to represent the same information in a slightly different way.

In Figure 6 there are two other derived references: roleDef and subGroup; both extracted from
the original reference role between STEAM::SubTeam and STEAM::Role. The rationale for these is to
make explicit that, in reality, not only role definitions but also group definitions can be associated with
a subteam via the reference role. Once these derived references become explicit, we can do a more fine
grained matching between the STEAM metamodel and the corresponding abstract concepts of group
and role definition.

Ending the comparison between the metamodels, we note that in AGR the group definitions cannot
be decomposed into sub groups and there is the concept of role relation materialized as role constraints
(dependencies and correspondences). In STEAM, there is no explicit role relations and no explicit role
cardinality. In the case of individual role there is an implicit cardinality of min=1 and max=1.

Finally, concluding the iteration, we merge the metamodels taking into account the correspondences
identified. The resultant integrated metamodel MMint

#1 is shown in Figure 7, where we retain the
terminology of the abstract structural pattern of Section 4.2. See online version for colors. The elements
added to the structural pattern from the specific metamodels are depicted in blue. The elements
marked in red in the STEAM metamodel (Figure 6) are not included in the integrated metamodel,
being replaced by derived references aforementioned. Essentially, MMint

#1 is an almagamated sum of the
AGR and STEAM metamodels (viewed as graphs) modulo the alignment (articulation) between AGR
and STEAM, as describe in Section 3.4. For simplicity, the morphisms from MMint

#1 to the AGR and
STEAM metamodels are omitted.

5.2. Second Iteration

In the second iteration, we integrate the MOISE+ metamodel (structural dimension) to the
resulting metamodel MMint

#1 obtained in the previous iteration. The MOISE+ metamodel is shown
on the left side of Figure 8. On the right side, we have MMint

#1 (from Figure 7) augmented with
derived classes and relationships. On the middle, there is the articulation graph between MOISE+ and
MMint

#1 metamodels. Since the articulation graph preserves the class and reference names from MMint
#1 ,

for simplicity we have omitted the morphism m2 : Gart → MMint
#1 .

In MMint
#1 there are three classes GroupDef, RoleDef and RoleRel which represent the main

concepts for the structural specification of agent organizations. In MOISE+, the correspondent classes
are GroupSpecification, Role and RoleRelation, respectively. Similar to class MMint

#1 ::GroupDef,
class MOISE+::GroupSpecification represents the definition of a group in which it is possible to
specify roles and subgroups. Like MMint

#1 ::RoleDef, the class MOISE+::Role denotes a role definition
associated with group definitions. Both MMint

#1 ::RoleRel and MOISE+::RoleRelation characterize role
relationships from a target to a source role definition.

Apart from this basic agreement, there are some particularities regarding how these concepts
occur in MOISE+ that leads to an extension of MMint

#1 . One first particularity is the way in which
group definitions are linked to role definitions and subgroups. In the integration of AGR and STEAM,
group definitions are linked to role definitions and to subgroups by means of the roleDef and subGroup
references, respectively. In the MOISE+ metamodel the correspondent links are not represented by
references but by the classes GroupRole and SubGroup, respectively.



Appl. Sci. 2019, 9, 2420 27 of 38

id: String

GroupDef RoleDef

kind: RoleRelKind

RoleRel

* subGroup

*

roleDef

supRoleDef

0..1

1 target 1 source

id: String

max: Integer

min: Integer

context  GroupDef

inv GD1: supRoleDef-> notEmpty()

                implies id =    supRoleDef.id

MM    ::SSpec
int

#1

Dependency Correspondence

Figure 7. Integrated metamodel MMint
#1 .

By means of MOISE+::GroupRole and MOISE+::SubGroup, the same role definition or subgroup
can have different cardinalities, one for each group definition in which the definition is referenced.
The cardinalities are represented by the attributes max (for the maximum number of agents per role,
or subgroups in a group) and min (for the minimum number).

In MMint
#1 this flexibility is not possible as long as the cardinalities are declared directly as

attributes of the role definition, and not as attributes of the relation between a group definition and role
or subgroup definition. In this way, we note that the information about role and group cardinalities
of MOISE+ can not always be expressed in the current integration of ARG and STEAM. However,
the converse is always possible, as it can be shown by means of the derived classes MMint

#1 ::RoleRef
and MMint

#1 ::GroupRef in the upper right of Figure 8.
The derived class MMint

#1 ::RoleRef is the implict correspondent of MOISE+::GroupRole. Similar
to class MOISE+::GroupRole, class MMint

#1 ::RoleRef has attributes max and min and makes reference
a single role definition. In the context of MMint

#1 ::GroupDef the derivation of MMint
#1 ::RoleRef is

specified by the invariant GD2 shown in the bottom right of Figure 8. This invariant establishes
that for each instance rd of MMint

#1 ::RoleDef (referenced by roleDef), there must exist (be created)
an instance rr of MMint

#1 ::RoleRef that points to rd and has the attributes rr.min = rd.min and
rr.max = rd.max.

By its turn, the class MMint
#1 ::GroupRef is the derived correspondent of MOISE+::SubGroup.

In the context of MMint
#1 ::GroupDef the derivation of MMint

#1 ::GroupRef is specified by the invariant
GD3 shown in the bottom right of Figure 8. The invariant establishes that for each instance sg
of MMint

#1 ::GroupDef (referenced by subGroup), there must exist (be created) an instance gr of
MMint

#1 ::GroupRef pointing at sg and having the attributes gr.min = sg.supRoleDef.min and
gr.max = sg.supRoleDef.max.

As long as they are more expressive, the classes RoleRef and GroupRef are used in the articulation
graph replacing the references roleDef and subGroup present in MMint

#1 . Therefore the replaced
references are marked to be left out during the merge step at the end of the iteration. In addition,
the attributes max and min in the class MMint

#1 ::RoleDef are marked once the same information is now
represented as attributes of RoleRef and GroupRef in the articulation graph.
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A second peculiarity of MOISE+ concerns the possibility of defining links and compatibilities
between roles as part of a group specification. In this regard, there are two observation to be made. Firstly,
links and compatibilities are new kinds of role relation, not present in MMint

#1 . In fact, we observe that
the link and compatibility concepts, in essence, differ from the dependency and correspondence concepts
found in AGR. On the one hand, in MOISE+, a link enable the acquaintance, communication, or authority
between roles; and a compatibility indicates that an agent playing a role can also play another role.
On the other hand, in AGR, a dependency indicates that an agent only can play a role if it previously
commits itself to another one; and a correspondence means that to play a role automatically implies to
play another role.

The second observation is about the nature of the group definition concept behind the notions of
links and compatibilities. By default, a group definition in MOISE+ does not enable the compatibility or
any link between roles. In other words, if not stated explicitly, an agent playing a role do not have
permission to play another role, or even to interact with agents playing another role, neither in the
same nor in other groups. If compatibilities and links are needed, this must be explicitly specified in the
group definition.

Conversely, in AGR and STEAM a group definition does not implies a priori any restriction regarding
compatibility and link among the roles. With the exception of explicit dependencies relationships and
cardinality restrictions, in AGR and STEAM specifications the agents are free to play the roles they
want and are not blocked with respect to interacting with any agent playing some other role.

In the articulation presented in Figure 8, these observations are made explicit by means of
the derived attributes allowsComm, allowsAcqu and allowsComp in the context group definitions.
For MOISE+::GroupSpecification, these attributes have the value false. This represents respectively
the communication, acquaintance and compatibility restrictions existing in MOISE+. On the other side,
for MMint

#1 ::GroupDef the three attributes assume the value true indicating the absence of the
respective restrictions in AGR and STEAM.

Despite their opposite nature, we note that AGR and STEAM group definitions can be expressed
in MOISE+. To this end, one has to explicitly define communication, acquaintance, and compatibilities
relationships between all roles in a group definition. However, the converse is not always possible
without losing information.

Ending the comparison, in MOISE+ there is a third form of role relationship: the inheritance.
In MOISE+ metamodel this relationship is represented by the reference superRole involving instances
of the class MOISE+::Role. In the articulation between MOISE+ and MMint

#1 , an alternative form of
representing inheritance could be as a subclass of RoleRel. As the inheritance relation does not
have a direct effect on the behavior of the agents as the other role relations, being only a way of
simplifying role definitions in MOISE+, we have opted to preserve the representation of this relation
as the reference superRole rather than defining a new subclass for RoleRel.

Finally, concluding the iteration, we merge the metamodels taking into account the identified
correspondences. The result is show in Figure 9.
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6. Organizational Interoperability Approach

Adopting an organization-centered perspective [4], the engineering of MAS can be described
as a process that starts with the creation of an organizational specification written in conformance to
an organizational model. This specification is a prescription of the desired patterns of joint activity that
should occur inside the MAS towards some desired purpose. Once the organizational specification
is done, it is used as the input to an organizational infrastructure. In general, what we mean by
organizational infrastructure is some kind of middleware supposed to interpret the specification
and reify the organization of the MAS outside the agents. In this respect, it should maintain
an internal organizational state and offer to the agents an interface for accessing and modifying this
state. The information maintained in the organizational state contains a list of the members of the
organization, what roles they are playing, what groups are active in the organization, among others.
Finally, with the organizational infrastructure materializing the desired agent organization, it is time
to develop application domain agents (not necessarily by the same designer of the organization
specification) that can enter and interact inside it by accessing the available organizational interface.

Regarding organizational infrastructures there are several approaches for the engineering of (open)
agent organizations [12,13,36,47,51–54]. On the one hand, the availability of a wide range of diverse
models and infrastructures has made the development of agent organizations feasible. On the other
hand, such a diversity introduced an important new interoperability challenge for agent designers:
How to deal with heterogeneous organizational models and infrastructures? Whenever an agent is
build to enter some MAS it has to be able to interact with the other participants using a particular agent
communication language as well as to understand received messages against a given domain ontology.
Besides this, if the MAS was designed as an agent organization, the entering agent has also to be able to
access a particular organizational infrastructure and to interpret its underlying organizational model.
In this way, the agent design can become tailored to a particular organizational approach.

For instance, suppose that several e-business applications designed as open agent organizations
are available on the Internet. In addition, assume that these applications are heterogeneous regarding
the organizational technology applied to build them. To put it in more concrete terms, let us suppose
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two agents organizations: One built upon the S-MOISE+ [53] organizational middleware, based on the
MOISE+ model, and the other by using MADKIT [54] platform, based on ARG model. In this setup
(and assuming a shared common agent communication language and domain ontology), the agent
designers face the following problem: The native S-MOISE+ agents do not interoperate with the
MADKIT platform, and vice-versa. Thus, it is not directly possible, for instance, to write an agent code
that enter both e-business agent organizations in the search of products and/or services on behalf of
its users. Such fact limits the range of applicability of S-MOISE+ and MADKIT agents which, in turn,
limits the idea of open MAS.

As mentioned in the Introduction, four basic approaches can be envisioned for this organizational
interoperability problem. One of them is to bridge the interface between the external agents and the
agent organization by means of model mapping (Adaptation). By using such mappings it is possible
to provide adapted copies of the specification and state of a given organizational model/infrastructure
“understood” by the external agents.

In what follows we describe MAORI—a Model-based Architecture for ORganizational Interoperability [19].
MAORI is an experimental framework for providing organizational interoperability following the line of
adaptation. Its main objective is to show how the integration of organizational models presented in this
paper can possibly be used in a solution for the problem of organizational interoperability.

6.1. MAORI Overview

MAORI is structured along three layers, as it may be seen in Figure 10:

• In the bottom, there is the Model Integration (M2M) layer—the purpose of this layer is to
provide an integrated view and transformations between the organizational models represented
as metamodels;

• in the middle, there is the Organizational Interoperability (ORI) layer—this layer is formed by components
that use the M2M layer to translate and adapt the specification and state of agent organizations from
one source organizational infrastructure to one or more target organizational infrastructures;

• in the top, there is the Organizational Infrastructure (MAS) layer—this layer corresponds to the
available infrastructures for implementing organization-centered MAS.

6.2. Model Integration Layer

M2M layer is composed of metamodels and transformations. For each organizational model OMi,
there is a corresponding metamodel MMi. The metamodel MMint is the conceptual integration of all
MMi, as described in Section 5.

The transformations are functions that implement the morphisms between the integrated
metamodel MMint and the particular metamodels MMi (Section 3.4). There are two types of
transformations. One type is transf( f rom : MMi) : MMint, which converts from MMi to MMint.
The other type is transf( f rom : MMint) : MMi, which converts from MMint to MMi. In this way,
M2M main functionality is to provide transformations that can be combined to translate specifications
and states between organizational models/infrastructures.

6.3. Organizational Interoperability Layer

ORI layer works as an extension of organizational infrastructures. In order to enable heterogeneous
agents in the same organization, ORI adds two basic components to the organizational infrastructures:
providers and adapters.

Providers are responsible for exporting the organizational specification/state of agent
organizations. In this case, to export means to use transf( f rom : MMi) : MMint to convert the
specification/state from from a source MMi to the integrated metamodel MMint. Adapters are
responsible for importing the organizational specification/state that was exported by a provider.
The import is done by using transf( f rom : MMint) : MMi.
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Imagine a scenario where an agent functions on a given organizational infrastructure and consider
an agent organization implemented on a different organizational infrastructure. If the agent wants to
participate in the organization, an adapter has to be instantiated in the organizational infrastructure
of the entering agent. Initially, the responsibility of the adapter is to locate the appropriate provider,
establish a connection with it, ask for the organizational specification/state and finally translate this
specification/state to the target organizational infrastructure of the entering agent. In this way, for each
heterogeneous agent organization there will be an organizational provider. Connected to this provider,
there will be several organizational adapters, one for each organizational infrastructure in which there
could be external heterogeneous agents.
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Figure 10. MAORI framework (redesigned from [19]).

6.4. MAORI Implementation

MAORI was implemented in the Java programming language. The metamodels in M2M layer
were coded using the Eclipse Modeling Framework (EMF) [55]. Regarding the transformations,
there were first prototyped in the Atlas Transformation Language (ATL) [56] and then ported to Java
for performance reasons. An implementation was developed as a proof of concept of the ORI layer
considering the MADKIT and S-MOISE+ organizational infrastructures.

To evaluate MAORI, some agent organizations were developed. One is the example of a group
of agents that wants to write a paper and use for this purpose an explicit organization to help
them to collaborate. The organization consists in a group composed of: One agent in the role of
coordinator (who controls the process and writes the introduction and conclusion of the paper), one to
five agents in the role of collaborator (who writes the paper sections) and one agent in the role of
librarian (who compiles the bibliography). Taking this simple example, some experiments were
performed. One of them considered an organization composed of five agents—one coordinator (Eric),
three collaborators (Greg, Joel and Mark) and one librarian (Carol). Initially the organization was
started in the MADKIT platform. In addition, in MADKIT, the agents Eric and Carol were started and,
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after that, in the S-MOISE+ platform an organizational adapter was started to import the organization
state. The three remaining agents (Greg, Joel and Carol) are started in S-MOISE+. They perceived
and enter the organization by requesting the role of collaborator. At this point, the interaction begins:
The agents in S-MOISE+ are now members of an organization running in MADKIT. More details about
MAORI may be found in [19].

7. Related Work

The proposition of abstract structures, such as patterns, and integrated metamodel to enable
interoperability among organization-centered multiagent systems is somehow new. Therefore, related
work must be considered in several areas from business to services, including multiagent systems.
In the following we contextualize our work within this broad scenario.

In the multiagent systems area, Pechoucek and Marik [57] adopted a model-driven approach
to propose a general metamodel for developing multiagent systems. The metamodel is defined
as a Platform Independent Model (PIM) considering the MDA abstraction levels definition [18].
In order to identify a unified metamodel to support the development of agent-based systems,
they considered seven views: Multiagent view; Agent view; Behavioural view; Organization view;
Role view; Interaction view and Environment view. They adopted the top down approach to develop
the metamodels that represent each of the views aforementioned after analysing some existing
agent-oriented modeling languages, methodologies and programming languages. Moreover, it was
conceived to be used independently of the agent-oriented methodology, modeling and programming
languages. Nevertheless, their main purpose was to support the development of MAS using
a model-driven approach than providing means for interoperability among MAS. Our work presents
some similarities with theirs since the proposed integrated metamodel could be used independently of
the Organization Model adopted to design and implement an organization-centered MAS. In addition,
the abstract structures where defined based on organization-centered multiagent systems dimensions,
in a similar approach of theirs when stating their metamodel concerning some views. Nevertheless,
although using a model driven approach, we adopted it to define the way integration occurs using the
bottom-up approach to define the integrated metamodel, based on existing Agent Organization Models
and their underlying metamodels. By doing that we foster interoperability to organization-centered
MAS during design time, by providing means of transforming the design of a MAS with an underlying
organization model into another one, or during execution time, as presented in Section 6.

Muramatsu and colleagues [58] provided organizational interoperability by using organizational
artifacts within the environment where the MAS is situated. They adopted a normative language
to describe the organizational structure in artifacts. In this sense, their work is similar to ours
while adopting a common language (in our case a common metamodel) to describe several
organizational models.

Isern and colleagues [59] classified organizational structures according to organizational
paradigms, such as (i) hierarchy, (ii) holarchy, (iii) coalition, (iv) team, (v) congregation, (vi) society,
(vii) federation and (viii) market, to support the design of MAS using existing agent-oriented
methodologies and organizational models. The main purpose of their work is to provide information
for MAS developers that would like to adopt an organization approach to develop MAS and did not
know what Organization Model or agent-oriented methodology to choose. Their work is related to
ours in the sense they adopted metamodels’ characteristics of existing organizational models and
existing agent-oriented methodologies to classify such organizational structures as patterns.

Karaenke et al. [60] proposed an inter-organizational interoperability architecture based on
multiagent systems, web services and semantic web technologies. In their work, the MAS did not
present an underlying organizational model and agents adopt the “head body” paradigm to include
web services technologies to provide interoperability among enterprise information systems. Therefore,
interoperability is focused on system-to-system communication using web services technologies,
which limits the kind of systems that may participate in such communication. Our proposition is
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broader in the sense that it provides a solution for interoperability among open organization-centered
MAS independently of their underlying organizational Model.

A template description for agent-oriented patterns was given by Oluyomi and colleagues [61].
Based on a classification scheme, they organized agent technology concepts into categories and then
identified agent-oriented pattern description templates for each category. Eight agent-oriented pattern
templates were described to support the modeling of multiagent systems. Examples of the conformity
between the proposed templates and their adoption during the design phase of existing agent-oriented
methodologies were provided. Comparing with our proposition, their work adopts a similar approach
when considering categories (in our case we adopted dimensions) to guide the patterns definition.
In addition, their work is situated in the model level instead of the metamodel level as ours, since
their objective is to improve communication among AOSE developers. Nevertheless, the adoption of
an integrated metamodel obtained via model driven transformations combined with organizational
dimensions give to our patterns high level of formality whenever compared with theirs.

Chella et al. [62] defined agent-oriented patterns to develop multiagent system to support robot
programming. The proposed patterns were created based on an existing layered architecture for
programming robots [63]. Patterns are described considering three aspects: The problem description;
the definition of the solution in terms of MAS models and the description of the solution in terms
of implementation. They just define some patterns for an specific domain based on the templates
proposed by [61]. The only relation between their work and our is that pattern definition is based on
some criteria that can be classified as dimension or category.

Organizational interoperability and integration issues are not new concerns for the administrative
practice and research, specially after the wide acceptance and use of Information and Commmunication
Technologies in their business models [64]. Several frameworks to provide organization interoperability
were defined and even in this domain some dimensions were considered to define such frameworks.

8. Conclusions and Future Work

The research reported in this work has consisted in the use Model Driven Engineering techniques
to address the organizational interoperability problem: How can we provide means for a set of agents,
immersed in a common environment, to evolve, reason, decide and interact with each other based
on organizational concepts, since their organizational models may differ? In order to achieve this
goal, we have proposed an abstract and integrated view of the main concepts that have been used
to specify agent organizations, based on the analysis of several organizational models present in the
literature. In this model, we captured the recurring modeling concepts, that were coherently combined
into an abstract conceptual structure. We have then presented an adaptation-based solution for the
organizational interoperability problem, when we have defined the mappings between different
organizational models, by using this abstract conceptual structure. We have built our abstract
conceptual structure based on six organizational models (STEAM, MOISE+, AGR, OPERA, TEAMS,
ISLANDER), presented in Section 2. For brevity, in Section 5 we illustrated the application of our
integration method using three of these models (MOISE+, AGR, STEAM), and concerning exclusively
the structural dimension.

A first extension of this work would be to build an integrated metamodel that could cope with
OPERA and TEAMS. Moreover, we could evaluate how the other organizational models mentioned
in Section 2.2.7 would affect our abstract conceptual structure. Concerning the MAORI framework,
described in Section 6, we have tested its use by interoperating two organizational infrastructures,
S-MOISE+ and MADKIT. A second extension of this work would be to test the franework with other
organizational infrastructures, like AMELI [13] and ORA4MAS [52]. Finally, we would like to test
our model driven approach to solve other MAS interoperability problems, like the ones mentioned
in Section 1.
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