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Abstract

:

In the research and development of multiagent systems (MAS), one of the central issues is how to conciliate the autonomy of the agents with a desirable and stable behavior of the MAS as a whole. Agent organizations have been proposed as a suitable metaphor for engineering social order in MAS. However, this emphasis has led to several proposals of organizational models for MAS design, thus creating an organizational interoperability problem: How to ensure that agents, possibly designed to work with different organizational models, could interact and collectively solve problems? In this paper, we have adopted techniques from Model Driven Engineering to handle this problem. In particular, we propose an abstract and integrated view of the main concepts that have been used to specify agent organizations, based on several organizational models present in the literature. We apply this integrated view to design MAORI, a model-based architecture for organizational interoperability. We present a MAORI application example that has shown that our approach is computationally feasible, enabling agents endowed with heterogeneous organizational models to cooperatively solve a problem.
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1. Introduction


In the research and development of multiagent systems (MAS), one of the central issues is how to conciliate the autonomy of the agents with a desirable and stable behavior of the MAS as a whole. Borrowing ideas from the Social Sciences, some authors have named this issue the problem of social order: “How to obtain from local design and programming, and from local actions, interests, and views, some desirable and relatively predictable/stable emergent result” [1]. A closely related issue is the problem of social consensus often characterized as how to reach agreement with regard to some aspect or quantity of interest in a network of agents by combining the local preferences or states of individual agents [2,3]. Both social order and social consensus are fundamental problems in the design of MAS. While social order stresses the idea that agent behaviors must be coherent with the MAS global purpose, social consensus highlights the need of agreement among agents working together for a global purpose.



Faced with these problems, especially in the context of open MAS (i.e., systems formed by a dynamical population of agents provided by different developers), several researchers have argued in favour of using the human organizations as a proper metaphor for engineering MAS [4,5,6,7]. Human organizations, whose typical examples are firms, clubs, corporations, etc., are collectivities pursuing specific goals and exhibiting formalized social structures [8]. Goals are specific to the extent that they are explicitly and clearly defined. Social structures are formalized in such a way that patterns of structuring and behaving (such as roles, role relations, procedures, protocols, norms, etc.) are precisely specified regardless of personal traits and relations of any individual part of the organization. Thus, by conceiving a MAS as an organization—or more generally as a bigger system formed by several organizations, hereafter called agent organizations—the basic idea is to promote social order and consensus in a top-down fashion. The idea is to have the agents’ actions and interactions governed by formalized “social structures”, defined above the agents level, in order to enable the MAS (seen as a collective entity) to achieve definite global goals.



This emphasis on organizations as a suitable metaphor for engineering social order has led to several proposals of organizational models for MAS design [4]. From the perspective of software development, most of these organizational models can be characterized as domain specific modeling languages [9]. That is, they provide a specialized conceptual structure (metamodel) embodied in some concrete syntax (notation) by means of which the designer can write formal representations of the social structure of agent organizations. Such representations, called organizational specifications, are then used as specification artifacts driving the development of agents and MAS.



On the one hand, the existence of many organizational models favours the organizational design of MAS since, with various proposals, experience and best practices are accumulated. On the other hand, a great variety of organizational models introduces heterogeneity in the development of MAS. As a direct consequence of this heterogeneity, mainly in the case of open MAS, a new and important interoperability issue arises: If to enter and fully work in an organization the agents should be designed to “understand” and comply with an organizational specification of a given kind (i.e., conforming to some organizational model), then, in addition to the communication language and the domain ontology, the organizational model is something that the agents are supposed to share in order to properly work together. In other words, how can we provide means for a set of agents, immersed in a common environment, to evolve, reason, decide and interact with each other based on organizational concepts, since their organizational models may differ? In this paper, we call this issue the organizational interoperability problem.



We can think about four basic approaches to solve the organizational interoperability problem: Standardization, universal agents, delegation and adaptation. Standardization consists in providing interoperability by eliminating the root of the problem, the diversity, by means of a standard model that has to be accepted and used by all developers [10]. The universal agents approach implies the creation of agents which are able to deal with several different organizational models [11]. Delegation means creating specialized services in middleware layers (like proxies [12] and governors [13]) to whom agents may delegate reasoning and decision mechanisms related to organizational issues. Adaptation, by its turn, is a solution based on the possibility of defining mappings between models [14]. From these mappings, an adapter is created, a component that converts specifications from a model to another model [15,16].



Each of these approaches have their pros and cons. Standardization fully eliminates the problem but it is politically and economically difficult to achieve and lets aside legacy systems. Universal agents must be updated every time a new model is created or changed. Delegation practically vanishes the agents organizational autonomy. Adaptation deals with legacy systems but it is technically difficult to achieve, if not impossible, when there are no meaningful mappings between the models.



Motivated by the organizational interoperability problem and the basic approaches to it, all of which presuppose an integrated knowledge of the organizational models used to engineer agent organizations, the objective of this paper is to analyze the conceptual structures of several organizational models present in the literature and, based on this analysis, to propose an abstract and integrated view of the main concepts that have been used to specify agent organizations. We believe that the abstract view of organizational models we put forward can be used both as basis for defining essential mappings and for future standardization efforts of organizational models.



This work is based on a previous work [17] in which we did a review of several prominent organizational models to answer the questions: How are the conceptual structures of the models related? Are there basic similarities? What are they? The answers we have given to these questions, in terms of modeling dimensions, are summarized in Section 2. The idea of modeling dimensions describes the organizational models basic similarities in broad terms. It characterizes the macrostructure of organizational models.



In this paper we deepen our analysis by further exploring the conceptual structure within each modeling dimension. In this sense, we seek to characterize the common concepts and their relations found in existing organizational models along the modeling dimensions. The specific questions we propose to answer in this paper are: Inside each modeling dimension, what are the recurring modeling concepts? Is it possible to combine these recurring concepts into a coherent whole? How this can be used in a solution to the organizational interoperability problem? In approaching these questions, we have used techniques from Model Driven Engineering (MDE) [18]. Specifically, we think of organizational models as domain specific modeling languages whose conceptual structures are represented by means of metamodels. Thus, to address the questions systematically, we propose an iterative integration method, described in Section 3, aiming at building an integrated metamodel out of particular metamodels.



A central step in the integration method is the identification of correspondences between the conceptual structure of organizational models represented by metamodels. To assist this identification, in Section 4, we analyze the recurring concepts of existing organizational models along the modeling dimensions. The result is an abstract conceptual structure formed by the union of conceptual patterns found by comparing the organizational models. Relying on this abstract conceptual structure and using the proposed integration method, in Section 5 we show how to effectively integrate (part of) three existing organizational models. To put into perspective the integration of organizational models, we then discuss in Section 6 a solution based on adaptation for the organizational interoperability problem. In this solution, named MAORI (Model-based Architecture for ORganizational Interoperability) [19], the mappings between organizational models are defined indirectly by using the integration we have proposed.



In Section 7, we compare our proposal to related work in the literature. To the best of our knowledge, the systematic integrated analysis of organizational models we propose is novel, constituting the main contribution of the paper. Its importance, as already hinted, lies on serving as a common ground for aligning organizational models and as a starting point towards standardization. The MDE approach we apply is also a contribution and advancement in the state of the art. Looking at the literature, we found that few organizational models are defined in terms of explicit metamodels. Then, our representation of existing organizational models and their integration by means of formal metamodels helps in further the understanding of their features and limitations. Finally, in Section 8, we present our conclusions and future work.




2. Organizational Models for MAS


This section presents organizational models for multiagent systems by classifying their content in modeling dimensions that were adopted to define a method for the integration of organizational models. As a result of using the method, we build an abstract conceptual structure to deal with the organizational interoperability problem within MAS.



2.1. Modeling Dimensions


After a detailed analysis of a significant part of the existing organizational models, we have noted a lot of similarities and complementary issues regarding their conceptual structures. The common points identified were classified into some recurring themes we have called modeling dimensions for agent organizations [17]. In what follows, we discuss the modeling dimensions identified. Then we move to a short overview of the various organizational models analyzed. Ending the section, we show a comparative table summarizing the models analyzed along the modeling dimensions identified.



2.1.1. Fundamental Aspects of Systems


In general, designed systems exhibit some fundamental aspects that, from an engineering standpoint, are natural candidates for modeling. Firstly, there is the functional behavior of the system—the input (stimulus) to output (response) relations that couple the system to external elements composing the environment in which the system is situated. In modeling this aspect, the system is commonly depicted as a black box whose internal constitution, at first, does not matter. What really matters is that the environment imposes functional requirements, such as operations or tasks, that the system as a whole is supposed to perform. Further, these functional requirements may be subdivided in a recursive way until reaching atomic operations or tasks arranged in a given ordering (dependency graph). Later, when the innards are determined, the actual execution of the atomic operations or tasks can be associated with specific components of the system and their interactions. Modeling the functional behavior is a common practice both in developing computer systems and in representing organizational processes. Modeling techniques such as DFD (Data Flow Diagram) [20], and the activity diagrams of UML (Unified Modeling Language) [21] are typical examples of that.



Another fundamental aspect is the internal structure of the system. In contrast, to model the internal structure of a system means to represent it as a transparent box. It means to represent the break down of the system in its constituent parts (components and subsystems) and the relations interconnecting these parts. Like functional modeling, modeling the internal structure of a system is a recurring theme in system design. In software development, for example, the  class diagrams and the component diagrams of UML serve to this purpose. In the case of human organizations, a traditional form of structural modeling is the creation of organograms describing the divisions, roles and hierarchical relationships existing inside an organization.



A third candidate for modeling is the structural behavior of the system. Roughly, it consists of the “movement” of the internal structure of a system towards the realization of some desired functional behavior. Thus, when modeling the structural behavior, we also see the system as a transparent box. What we try to represent is the ordering of interactions occurring over time among the constituent parts of a system. These interactions make the system work, i.e., perform some expected task or operation in its environment. Examples of this type of modeling are the sequence and collaboration diagrams of UML.




2.1.2. Primary Modeling Dimensions


From the premise that designed systems in general, not only agent organizations, exhibit these three fundamental aspects as natural modeling concerns, we have used them as a first classification scheme for separating the modeling concepts of organizational models into cohesive categories. Consequently, we define:




	
The functional dimension, in which we place the modeling concepts used to represent the functional behavior of agent organizations;



	
the structural dimension, composed by modeling concepts used to represent the internal structure of agent organizations; and



	
the interactive or dialogical dimension, grouping the modeling concepts relative to the representation of the structural behavior of agent organizations.









2.1.3. Social Systems and the Normative Dimension


While the functional, structural and interactive dimensions can be justified by analysing the modeling of systems in general, they are not sufficient to classify all modeling concepts appearing in organizational models.



According to [22], three basic types of systems and corresponding models can be identified: Deterministic, i.e., systems and models in which neither the parts nor the whole are purposeful; animated, i.e., systems and models in which the whole is purposeful but the parts are not; and social, i.e., systems and models in which both the whole and the parts are purposeful. A fourth type is also considered, ecological, i.e.,  systems and models in which the parts are purposeful but the whole is not. Given this classification, we can say that traditional software systems are deterministic, autonomous agents are animated, and agent organizations are social. Bigger and more encompassing MAS aggregating agents and agent organizations form ecological systems.



Being deterministic, traditional software systems tend to have an architecture in which the functional behavior, the internal structure and the structural behavior are foreseen in detail. Their components are not conceived as purposeful entities with autonomous behaviors. On the contrary, they are designed to obey rigidly what is fixed in the architectural specification of the system.



Regarding agent organizations characterized as social systems, the idea of agents obeying rigidly the prescriptions of functional, structural and interactive specifications is not realistic. Agents are conceived as self interested components, especially in open MAS. Therefore, neither the functional, structural and interactive specifications can be very detailed to the point of precisely determining the minutiae of the joint structuring and behaving of the agents, nor one can assume benevolence from the agents with respect to the organizational goals.



In this context our analysis is that the specification of norms (permissions, prohibitions, obligations, etc.), as occurs in human organizations design, are also expected to show up in organizational models. They will work as a complementary mechanism helping to couple more flexibly the agents to the organization. On the one hand, norms provide explicit means to capture interdependencies among the functional, structural and interactive aspects (e.g., agent playing a given role in the internal structure is obliged to behave functionally or structurally in a given way). On the other hand, norms can be used to explicitly regulate sanctions or penalties to deviant behavior.



Accordingly we define a fourth and last category for the analysis of organizational modeling concepts:




	
The normative dimension, characterized by modeling concepts to further restrict, regulate and interrelate elements from the other modeling dimensions, given the expected autonomous behavior of the agents.










2.2. Models Review


Now we pass to a quick description of concrete organizational models taking into account how they cover the four dimensions of modeling identified. We describe six models—TAEMS [23], AGR [5], STEAM [24], MOISE+ [25], ISLANDER [26] and OPERA [27]. We think of these as good exemplars showing how models have evolved towards a full coverage of the organizational modeling dimensions. Other models are mentioned at the end of the review.



2.2.1. TAEMS


In TAEMS (Task Analysis, Environment Modeling, and Simulation) the basic modeling concept is the notion of task. In essence, by using TAEMS we can specify tasks structures composed by the definition of tasks, resources, tasks relationships, and task groups. A task group is an independent collection of interrelated tasks. There are two kinds of task relationships: Subtask and non-local effects relationships. The subtask relationship links a parent task to child task explicitly defining a task decomposition tree. Individual tasks that do not have child tasks are called methods. Methods are primitive tasks that agents should be able to perform. Non-local effects are task relationships that have positive or negative effects in the quality, costs or duration of the related tasks. Examples of possible non-local effects are: Facilitates, enables, hinders, limits, etc.



TAEMS is a model specialized exclusively in the specification of the functional behavior of agent organizations. A TEAMS specification, the task structure, only represents what should be done by the agents alone (method definitions) or in groups (task groups). It tells nothing about the internal structuring or explicit interactions to realize the specified tasks.




2.2.2. ARG


AGR (Agent, Group, Role) is the evolution of the AALAADIN model [28]. In AGR agent, group and role are the primitive modeling concepts. An agent is an active, communicating entity playing one or more roles within one or more groups. No constraints are placed upon the architecture of an agent or about its mental capabilities. A group is a set of agents sharing some common characteristics. A group is the context for a pattern of activities and is used for partitioning organizations. An agent can participate at the same time in one or more groups. Agents may communicate if and only if they belong to the same group. A role is the abstract representation of a functional position of an agent in a group. Roles are local to groups, and a role must be requested by an agent.



AGR is a model providing a minimalist structural view of organizations. There is no concepts for modeling functional behavior. The specification of an organization, called organizational structure, is in essence the depiction of the internal structure of the organization in terms of roles, roles constraints and group structures. AGR also says that agents can have their joint behavior orchestrated by interaction protocols, but the nature and the primitives to describe such protocols are left open.




2.2.3. STEAM


STEAM (a Shell for TEAMwork) is a model whose focus is teamwork. In STEAM an agent organization is conceived as an agent team. Two separate hierarchies are used to specify the internal structure and functional behavior of a team: A subteam and roles hierarchy (or organization hierarchy), and a hierarchy of joint activities (or operator hierarchy). The subteam and roles hierarchy is a tree in which the root represents a team, the internal nodes the possible subteams and the leaves the individual agent roles. The joint activity hierarchy is also a tree whose nodes are called operators. Leaf operators represent atomic activities. Internal operators represent a reactive plan, i.e., the decomposition of an activity into interrelated subactivities. For each individual role or subteam, it is assigned one or more operators from the activity hierarchy.



With STEAM we see a first model that combines the structural (subteams and role hierarchy) and functional modeling dimensions (operator hierarchy).




2.2.4. MOISE+


MOISE+ (Model of Organization for multI-agent SystEms) is a model that explicitly divides the specification of an agent organization in three parts: The structural, the functional and the deontic specifications. The structural specification defines the internal structuring of agents through the notions of roles, roles relations and group specifications. A role defines a set of constraints the agent has to accept to enter in a group. Role relations are links (communication, acquaintance and authority) and compatibilities from a source role to a target role. A group specification consists in role definitions, subgroup definitions (group decomposition), links and compatibilities definitions, role cardinalities and subgroup cardinalities. The functional specification describes how an agent organization usually achieves its global goals, i.e., how these goals are decomposed (by plans) and distributed to the agents (by missions). Global goals, plans and missions are specified by means of a social scheme. A social scheme can be seen as a goal decomposition tree where the root is a global goal, the internal nodes are plan operators (sequence, choice, parallel) to decompose goals into subgoals, and the leaves are atomic goals that can be achieved by an individual agent. Missions are coherent sets of goals; hence, an agent that is committed to a mission is responsible for the satisfaction of all its component goals. Finally, the deontic specification associates roles to missions by means of permissions and obligations.



Like STEAM, MOISE+ addresses both the functional and structural dimensions of modeling. However, MOISE+ goes further and provides concepts for modeling normative aspects (deontic specification). The deontic concepts allow a flexible coupling between the functional and structural specifications that is not seen in STEAM.




2.2.5. ISLANDER


ISLANDER is a declarative language for specifying electronic institutions. According to ([26] p. 348), “Institutions establish how interactions of a certain sort will and must be structured within an organization”. In ISLANDER, an electronic institution is composed of four basic elements: A dialogic framework, scenes definitions, a performative structure, and  norms definitions. In the dialogic framework it is defined the participating roles and their relationships. Each role defines a pattern of behavior within the institution and any agent within an institution is required to adopt some of them. A scene is a collection of agents playing different roles in interaction with each other in order to realize a given activity. Every scene follows a well-defined communication protocol. The performative structure establishes relationships among scenes. The idea is to specify a network of scenes that characterizes more complex activities. The norms component of an electronic institution defines the commitments, obligations and rights of participating roles.



With ISLANDER we perceive a change of focus from functional to structural behavior. Unlike the previous models, there is no concepts for explicitly modeling goals and plans (goal decompositions). All behavior is specified by means of direct interactions between roles (dialogs) and regulated by the definitions of norms.




2.2.6. OPERA


In OperA (Organizations per Agents) an agent organization is specified in terms of four structures: The social, the interaction, the normative and the communicative structures. In the social structure are defined roles, objectives, groups and role dependencies. Roles identify activities and services necessary to achieve social objectives. Groups provide means to collectively refer to a set of roles. Role dependencies describe how the roles are related in terms of objective realization. The interaction structure defines how the main activity of an agent organization is supposed to happen. This definition is done in terms of scenes, scene scripts, scene transitions and role evolution relations. Scenes are representations of specific interactions. A scene script is described by its players (roles or groups), scene norms (expected behavior of actors in a scene) and a desired interaction pattern. Scene transitions are used to coordinate scenes by defining the ordering and synchronization of the scenes. Role evolution relations specify the constraints that hold for the role-enacting agents as they move from scene to scene respecting the defined transitions. The normative structure gathers all the norms that are defined during the specification of roles, groups, and scene scripts. Norms are specified as formal logical expressions. Finally, the communicative structure describes the set of performatives and the domain concepts used in the interaction structure by the role enacting agents.



OPERA is a model that addresses all the identified modeling dimensions. Nevertheless, we note that the functional and structural modeling of OPERA is less developed than the others models, the interactive modeling is comparable to what is found in ISLANDER, and the normative modeling is the most elaborated of all models analysed. In OPERA norms are expressed in a formalism called LCR (Logic for Contract Representation).




2.2.7. Other Models


The literature on organizational models is vast. For reasons of space and scope, we briefly mention other models below:




	
ODML—Organizational Design Modeling Language [29]—a minimalist organizational model that provides elements to model and evaluate structural aspects of organizations.



	
AGRE—Agent, Group, Role, Environment [30]—an extension of AGR that takes into account physical and social environments. The main idea is that agents are situated in domains called spaces. The spaces can be physical (areas) or social (groups).



	
MOISEInst [31]—an extension of MOISE+ that allows for Contextual Specifications (contexts and transitions between contexts) and Normative Specifications (norms set) in the modeling of an MAS organization.



	
OMNI—Organizational Model for Normative Institutions [32]—an unification of two other models: the OperA and the HarmonIA framework [33].



	
MAS-ML—MAS Modeling Language [34]—a modeling language that extends UML with elements of the TAO conceptual framework [35]. Regarding organizational modeling, one of the distinguishing features of MAS-ML is that organization technically are an extension of an AgentClass classifier. This means that organizations are conceived as kinds of agents.



	
MACODO [36] is an organizational model for context-driven dynamic agent organizations where organization, agent, role and context are abstract concepts related to the system structure; capabilities, role positions and role contracts are related to the system functioning and there are laws for governing inter-organizational (merge law) or intra-organizational (join law) interactions. MACODO also provide a middleware that allows the implementation and execution of systems modeled following the MACODO model.








In addition to these, we also find in the literature on agent oriented software engineering (AOSE) methodologies a strong concern about organization modeling during the analysis and design of MAS. The Gaia [37] and Tropos [38] are some examples of AOSE methodologies that incorporate the concept of organization in their metamodels.





2.3. Models Comparison


More than large differences, we perceive several similarities and complementarity among the conceptual structures of the organizational models analysed, as we show in Table 1. The commonalities occur in two levels. In a first macro level, they occur as the dimensions of organizational modeling that were identified. For example, all models except TAEMS present concepts to represent the internal structure of organizations (structural dimension). All models except AGR and ISLANDER promote the functional behavior modeling (functional dimension). ISLANDER and OPERA present very similar concepts for representing the structural behavior of organizations (dialogical dimension). Normative concepts appear in MOISE+, ISLANDER and OPERA (normative dimension).



On a more detailed level of analyses, one can still identify various modeling patterns within each dimension. In the next section, we propose an iterative integration method that rely on these patterns, whose formal description is presented in Section 4.





3. Method for the Integration of Organizational Models


We advocate that modeling dimensions for agent organizations are useful not only to analyse and compare organizational models, but also they serve as a starting point for the conceptual integration of organizational models. As we have mentioned in the Introduction, when the objective is to provide organizational interoperability, a consistent conceptual integration of organizational models is a fundamental and necessary element. In order to systematically perform such integration (having in mind the problem of organizational interoperability), we have defined an iterative integration method that is discussed in this section.



3.1. General Process


Let OM1, OM2, …, OMn be n organizational models to be integrated. In broad lines, we understand by a conceptual integration of OM1, …, OMn the process of representing, correlating and joining the conceptual structure (i.e., the modeling concepts and their interrelationships) of each OMi obtaining as the final result an integrated metamodel MMint whose conceptual structure subsumes the structure of all OMi. This idea of conceptual integration, as an iterative process, is depicted in Figure 1.



More specifically, for n models we have n−1 iterations. In the first one, three sequencial steps are performed for OM1 and OM2:




	
Analysis and representation of the conceptual structure of OM1 and OM2 as metamodels MM1 and MM2, respectively. In the representation it is used a common metamodeling language.



	
Comparison of MM1 and MM2, and identification of correspondences between the conceptual structure expressed in both metamodels. Such correspondences represent semantic overlapping areas between MM1 and MM2, i.e., modeling concepts and concept relationships that are assumed to have equivalent or similar interpretations. In general, the identified correspondences are explicitly expressed as articulations art(MM1,MM2) between MM1 and MM2, as described next.



	
From MM1, MM2 and art(MM1,MM2), we produce an integrated metamodel MM#1int that (i) is as expressive as both MM1 and MM2 (in the sense of retaining all concepts, relations and restrictions found in both MM1 and MM2); and (ii) avoids unnecessary replication of elements which were declared equivalent or similar by means of the correspondences between MM1 and MM2.








From the second iteration onward, the same three steps are performed for each OM3≤i≤n with the following differences: (1) Instead of MM1 and MM2 we have MMi and MM#(i−2)int, respectively; MMi is the metamodel representing OMi and MM#(i−2)int is the integrated metamodel from the previous iteration; (2) in the place of art(MM1,MM2) we have art(MMi,MM#(i−2)int) which is the articulation between MMi and MM#(i−2)int; and (3) instead of MM#1int we produce MM#(i−1)int, i.e., the integrated metamodel resulting from joining MMi to MM#(i−2)int.




3.2. Metamodel Representation


In the first step, we assume a metamodel based representation of the organizational models. In this sense, our method adopts the way by which special purpose modeling languages are defined in the area of Model-Driven Engineering. Given this assumption, there are several metamodeling languages available for expressing the conceptual structure of the organizational models. Some of these languages are KM3 [39], MOF/OCL [40,41], XMF [42] and Ecore [43]; this last is used in this work, as illustrated in Section 4 and Section 5.




3.3. Metamodel Alignment


In the second step, the definition of correspondences between modeling concepts is an inherently heuristic process. One possible heuristic is to use the modeling dimensions identified in Section 2. The basic idea is to divide the work along the modeling dimensions. For each model, we start by classifying its modeling constructs in one or more dimensions. Then, for each dimension covered by the models, we identify the corresponding modeling constructs. In this way, the functional modeling concepts of one model are put into correspondence with the functional concepts of the other model, the structural concepts of one model with the structural concepts of the other, and so on.



Another heuristic we put forward for aligning the conceptual structure of organizational models is to take into account some basic conceptual patterns found in the models. These patterns are described in Section 4 in the form of an abstract organizational model.




3.4. Metamodel Merging


Unlike the alignment, the merging of metamodels is a more deterministic process that can be fully automated by using several algorithms reported in the literature [44,45,46]. In general, these proposals for (meta)model merging can be described as merging based on graphs and morphisms. In this case, the metamodels are abstractly conceived as graphs and the correspondences between two metamodels assume the form of an articulation between graphs. If MM1 and MM2 are two metamodels viewed as graphs, then an articulation art(MM1,MM2) between them is a triple composed of a graph Gart and two morphisms m1:Gart→MM1 and m2:Gart→MM2:


art(MM1,MM2)=<Gart,m1,m2>











Intuitively, the idea is that Gart is a representation of the common concepts and relations found in M1 and M2, and the morphisms m1 and m2 are the links mapping this common concepts and relations to their counterpart in both MM1 and MM2.



Once characterized as graphs, the merging of two metamodels MM1 and MM2 is in essence an amalgamated sum (or pushout) of MM1 and MM2, modulo art(MM1,MM2):


merge(MM1,MM2)=MM1⊕art(MM1,MM2)MM2=<MMint,m1′,m2′>








where MMint is the resulting integrated metamodel at the end of the iteration and m1′ and m2′ are morphisms m1′:MM1→Gint, m2′:MM2→Gint. The integrated metamodel MMint consists of the union of the nodes (concepts) and edges (concept relationships) of MM1 and MM2, where correspondent elements as described via art(MM1,MM2) are treated as only one element [44,46]. In this way MMint retains all non-duplicate information in MM1 and MM2 collapsing the elements that art(MM1,MM2) declares redundant. The morphisms m1′:MM1→Gint and m2′:MM2→Gint describe how translating from the particular to the integrated metamodel. The inverse, translating from the integrated to the particular metamodels, is performed via Gart, m1 and m2.





4. Abstract Conceptual Structure of Organizational Models


In this section we compare in detail the conceptual structure of the organization models discussed in Section 2. With this comparison, we intend to explicitly show two main findings: (i) We can identify patterns in the conceptual structure of organizational models inside each modeling dimension, if we homogenize the terminology used and abstract some particularities of each model; and (ii) the patterns identified can be consistently combined into a single conceptual structure (metamodel) that represents in an essential and integrated way the conceptual structures of organizational models. In the next subsections, we detail the basic patterns that emerge when one look more closely to the conceptual structures of the organizational models proposed in the literature. Each subsection focus on a modeling dimension previously discussed in Section 2. At the end, we combine the conceptual patterns obtaining in this way the abstract organizational metamodel.



4.1. Functional Dimension


In the functional dimension, we found concepts for the specification of the functional behavior of an agent organization, i.e., the collective behavior of agents when the internal structure of their organization is not taken into account. Looking at Table 1, we can see that this dimension occurs in TAEMS, STEAM, MOISE+ and OPERA. In these models, the functional specifications follow a general pattern which is illustrated in Figure 2.



4.1.1. Graphs of Hierarchical Plans and Goal Relationships


In essence, the general pattern can be characterized as directed graphs where:




	
The nodes correspond to goals (in MOISE+), operators (in STEAM), objectives (in OPERA) or tasks (in TAEMS), to be achieved or done by the agents in an organization;



	
the edges represent:



	-

	
Either the acyclic decomposition of a goal (operator, objective or task) into subgoals (suboperators, subobjectives or subtasks), giving rise to the notion of hierarchical plans,




	-

	
or binary relationships betweengoals (operators, objectives or tasks), like the depends relation in STEAM or the non-local effects in TAEMS.












Further, in each graph there is one root node that corresponds to a primary goal whose planning and future achievement is prescribed by the structure of the graph. Such graphs of hierarchical plans and goal relationships receive the names of “task group” in TAEMS, “operator hierarchy” in STEAM, “social scheme” in MOISE+ and “role objective definition” in OPERA.



In Figure 2, the conceptual pattern identified in the functional dimension is represented by means of an Ecore metamodel. The classes and references composing the metamodel are described in Table 2. Additional contextual constraints are presented in Table 3. These are written in OCL and formalize the static semantics of the metamodel (conceptual pattern).




4.1.2. Particularities


Besides the common aspects represented in the functional specification pattern (Table 2 and Table 3), there are some particular aspects in the organizational models that should be highlighted.



In TAEMS, there are the concepts of resources and non-local effects between tasks and resources. These concepts were not considered as part of the functional specification pattern presented because they occur only in TAEMS.



In MOISE+, there is no notion of binary relationships between goals. There is, however, the particular notions of mission and preferences among missions, which do not occur in the other organization models analysed, but only in MOISE+. Thus, like the concepts of resources and resource non-local effects of TAEMS, the notions of mission and mission preferences also do not appear in the functional specification pattern presented.



In OPERA, the functional modeling is done implicitly as part of a role definition (structural modeling). In this way, we have a functional modeling with little resources when compared to what can be found in TAEMS, STEAM and MOISE+. Quoting [27], a role definition is done specifying one or more role objectives γ and




“[each] role objective γ can be further described by specifying a set of subobjectives that must hold in order to achieve objective γ. Subobjectives give an indication of how an objective should be achieved, that is, describe the states that must be part of any plan that an agent enacting the role will specify to achieve that objective. However, subobjectives abstract from any temporal issues that must be present in a plan, and as such must not be equated with plans.”



(pp. 60–61)





From this passage, we conclude that there is no explicit notion of hierarchical plans in OPERA. Even so, the general notion of goal decomposition can be identified in OPERA, as we have done in the previous subsection, by making it to correspond to the notion of subobjectives specification in OPERA (see Figure 2).



Lastly, we note that the abstract concepts of goal decomposition and goal relationships admit concrete subtypes of various kinds in the organizational models analysed. For instance, in TAEMS, the kinds of goal decomposition are denominated quality accumulation functions (qafs) and the kinds of goal relationships are named non-local effects (nles): Examples of qafs are q_seq_last (all subtasks must be completed in order, and overall quality is the quality of last task), q_sum_all (all subtasks must be completed in no specific order, and overall quality is the aggregate quality of all subtasks) and q_exactly_one (only one subtask may be performed, and overall quality is the quality of the single task performed); regarding specific nles, two of them are facilitates (when information from one task reduces or changes the search space making some other task easier to solve) and enables (when information from one task is a prerequisite for doing another task). In STEAM, there are two basic concrete subtypes of goal decomposition: AND (when all suboperators must be done to realize a given operator), and OR (when at least one suboperator must be done to realize a given operator), which are complemented by the depends relationship (that establishes a partial order for doing operators). Finally, in MOISE+, there is not the concept of goal relationship, only three subtypes of goal decomposition: Sequence (when subgoals must be achieved in some order to achieve a given goal), choice (when only one subgoal must be achieve to fulfill a given goal), and parallelism (when all subgoals can be pursued at the same time in order to achieve a given goal).





4.2. Structural Dimension


Forming the structural dimension, we have modeling concepts used to specify the internal structure of an agent organization in which the agents must engage to become an active member of the organization. From Table 1, five organizational models provide concepts for creating structural specifications. They are: AGR, TAEMS, MOISE+, ISLANDER and OPERA. Looking carefully at the structural specifications one is able to produce using these models, like the ones shown in Figure 3, we realize that the structural dimension of organizational modeling can also be characterized by an abstract conceptual pattern.



4.2.1. Graphs of Roles and Groups


In the structural dimension, the organizational models present three fundamental concepts: Role, group and role relationships. The instantiation of these three interrelated concepts forms the specification of the internal structure of agent organizations.



In essence, structural specifications can be characterized directed graphs where:




	
The nodes correspond



	-

	
either to the definition of groups (in AGR, MOISE+ and OPERA) or teams (in STEAMS),




	-

	
or to the definition of roles (in all models);







	
the edges represent



	-

	
either the decomposition of a group in subgroups (or a team in subteams), forming a group (team) hierarchy,




	-

	
or binary relationships between roles,




	-

	
or links from a role to a group(or subteam) in which the role can be played by agents.












With regard to the group (team) hierarchy, there are two situations present in the models. On the one hand, we have a unique root group that represents the organization as a whole (the hierarchy is a rooted tree), what occurs in STEAM, MOISE+ and OPERA. On the other hand, there is no explicit root group, or even the decomposition of groups in subgroups, what is the case of AGR. Regarding the binary relationships between roles, in general they are directed and, in the models AGR, MOISE+ and ISLANDER they are subdivided in various kinds with diverse interpretations.



Such graphs of roles and groups receive the names of “organization hierarchy” in STEAM, “organizational structure” in AGR, “structural specification” in MOISE+. In ISLANDER, they are part of the definition of a “dialogic framework”. In OPERA, they form the “social structure”.



In Figure 3, the conceptual pattern identified in the structural dimension is represented by means of an Ecore metamodel. This metamodel is presented in more detail in Table 4.




4.2.2. Particularities


Besides the similarities that give rise to the structural specification pattern, the organizational models also differ in some particular points. Four of these points deserve mention.



The first one is related to the definition of subgroups. In STEAM and MOISE+, the definition of subgroups forms a real hierarchy, i.e., an non cyclic graph. On the other hand, in AGR and OPERA, there is no explicit subgroup relationships between group definitions. From structural specification pattern perspective, this fact can be expressed in the following way: In AGR and OPERA, for each group definition g (instance of GroupDef), the collection of its subgroups is empty, i.e., g.subGroup = {}. On the other hand, in STEAM and MOISE+, there exist group definitions g such that g.subGroup ≠ {}.



The second point is the notion of cardinality that is found in AGR and MOISE+ but not in the other models. Cardinalities can be defined for roles or subgroups. In the case of roles, cardinalities indicate a maximum and a minimum number of agents allowed per role in the context of a group. Regarding cardinalities of groups, they determine how many subgroups of a given type can be created in the context of a group. In AGR, cardinalities are attributes of role and group. In MOISE+, they are attributes of the association between role and group, or group and subgroup. For this reason, and observing that they are not an explicitly feature of the majority of the models, we have chosen not to explicitly represent cardinalities in the structural specification pattern.



As third point, we observe that the abstract notion of structural relationships between roles (class RoleRel, Table 4) admits diverse concrete subtypes, analogously to what happens with the notion ofgoal relationships (class RoleRel, Table 2). In AGR, for instance, there exist two subtypes: Correspondence (which states that agents playing one role will automatically play another one) and dependency (which rules out the possibility of an agent to play one role if it is not playing another role). In MOISE+, three subtypes: Links (which declare the possible relationships of communication, authority and acquaintance between roles), compatibility(which determines that two roles can be played at the same time by the same agent) and inheritance (which states that one role, besides its own features, also has all the features, like links and compatibilities, of another role). In ISLANDER, two subtypes: The concept of subroles (which is similar to the concept of inheritance in MOISE+), and the concept of static separation of duties (which means the opposite of the concept of compatibility in MOISE+).



In OPERA, there is only one type of binary directed relationship between roles: The dependency. Nevertheless, differently from the other organizational models, the concept of dependency between roles in OPERA is not properly a structural but rather a functional relationship. In other words, in OPERA, the dependency relationship reflects directly the decomposition of a goal into subgoals, elements of the functional dimension. When one of the subgoals defined in the scope of a role is a goal of another role, then there exist the dependency relationship between the two roles in OPERA. Such idea is different from the structural dependency present in AGR, which indicates that the fact of playing a given role is a prerequisite for playing another role.



The last point that should be mentioned concerns the nature of the group definitions. In all analysed models, except MOISE+, agents playing any roles in the same group may, in principle, exchange messages. Further, in the absence of explicit constraints, such as incompatibilities or dependencies, the agents are free to play the roles they wish in a given group. In MOISE+, we have the opposite situation. If there is no explicitly stated communications links or compatibility relations between roles, the agents are not allowed to exchange messages or play more than one role in the same group. Moreover, in MOISE+, communication links or compatibility relations are not limited to a single group, but can be specified between roles defined in different groups leading to possible inter-group collaborations. In other models, such as AGR, this inter-group collaboration can also be achieved by means explicitly defined correspondence links between two roles in different groups. In this way, an agent playing one of the roles automatically plays the other role and can participate in more than one group at the same time.





4.3. Dialogical Dimension


The dialogical dimension is characterized by concepts to prescribe (or describe) the direct interaction by means of message exchanging that occurs between role playing agents in order to achieve organizational goals. Among the organizational models considered in this work, only ISLANDER and OPERA offer explicit concepts for dialogical modeling (see Table 1). In these two models, the dialogical specifications are written according to approximate conceptual structures, as can be seen in Figure 4.



4.3.1. Hypergraphs of Scenes


On a macro level, both in ISLANDER and in OPERA, the direct interactions by message exchanging are partitioned into scenes. Scenes are structured and coordinated by means of directed hypergraphs (directed graphs where some edges, called hyperedges, can connect any number of sources and target nodes)in which:




	
Nodes correspond to the definitions of scenes;



	
hiperedges represent partial ordering and/or synchronization relationships from many source scenes to many target scenes, giving rise to the concept of scene transitions.








In a well formed hypergraph of scenes, there is:




	
An initial scene, i.e., the node from which agents playing roles have access to the other scenes of the hypergraph. Starting in the initial scene and following the transitions, all the scenes that make up a hypergraph should be achievable;



	
a final scene, i.e., the node in which the dialogic participation of agents within an organization ends successfully. As the dual of the initial scene, the final scene has to be achievable from any scene in a hypergraph, otherwise the hypergraph of scenes is not well formed.








In ISLANDER, the hypergraphs of scenes are named “performance structures”, and in OPERA they are called “interaction structures”.



On a micro level, the interactions within each scene are governed by one or more predefined dialogue scripts. These scripts correspond to the concepts of scene protocol in ISLANDER and interaction pattern in OPERA. Dialogue scripts are not detailed in Figure 4. The reason is that the intra-scene (micro level) dialogical specifications have distinct natures both in ISLANDER and in OPERA, as will be discussed in the sequel.



In Figure 4, the conceptual pattern identified in the dialogical specifications of ISLANDER and OPERA is captured by means of an Ecore metamodel. This metamodel is described in details in Table 5 and Table 6.




4.3.2. Particularities


In both ISLANDER and OPERA, the dialogical specification consists in a network of scenes in which all possible or desirable episodes of direct interaction within an organization are planned and orchestrated. As mentioned earlier, this common structure takes place at the macro level. This means that the joint activity characteristic of agent organization, under a broad point of view, is ruled by the presented hypergraphs of scenes.



The main difference between ISLANDER and OPERA occurs at the micro level. In other words, restricting the point of view to each particular scene, instead of the network of scenes, the models analyzed have different ways to specify how agents can or should interact.



On the one hand, in ISLANDER, there is the notion of scene protocol. In a scene protocol, one represents in detail a communication protocol in which are specified all the involved roles, and the sequencing of all possible message exchanges (illocution schemes), in On the other hand, in OPERA, there is the notion of interaction pattern. Unlike scene protocols, an interaction pattern does not determine in detail the exchange of messages in a given scene. Instead, it delimits a partial order between scene states (landmarks) towards achieving the objectives related to the scene. Any detailed communication protocol used in a scene should respect the established interaction pattern.





4.4. Normative Dimension


The normative modeling dimension is characterized by the general concept of norm (permissions, obligations, etc.). Norms occur in organizational specifications as a mechanism that interrelates and complements the functional, structural and dialogical specifications. Three organizational models we have analyzed present concepts to create normative specifications. They are: MOISE+, ISLANDER and OPERA (see Table 1).



4.4.1. The Concept of Norm


In the organizational models analyzed, unlike the other dimensions, the normative specifications are not created as graph like structures. Instead, they assume the form of textual normative expressions. This general pattern is expressed in Table 7.




4.4.2. Particularities


In ISLANDER, norms are written as logical expressions in accordance with the format:



(s1,γ1)∧…∧(sm,γm)∧e1∧…∧en∧¬((sm+1,γm+1)∧…∧(sm+n,γm+n))→obl1∧…∧oblp



where (s1,γ1),…,(sm+n,γm+n) are pairs of scenes and illocution schemes, e1,…,en are boolean expressions over illocution scheme variables, ¬ is a defeasible negation, and obl1,…,oblp are obligations. “The meaning of these rules is that if the illocutions (s1,γ1), …, (sm+n,γm+n) have been uttered, the expressions e1,…,en are satisfied and the illocutions (sm+1,γm+1),…,(sm+n,γm+n) have not been uttered, the obligations obl1,…,oblp hold” ([48] p. 38).



In OPERA, norms are specified using logical expressions written in a formalism called LCR (Logic for Contract Representation). There are three types of norms: Obligations, permissions and prohibitions. The following excerpt from ([27] p. 149) summarizes the syntax for writing these modalities.



<Norm>::= OBLIGED(<id>,<Norm-Form>)|PERMITTED(<id>,<Norm-Form>)|



FORBIDDEN(<id>,<Norm-Form>)



OBLIGED(<id >,<Norm-Form>) represents an obligation of the agent playing the role referenced by <id> in achieving the state <Norm-Form> described as an LCR formula ([27] chapter 4). Based on the notion of obligation, the concepts of permission and prohibition are defined. A permission PERMITTED<id>,<Norm-Form>) is an abbreviation for ¬OBLIGED(<id>,¬<Norm-Form>). In turn, a prohibition FORBIDDEN(<id>,<Norm-Form>) means the same as OBLIGED(<id>, ¬<Norm-Form>).



Finally, in MOISE+, the general concept of norm is translated into the notion of deontic relations that link roles to missions. There are two types of deontic relations, permissions and obligations:




“A permission per(ρ, m, tc) states that an agent within the role ρ may be committed to the mission m. Temporal constraints (tc) are established for the permission, that is, they determine a set of time periods when the permission is valid ... An obligation obl(ρ, m, tc) states that an agent within the role ρ is required to commit to the mission m in the time periods determined by tc.”



([49] pp. 46–47)





In this case, the normative expressions per(ρ, m, tc) and obl(ρ, m, tc) are less comprehensive than what is found in OPERA and ISLANDER.





4.5. Abstract Organizational Metamodel


All the patterns identified in the organizational modeling dimensions, and previously discussed in Section 4.1, Section 4.2, Section 4.3, Section 4.4, can be combined to form an abstract organizational metamodel. This abstract metamodel, as shown in Figure 5, characterizes the common conceptual structure of the organizational models analyzed.



By means of this abstract organization metamodel, we can see that the normative dimension works as a glue among the three others. It interrelates and/or regulates the organization behavior (be it functional or dialogical) and the organizational internal structure (in the sense of allowing or forcing the association of certain functional and/or dialogical elements with certain structural elements). Last, but not least, it makes it clear that structuring of organizational modeling dimensions greatly helps in making the notions independent and self-contained, while linked via normative bonds.





5. Integration Method Application


In this section we present an application of the integration method described in Section 3, guided by conceptual patterns identified in Section 4. We show how to apply the method to integrate the AGR, STEAM and MOISE+ models. Since a complete description of the integration process involve many details, we will restrict the discussion to the structural dimension.



As shown in Figure 1, we need to perform two iterations of the method to integrate three models. First we merge AGR and STEAM. Then, we merge MOISE+ to the result of the previous iteration.



5.1. First Iteration


The representation of AGR and STEAM as Ecore/OCL metamodels is shown in Figure 6. Below, on the left side, we have the AGR metamodel; on the right side, the STEAM metamodel (both restricted to the structural dimension). Above, mediating the alignment of the metamodels, we see the conceptual pattern of Section 4.2.



In the alignment, the organizational structure of AGR and the organization hierarchy of STEAM are identified as similar specifications. The concepts of group (AGR) and subteam (STEAM) are declared similar concepts, both identified with the general concept of group definition. The same happens with the concepts of role (AGR) and role (STEAM), both identified with the general concept of role definition.



Intuitively, when we take into account only the terms used, these basic correspondences between AGR and STEAM are reasonable. However, when we look more closely to the specific relationships among the concepts, it is possible to see that there is a stronger coupling between subteam and role in STEAM than the one that exists between the correspondent concepts of group and role in AGR. In STEAM, the notion of role is abstract, being materialized both in the specification of activities for groups of agents as a whole and in the specification of activities for individual agents (individual role). This notion is represented in the metamodel as an abstract class STEAM::Role with two concrete subtypes STEAM::SubTeam and STEAM::IndividualRole. As a consequence, every instance of STEAM::SubTeam besides corresponding to a group definition is also a kind of role definition.



This coupling between the concepts of group and role definitions is absent in AGR and is not foreseen in the structural pattern of Section 4.2. To easy the merging of these different views regarding the nature of the concepts, one possibility is to interpret the generalization relation between STEAM::SubTeam and STEAM::Role as a composition relationship, similar to the application of the “replace inheritance with delegation” refactoring, as proposed in [50]. When this is done we posit a derived reference from STEAM::SubTeam to STEAM::Role named supRoleDef. This derived reference when used in the place of the original generalization decouples the concepts of group definition and role definition while permitting to represent the same information in a slightly different way.



In Figure 6 there are two other derived references: roleDef and subGroup; both extracted from the original reference role between STEAM::SubTeam and STEAM::Role. The rationale for these is to make explicit that, in reality, not only role definitions but also group definitions can be associated with a subteam via the reference role. Once these derived references become explicit, we can do a more fine grained matching between the STEAM metamodel and the corresponding abstract concepts of group and role definition.



Ending the comparison between the metamodels, we note that in AGR the group definitions cannot be decomposed into sub groups and there is the concept of role relation materialized as role constraints (dependencies and correspondences). In STEAM, there is no explicit role relations and no explicit role cardinality. In the case of individual role there is an implicit cardinality of min=1 and max=1.



Finally, concluding the iteration, we merge the metamodels taking into account the correspondences identified. The resultant integrated metamodel MM#1int is shown in Figure 7, where we retain the terminology of the abstract structural pattern of Section 4.2. See online version for colors. The elements added to the structural pattern from the specific metamodels are depicted in blue. The elements marked in red in the STEAM metamodel (Figure 6) are not included in the integrated metamodel, being replaced by derived references aforementioned. Essentially, MM#1int is an almagamated sum of the AGR and STEAM metamodels (viewed as graphs) modulo the alignment (articulation) between AGR and STEAM, as describe in Section 3.4. For simplicity, the morphisms from MM#1int to the AGR and STEAM metamodels are omitted.




5.2. Second Iteration


In the second iteration, we integrate the MOISE+ metamodel (structural dimension) to the resulting metamodel MM#1int obtained in the previous iteration. The MOISE+ metamodel is shown on the left side of Figure 8. On the right side, we have MM#1int (from Figure 7) augmented with derived classes and relationships. On the middle, there is the articulation graph between MOISE+ and MM#1int metamodels. Since the articulation graph preserves the class and reference names from MM#1int, for simplicity we have omitted the morphism m2:Gart→MM#1int.



In MM#1int there are three classes GroupDef, RoleDef and RoleRel which represent the main concepts for the structural specification of agent organizations. In MOISE+, the correspondent classes are GroupSpecification, Role and RoleRelation, respectively. Similar to class MM#1int::GroupDef, class MOISE+::GroupSpecification represents the definition of a group in which it is possible to specify roles and subgroups. Like MM#1int::RoleDef, the class MOISE+::Role denotes a role definition associated with group definitions. Both MM#1int::RoleRel and MOISE+::RoleRelation characterize role relationships from a target to a source role definition.



Apart from this basic agreement, there are some particularities regarding how these concepts occur in MOISE+ that leads to an extension of MM#1int. One first particularity is the way in which group definitions are linked to role definitions and subgroups. In the integration of AGR and STEAM, group definitions are linked to role definitions and to subgroups by means of the roleDef and subGroup references, respectively. In the MOISE+ metamodel the correspondent links are not represented by references but by the classes GroupRole and SubGroup, respectively.



By means of MOISE+::GroupRole and MOISE+::SubGroup, the same role definition or subgroup can have different cardinalities, one for each group definition in which the definition is referenced. The cardinalities are represented by the attributes max (for the maximum number of agents per role, or subgroups in a group) and min (for the minimum number).



In MM#1int this flexibility is not possible as long as the cardinalities are declared directly as attributes of the role definition, and not as attributes of the relation between a group definition and role or subgroup definition. In this way, we note that the information about role and group cardinalities of MOISE+ can not always be expressed in the current integration of ARG and STEAM. However, the converse is always possible, as it can be shown by means of the derived classes MM#1int::RoleRef and MM#1int::GroupRef in the upper right of Figure 8.



The derived class MM#1int::RoleRef is the implict correspondent of MOISE+::GroupRole. Similar to class MOISE+::GroupRole, class MM#1int::RoleRef has attributes max and min and makes reference a single role definition. In the context of MM#1int::GroupDef the derivation of MM#1int::RoleRef is specified by the invariant GD2 shown in the bottom right of Figure 8. This invariant establishes that for each instance rd of MM#1int::RoleDef (referenced by roleDef), there must exist (be created) an instance rr of MM#1int::RoleRef that points to rd and has the attributes rr.min = rd.min and rr.max = rd.max.



By its turn, the class MM#1int::GroupRef is the derived correspondent of MOISE+::SubGroup. In the context of MM#1int::GroupDef the derivation of MM#1int::GroupRef is specified by the invariant GD3 shown in the bottom right of Figure 8. The invariant establishes that for each instance sg of MM#1int::GroupDef (referenced by subGroup), there must exist (be created) an instance gr of MM#1int::GroupRef pointing at sg and having the attributes gr.min = sg.supRoleDef.min and gr.max = sg.supRoleDef.max.



As long as they are more expressive, the classes RoleRef and GroupRef are used in the articulation graph replacing the references roleDef and subGroup present in MM#1int. Therefore the replaced references are marked to be left out during the merge step at the end of the iteration. In addition, the attributes max and min in the class MM#1int::RoleDef are marked once the same information is now represented as attributes of RoleRef and GroupRef in the articulation graph.



A second peculiarity of MOISE+ concerns the possibility of defining links and compatibilities between roles as part of a group specification. In this regard, there are two observation to be made. Firstly, links and compatibilities are new kinds of role relation, not present in MM#1int. In fact, we observe that the link and compatibility concepts, in essence, differ from the dependency and correspondence concepts found in AGR. On the one hand, in MOISE+, a link enable the acquaintance, communication, or  authority between roles; and a compatibility indicates that an agent playing a role can also play another role. On the other hand, in AGR, a  dependency indicates that an agent only can play a role if it previously commits itself to another one; and a correspondence means that to play a role automatically implies to play another role.



The second observation is about the nature of the group definition concept behind the notions of links and compatibilities. By default, a  group definition in MOISE+ does not enable the compatibility or any link between roles. In other words, if not stated explicitly, an agent playing a role do not have permission to play another role, or even to interact with agents playing another role, neither in the same nor in other groups. If compatibilities and links are needed, this must be explicitly specified in the group definition.



Conversely, in AGR and STEAM a group definition does not implies a priori any restriction regarding compatibility and link among the roles. With the exception of explicit dependencies relationships and cardinality restrictions, in AGR and STEAM specifications the agents are free to play the roles they want and are not blocked with respect to interacting with any agent playing some other role.



In the articulation presented in Figure 8, these observations are made explicit by means of the derived attributes allowsComm, allowsAcqu and allowsComp in the context group definitions. For MOISE+::GroupSpecification, these attributes have the value false. This represents respectively the communication, acquaintance and compatibility restrictions existing in MOISE+. On the other side, for MM#1int::GroupDef the three attributes assume the value true indicating the absence of the respective restrictions in AGR and STEAM.



Despite their opposite nature, we note that AGR and STEAM group definitions can be expressed in MOISE+. To this end, one has to explicitly define communication, acquaintance, and compatibilities relationships between all roles in a group definition. However, the converse is not always possible without losing information.



Ending the comparison, in MOISE+ there is a third form of role relationship: the inheritance. In MOISE+ metamodel this relationship is represented by the reference superRole involving instances of the class MOISE+::Role. In the articulation between MOISE+ and MM#1int, an alternative form of representing inheritance could be as a subclass of RoleRel. As the inheritance relation does not have a direct effect on the behavior of the agents as the other role relations, being only a way of simplifying role definitions in MOISE+, we have opted to preserve the representation of this relation as the reference superRole rather than defining a new subclass for RoleRel.



Finally, concluding the iteration, we merge the metamodels taking into account the identified correspondences. The result is show in Figure 9.





6. Organizational Interoperability Approach


Adopting an organization-centered perspective [4], the engineering of MAS can be described as a process that starts with the creation of an organizational specification written in conformance to an organizational model. This specification is a prescription of the desired patterns of joint activity that should occur inside the MAS towards some desired purpose. Once the organizational specification is done, it is used as the input to an organizational infrastructure. In general, what we mean by organizational infrastructure is some kind of middleware supposed to interpret the specification and reify the organization of the MAS outside the agents. In this respect, it should maintain an internal organizational state and offer to the agents an interface for accessing and modifying this state. The information maintained in the organizational state contains a list of the members of the organization, what roles they are playing, what groups are active in the organization, among others. Finally, with the organizational infrastructure materializing the desired agent organization, it is time to develop application domain agents (not necessarily by the same designer of the organization specification) that can enter and interact inside it by accessing the available organizational interface.



Regarding organizational infrastructures there are several approaches for the engineering of (open) agent organizations [12,13,36,47,51,52,53,54]. On the one hand, the availability of a wide range of diverse models and infrastructures has made the development of agent organizations feasible. On the other hand, such a diversity introduced an important new interoperability challenge for agent designers: How to deal with heterogeneous organizational models and infrastructures? Whenever an agent is build to enter some MAS it has to be able to interact with the other participants using a particular agent communication language as well as to understand received messages against a given domain ontology. Besides this, if the MAS was designed as an agent organization, the entering agent has also to be able to access a particular organizational infrastructure and to interpret its underlying organizational model. In this way, the agent design can become tailored to a particular organizational approach.



For instance, suppose that several e-business applications designed as open agent organizations are available on the Internet. In addition, assume that these applications are heterogeneous regarding the organizational technology applied to build them. To put it in more concrete terms, let us suppose two agents organizations: One built upon the S-MOISE+ [53] organizational middleware, based on the MOISE+ model, and the other by using MADKIT [54] platform, based on ARG model. In this setup (and assuming a shared common agent communication language and domain ontology), the agent designers face the following problem: The native S-MOISE+ agents do not interoperate with the MADKIT platform, and vice-versa. Thus, it is not directly possible, for instance, to write an agent code that enter both e-business agent organizations in the search of products and/or services on behalf of its users. Such fact limits the range of applicability of S-MOISE+ and MADKIT agents which, in turn, limits the idea of open MAS.



As mentioned in the Introduction, four basic approaches can be envisioned for this organizational interoperability problem. One of them is to bridge the interface between the external agents and the agent organization by means of model mapping (Adaptation). By using such mappings it is possible to provide adapted copies of the specification and state of a given organizational model/infrastructure “understood” by the external agents.



In what follows we describe MAORI—a Model-based Architecture for ORganizational Interoperability [19]. MAORI is an experimental framework for providing organizational interoperability following the line of adaptation. Its main objective is to show how the integration of organizational models presented in this paper can possibly be used in a solution for the problem of organizational interoperability.



6.1. MAORI Overview


MAORI is structured along three layers, as it may be seen in Figure 10:




	
In the bottom, there is the Model Integration (M2M) layer—the purpose of this layer is to provide an integrated view and transformations between the organizational models represented as metamodels;



	
in the middle, there is the Organizational Interoperability (ORI) layer—this layer is formed by components that use the M2M layer to translate and adapt the specification and state of agent organizations from one source organizational infrastructure to one or more target organizational infrastructures;



	
in the top, there is the Organizational Infrastructure (MAS) layer—this layer corresponds to the available infrastructures for implementing organization-centered MAS.









6.2. Model Integration Layer


M2M layer is composed of metamodels and transformations. For each organizational model OMi, there is a corresponding metamodel MMi. The metamodel MMint is the conceptual integration of all MMi, as described in Section 5.



The transformations are functions that implement the morphisms between the integrated metamodel MMint and the particular metamodels MMi (Section 3.4). There are two types of transformations. One type is transf(from:MMi):MMint, which converts from MMi to MMint. The other type is transf(from:MMint):MMi, which converts from MMint to MMi. In this way, M2M main functionality is to provide transformations that can be combined to translate specifications and states between organizational models/infrastructures.




6.3. Organizational Interoperability Layer


ORI layer works as an extension of organizational infrastructures. In order to enable heterogeneous agents in the same organization, ORI adds two basic components to the organizational infrastructures: providers and adapters.



Providers are responsible for exporting the organizational specification/state of agent organizations. In this case, to export means to use transf(from:MMi):MMint to convert the specification/state from from a source MMi to the integrated metamodel MMint. Adapters are responsible for importing the organizational specification/state that was exported by a provider. The import is done by using transf(from:MMint):MMi.



Imagine a scenario where an agent functions on a given organizational infrastructure and consider an agent organization implemented on a different organizational infrastructure. If the agent wants to participate in the organization, an adapter has to be instantiated in the organizational infrastructure of the entering agent. Initially, the responsibility of the adapter is to locate the appropriate provider, establish a connection with it, ask for the organizational specification/state and finally translate this specification/state to the target organizational infrastructure of the entering agent. In this way, for each heterogeneous agent organization there will be an organizational provider. Connected to this provider, there will be several organizational adapters, one for each organizational infrastructure in which there could be external heterogeneous agents.




6.4. MAORI Implementation


MAORI was implemented in the Java programming language. The metamodels in M2M layer were coded using the Eclipse Modeling Framework (EMF) [55]. Regarding the transformations, there were first prototyped in the Atlas Transformation Language (ATL) [56] and then ported to Java for performance reasons. An implementation was developed as a proof of concept of the ORI layer considering the MADKIT and S-MOISE+ organizational infrastructures.



To evaluate MAORI, some agent organizations were developed. One is the example of a group of agents that wants to write a paper and use for this purpose an explicit organization to help them to collaborate. The organization consists in a group composed of: One agent in the role of coordinator (who controls the process and writes the introduction and conclusion of the paper), one to five agents in the role of collaborator (who writes the paper sections) and one agent in the role of librarian (who compiles the bibliography). Taking this simple example, some experiments were performed. One of them considered an organization composed of five agents—one coordinator (Eric), three collaborators (Greg, Joel and Mark) and one librarian (Carol). Initially the organization was started in the MADKIT platform. In addition, in MADKIT, the agents Eric and Carol were started and, after that, in the S-MOISE+ platform an organizational adapter was started to import the organization state. The three remaining agents (Greg, Joel and Carol) are started in S-MOISE+. They perceived and enter the organization by requesting the role of collaborator. At this point, the interaction begins: The agents in S-MOISE+ are now members of an organization running in MADKIT. More details about MAORI may be found in [19].





7. Related Work


The proposition of abstract structures, such as patterns, and integrated metamodel to enable interoperability among organization-centered multiagent systems is somehow new. Therefore, related work must be considered in several areas from business to services, including multiagent systems. In the following we contextualize our work within this broad scenario.



In the multiagent systems area, Pechoucek and Marik [57] adopted a model-driven approach to propose a general metamodel for developing multiagent systems. The metamodel is defined as a Platform Independent Model (PIM) considering the MDA abstraction levels definition [18]. In order to identify a unified metamodel to support the development of agent-based systems, they considered seven views: Multiagent view; Agent view; Behavioural view; Organization view; Role view; Interaction view and Environment view. They adopted the top down approach to develop the metamodels that represent each of the views aforementioned after analysing some existing agent-oriented modeling languages, methodologies and programming languages. Moreover, it was conceived to be used independently of the agent-oriented methodology, modeling and programming languages. Nevertheless, their main purpose was to support the development of MAS using a model-driven approach than providing means for interoperability among MAS. Our work presents some similarities with theirs since the proposed integrated metamodel could be used independently of the Organization Model adopted to design and implement an organization-centered MAS. In addition, the abstract structures where defined based on organization-centered multiagent systems dimensions, in a similar approach of theirs when stating their metamodel concerning some views. Nevertheless, although using a model driven approach, we adopted it to define the way integration occurs using the bottom-up approach to define the integrated metamodel, based on existing Agent Organization Models and their underlying metamodels. By doing that we foster interoperability to organization-centered MAS during design time, by providing means of transforming the design of a MAS with an underlying organization model into another one, or during execution time, as presented in Section 6.



Muramatsu and colleagues [58] provided organizational interoperability by using organizational artifacts within the environment where the MAS is situated. They adopted a normative language to describe the organizational structure in artifacts. In this sense, their work is similar to ours while adopting a common language (in our case a common metamodel) to describe several organizational models.



Isern and colleagues [59] classified organizational structures according to organizational paradigms, such as (i) hierarchy, (ii) holarchy, (iii) coalition, (iv) team, (v) congregation, (vi) society, (vii) federation and (viii) market, to support the design of MAS using existing agent-oriented methodologies and organizational models. The main purpose of their work is to provide information for MAS developers that would like to adopt an organization approach to develop MAS and did not know what Organization Model or agent-oriented methodology to choose. Their work is related to ours in the sense they adopted metamodels’ characteristics of existing organizational models and existing agent-oriented methodologies to classify such organizational structures as patterns.



Karaenke et al. [60] proposed an inter-organizational interoperability architecture based on multiagent systems, web services and semantic web technologies. In their work, the MAS did not present an underlying organizational model and agents adopt the “head body” paradigm to include web services technologies to provide interoperability among enterprise information systems. Therefore, interoperability is focused on system-to-system communication using web services technologies, which limits the kind of systems that may participate in such communication. Our proposition is broader in the sense that it provides a solution for interoperability among open organization-centered MAS independently of their underlying organizational Model.



A template description for agent-oriented patterns was given by Oluyomi and colleagues [61]. Based on a classification scheme, they organized agent technology concepts into categories and then identified agent-oriented pattern description templates for each category. Eight agent-oriented pattern templates were described to support the modeling of multiagent systems. Examples of the conformity between the proposed templates and their adoption during the design phase of existing agent-oriented methodologies were provided. Comparing with our proposition, their work adopts a similar approach when considering categories (in our case we adopted dimensions) to guide the patterns definition. In addition, their work is situated in the model level instead of the metamodel level as ours, since their objective is to improve communication among AOSE developers. Nevertheless, the adoption of an integrated metamodel obtained via model driven transformations combined with organizational dimensions give to our patterns high level of formality whenever compared with theirs.



Chella et al. [62] defined agent-oriented patterns to develop multiagent system to support robot programming. The proposed patterns were created based on an existing layered architecture for programming robots [63]. Patterns are described considering three aspects: The problem description; the definition of the solution in terms of MAS models and the description of the solution in terms of implementation. They just define some patterns for an specific domain based on the templates proposed by [61]. The only relation between their work and our is that pattern definition is based on some criteria that can be classified as dimension or category.



Organizational interoperability and integration issues are not new concerns for the administrative practice and research, specially after the wide acceptance and use of Information and Commmunication Technologies in their business models [64]. Several frameworks to provide organization interoperability were defined and even in this domain some dimensions were considered to define such frameworks.




8. Conclusions and Future Work


The research reported in this work has consisted in the use Model Driven Engineering techniques to address the organizational interoperability problem: How can we provide means for a set of agents, immersed in a common environment, to evolve, reason, decide and interact with each other based on organizational concepts, since their organizational models may differ? In order to achieve this goal, we have proposed an abstract and integrated view of the main concepts that have been used to specify agent organizations, based on the analysis of several organizational models present in the literature. In this model, we captured the recurring modeling concepts, that were coherently combined into an abstract conceptual structure. We have then presented an adaptation-based solution for the organizational interoperability problem, when we have defined the mappings between different organizational models, by using this abstract conceptual structure. We have built our abstract conceptual structure based on six organizational models (STEAM, MOISE+, AGR, OPERA, TEAMS, ISLANDER), presented in Section 2. For brevity, in Section 5 we illustrated the application of our integration method using three of these models (MOISE+, AGR, STEAM), and concerning exclusively the structural dimension.



A first extension of this work would be to build an integrated metamodel that could cope with OPERA and TEAMS. Moreover, we could evaluate how the other organizational models mentioned in Section 2.2.7 would affect our abstract conceptual structure. Concerning the MAORI framework, described in Section 6, we have tested its use by interoperating two organizational infrastructures, S-MOISE+ and MADKIT. A second extension of this work would be to test the franework with other organizational infrastructures, like AMELI [13] and ORA4MAS [52]. Finally, we would like to test our model driven approach to solve other MAS interoperability problems, like the ones mentioned in Section 1.
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Figure 1. General conceptual integration method. 
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Figure 2. Similar functional specifications written in TAEMS, OPERA, STEAM and MOISE+, which prescribe how an agent is supposed to proceed for buying a product in an electronic market (example taken from [47]). The class diagram (Ecore metamodel) in the center of the figure represents the conceptual pattern identifiable in the various approaches of functional modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel. 
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Figure 3. Similar structural specifications written in STEAM, AGR, OPERA, MOISE+ and ISLANDER, for a team of agents part of a simulated soccer game (example taken from [24,25]). The team is composed of eleven players (one goalkeeper, three backs, five mid-filders and three attackers) and one coach, and is divided in three groups: Defense, midfield and attack. The class diagram (Ecore metamodel) in the center of the figure represents the conceptual pattern identifiable in the various approaches of structural modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel. 
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Figure 4. Similar dialogical specifications written in OPERA and ISLANDER for an agent based conference management system (example taken from [27] chapter 3). The class diagram (Ecore metamodel) in the center represents the conceptual pattern identifiable in the two approaches of dialogical modeling. The dotted arrows detail what concepts are captured by what classes of the metamodel. 
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Figure 5. Abstract organizational metamodel. 
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Figure 6. Alignment between AGR and STEAM. 
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Figure 7. Integrated metamodel MM#1int. 
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Figure 8. Alignment between MOISE+ and MM#1int. 
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Figure 9. Integrated metamodel MM#2int. 






Figure 9. Integrated metamodel MM#2int.



[image: Applsci 09 02420 g009]







[image: Applsci 09 02420 g010 550]





Figure 10. MAORI framework (redesigned from [19]). 
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Table 1. Organizational models comparison.
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	Model
	Functional
	Structural
	Dialogical
	Normative





	TAEMS
	method, task,
	none
	none
	none



	
	subtask relation,
	
	
	



	
	non-local effect
	
	
	



	AGR
	none
	role, group,
	interaction protocol
	none



	
	
	role relation
	
	



	STEAM
	operator, plan,
	team, individual role
	none
	none



	
	dependency
	
	
	



	MOISE+
	goal, plan, mission
	role, group, role relations
	none
	deontic relations



	ISLANDER
	none
	roles, role relations
	scene, transition,
	obligation



	
	
	
	interaction protocols
	



	OPERA
	objective, subobjective
	role, group,
	scene, transition,
	obligation



	
	
	dependency
	interaction patterns
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Table 2. Functional specification pattern: Classes description.
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	Class
	Description





	FSpec
	Represents the concept of functional specification, i.e., an organizational specification



	
	restricted to the functional dimension.



	GoalDef
	Part of a functional specification that represents the definition of a goal. Abstracts the concepts



	
	of task in TAEMS, operator in STEAM, goal in MOISE+, or objective in OPERA.



	HPlanDef
	Part of a functional specification that represents the definition of a graph of hierarchical plans



	
	and goal relationships. HPlanDef is characterized by a unique root goal (the GoalDef referenced



	
	by HPlanDef::rootGoal), one or more goal decompositions (referenced by HPlanDef::goalDec)



	
	and zero or more goal relationships (referenced by HPlanDef::goalRel). Abstracts the concepts of



	
	task group in TAEMS, operator hierarchy in STEAM, social scheme in MOISE+ and role objective



	
	definition in OPERA.



	GoalDec
	Part of a HPlanDef graph that represents the general concept of goal decomposition, i.e., the 



	
	decomposition of one major goal(GoalDec::goal reference) into one or more minor direct



	
	subgoals(GoalDec::subGoal reference). Abstracts the relationship of subtasks or local effects



	
	in TAEMS, the concept of plan in STEAM and MOISE+, and the subobjective definitions in



	
	OPERA.



	GoalRel
	Part of a HPlanDef graph that represents goal relationships directed from one source goal)



	
	GoalRel::source reference) to one target goal (GoalRel::target reference. Abstracts the



	
	concept of non-local effects (facilitates, enables, etc.) in TAEMS and the depends relation in STEAM.










[image: Table]





Table 3. Functional specification pattern: Contextual constraints.
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	Class
	Auxiliary Definitions





	HPlanDef
	::getAllSubGoal(goal:GoalDef) : Set(GoalDef), a query that returns the set of all subgoals in



	
	which a given goal is direct or indirectly decomposed in the context of a HPlanDef graph, via



	
	goal decomposition referenced by HPlanDef::goalDec



	
	In OCL:



	
	context  HPlanDef

def:  getAllSubGoal(goal : GoalDef) : Set(GoalDef)

= getSubGoal(goal) -> union(

getSubGoal(goal) -> collect (sg | getAllSubGoal(sg)));

def:  getSubGoal(goal : GoalDef) : Set(GoalDef)

= getGoalDec(goal) -> collect (gd | gd.subGoal);

def:  getGoalDec(goal : GoalDef) : Set(GoalDec)

= goalDec(goal) -> serlect (gd | gd.goal = goal);





	
	Contextual Constraints

(1) In the context of a HPlanDef graph, all decompositions of a goal into subgoals must be

reachable from the root goal. In other words, each goal decomposed in subgoals in a

HPlanDef graph is either the root goal itself or a direct or indirect subgoal of the root goal.

In OCL:

context HPlanDef

inv: goalDec -> forAll (gd |root.Goal = gd.goal orgetAllSubGoal(rootGoal) -> includes(gd.goal) )

(2) In the context of a HPlanDef graph, the source and target goals of all goal relationships

must pertain to the collection of subgoals of the root goal of the graph. In other words,

each goal relationship must connect only subgoals of the root goal of a HPlanDef graph.

In OCL:

context HPlanDef

inv: getAllSubGoal(rootGoal) -> includesAll(goalRel -> collect (gr | Set(gr.source, gr.target)))

(3) Restricted to goal decomposition, all HPlanDef graphs must be acyclic. In other words,

in the context of a HPlanDef graph, no goal can be, direct or indirectly, a subgoal of itself.

In OCL:

context HPlanDef

inv: not getAllSubGoal(rootGoal) -> includes(rootGoal)and getAllSubGoal(rootGoal) -> forallAll( sg |not getAllSubGoal(sg) -> includes(sg) )
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Table 4. Structural specification pattern.
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Class

	
Description






	
SSpec

	
Represents the concept of structural specification, i.e., organizational specifications restricted




	

	
to the structural dimension.




	
GroupDef

	
Part of a structural specification that represents a group definition. Each group definition is




	

	
characterized by the declaration of the roles that agents can play in the group (the RoleDef




	

	
referenced by GroupDef::rootDef), and by possible subgroup definitions (referenced by




	

	
GroupDef::subGroup). Abstracts the concepts of group structure in AGR, subteam role in




	

	
STEAM, group specification in MOISE+, and group definition in OPERA.




	
RoleDef

	
Part of a structural specification that represents a role definition. Abstracts the concepts of




	

	
role in AGR, MOISE+, ISLANDER and OPERA, and individual role in STAEMS.




	
RoleRel

	
Part of a structural specification that represents a direct relationship between two roles:




	

	
a source role referenced by RoleRel::source, and a target role referenced by RoleRel::target.




	

	
Abstracts the concept of role constraints in AGR, role relations and inheritance in MOISE+,




	

	
static separation of duties (ssd) and subroles in ISLANDER.




	

	
Auxiliary definitions




	
GroupDef

	
::getAllSubGroup() : Set(GroupDef), a query that returns the set of all group




	

	
definitions that, direct or indirectly, are subgroups of a given GroupDef via




	

	
the GroupDef::subGroup reference. In OCL:




	

	
context  GroupDef

def:   getAllSubGroup( ) : Set(GroupDef)

= subGroup(goal) -> union(

subGroup -> collect (sg | sg.getAllSubGroup()));






	

	
Contextual Constraints

(1) All group definition shall reference at least one role definition or one subgroup definition, or both.

In OCL:

context GroupDef

inv: roleDef -> notEmpty() or subGroup -> notEmpty()



(2) No group definition can be, direct or indirectly, a subgroup of itself, i.e., the group definitions shall

form an acyclic directed graph.

In OCL:

context GroupDef

inv:  not self.getAllSubGroup() -> includes(self)
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Table 5. Dialogical specification pattern: Classes description.
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	Class
	Description





	DSpec
	Represents the concept of dialogical specification, i.e., an organizational specification



	
	restricted to the dialogical dimension.



	SceneGraph
	Part of a dialogical specification that represents the definition of a hypergraph of scenes.



	
	SceneGraph is characterized by one or more scene definitions (referenced by



	
	SceneGraph::sceneDef), and several scene relationships (referenced by SceneGraph::sceneRel).



	
	Among the scenes, there are one initial scene (referenced by SceneGraph::initial) and one



	
	final scene (referenced by SceneGraph:: final). Abstracts the concepts of performance



	
	structure in ISLANDER and interaction structure in OPERA.



	SceneDef
	Part of a hypergraph of scenes that represents the definition of a scene. Each scene definition



	
	is characterized by the declaration of a dialogue script, via reference SceneDef::dialogDef.



	
	Abstracts the concepts of scene definition in ISLANDER and in OPERA.



	SceneRel
	Part of a hypergraph scene that represents a directed relationship from one or more source



	
	scenes (referenced by SceneRel::source), to one or more target scenes (referenced by



	
	SceneRel::target). Abstracts the concepts of scene transitions in OPERA and in ISLANDER.



	DialogDef
	Part of of a dialogical specification that represents the definition of a dialogue script. Abstracts



	
	the concepts of scene protocol in ISLANDER, and interaction pattern in OPERA.
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Table 6. Dialogical specification pattern: Contextual constraints.
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	Class
	Auxiliary Definitions





	SceneGraph
	OCL queries that return immediate predecessors and successors of a scene definition



	
	in the context of a hypergraph of scenes.



	
	context  SceneGraph

def:   getSourceSceneDef(sceneDef : SceneDef): Set(SceneDef)

= getSceneRelHavingTarget(sceneDef) -> collect(sr | sr.source);



def:   getTargetSceneDef(sceneDef : SceneDef): Set(SceneDef)

= getSceneRelHavingSource(sceneDef) -> collect(sr | sr.target);



def:   getSceneRelHavingTarget(sceneDef : SceneDef): Set(SceneRel)

= sceneRel) -> select(sr | sr.target -> includes(sceneDef));



def:   getSceneRelHavingSource(sceneDef : SceneDef): Set(SceneRel)

= sceneRel) -> select(sr | sr.source -> includes(sceneDef));





	
	Contextual Constraints

(1) The initial and final scenes are scenes defined in the context of the same SceneGraph.

In OCL:

context SceneGraph

inv:  sceneDef-> includes(initial) and

inv:  sceneDef-> includes(final)

(2) In a SceneGraph, there should be no relationships arriving at the initial scene or departing

from the final scene. In OCL:

inv: getSceneRelHavingTarget(initial)-> isEmpty() and

inv: getSceneRelHavingSource(final)-> isEmpty()

(3) In a SceneGraph, all scene definitions must directly or indirectly be reachable from the

initial scene as well as lead to the final scene, via the scene relationships. In OCL:

context SceneGraph

inv:  sceneDef-> forAll(sd |

getTargetClosure(Set{initial} -> includes(sd) and

getSourceClosure(Set{final} -> includes(sd))



def:  getTargetClosure(sceneSet : Set(SceneDef)): Set(SceneDef)

= let newSceneSet = sceneSet-> collect(scene |

getTargetSceneDef(scene) -> including(scene)

) in

if sceneSet -> includesAll(newSceneSet)

sceneSet

else

getTargetClosure(newSceneSet)

endif;

def:  getSourceClosure( sceneSet : Set(SceneDef)): Set(SceneDef)

= let newSceneSet = sceneSet-> collect(scene |

getSourceSceneDef(scene) -> including(scene)

) in

if sceneSet -> includesAll(newSceneSet)

sceneSet

else

getSourceClosure(newSceneSet)

endif;

(4) Every scene relationship must only involve scenes defined within the context of the same

SceneGraph. In OCL:

context SceneGraph

inv:  sceneRel-> forAll(sr |

sceneDef -> includesAll(sr.source) and

sceneDef -> includesAll(sr.target))










[image: Table]





Table 7. Normative specification pattern: Class description.
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Class

	
Description






	
NSpec

	
Represents the concept of normative specification, i.e., organizational specifications restricted to the




	

	
normative dimension.




	
NormDef

	
Central part of a normative specification. Represents the definition of a norm. In general, norm




	

	
definitions are characterized by a normative expression (attribute NormDef::normExp) that refers to




	

	
elements found in the structural, functional and dialogical dimensions. The form and meaning of




	

	
the normative expression vary considerably in the organizational models analyzed. Abstracts the




	

	
concepts of deontic relation found in MOISE +, and the particular concepts of norm found in




	

	
ISLANDER and OPERA.
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