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Abstract: Classification responses provided by Multi Layer Perceptrons (MLPs) can be explained by
means of propositional rules. So far, many rule extraction techniques have been proposed for shallow
MLPs, but not for Convolutional Neural Networks (CNNs). To fill this gap, this work presents
a new rule extraction method applied to a typical CNN architecture used in Sentiment Analysis
(SA). We focus on the textual data on which the CNN is trained with “tweets” of movie reviews.
Its architecture includes an input layer representing words by “word embeddings”, a convolutional
layer, a max-pooling layer, followed by a fully connected layer. Rule extraction is performed on
the fully connected layer, with the help of the Discretized Interpretable Multi Layer Perceptron
(DIMLP). This transparent MLP architecture allows us to generate symbolic rules, by precisely locating
axis-parallel hyperplanes. Experiments based on cross-validation emphasize that our approach is
more accurate than that based on SVMs and decision trees that substitute DIMLPs. Overall, rules reach
high fidelity and the discriminative n-grams represented in the antecedents explain the classifications
adequately. With several test examples we illustrate the n-grams represented in the activated rules.
They present the particularity to contribute to the final classification with a certain intensity.

Keywords: CNN; model explanation; rule extraction; sentiment analysis; n-grams

1. Introduction

Artificial neural networks learn by examining numerous examples many times. After training, it is
very difficult to explain their decisions, because their knowledge is embedded within the values of the
parameters and neuron activations, which are at first glance incomprehensible. Deep neural networks
are at the root of the significant progress accomplished over the past five years in areas such as artificial
vision, natural language processing and speech recognition. In addition, a number of studies have been
conducted to clarify the potential of deep models, such as Convolutional Neural Networks (CNNs)
in Sentiment Analysis (SA) [1,2]. Nevertheless, the transparency of bio-inspired models is currently
an open and important research topic, as in the long term, the acceptance of these models will depend
on it. Furthermore, transparency is essential in relation to a recent European General Data Protection
Regulation (GDPR), which also presents a right of explanation. Specifically, when an automated
decision is taken by a system, one has the right to request a meaningful explanation.

Neural networks being considered as black-boxes have been made transparent by techniques that
were first applied to shallow Multi Layer Perceptrons (MLPs). A natural way to explain MLP responses
is through the use of propositional rules [3]. Andrews et al. introduced a taxonomy describing the
general characteristics of all rule extraction methods [4]. Later, a desire to make neural network
ensembles transparent became apparent and several techniques were proposed. Bologna introduced
the Discretized Interpretable Multi Layer Perceptron (DIMLP) to generate symbolic rules from both
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single networks and ensembles [5,6]. The key idea behind rule extraction in DIMLPs is the precise
localization of axis-parallel discriminative hyperplanes [5–8]. A brief explanation is provided in
Section 3.2.

Recently, many works involving deep neural networks have gained momentum. On one hand,
many techniques aiming at explaining CNN decisions in image classification are based on visualization
of areas that are mainly relevant for the outcome [9], but as stated by Rudin [10]: “it does not explain
anything except where the network is looking”. On the other hand, the purpose of several methods
is to learn an interpretable model in the local region close to an input instance [11]. Adadi and
Berrada presented a comprehensive overview of Explainable Artificial Intelligence (XAI), including
neural networks [12]. In addition, a survey on black-box models with its “explanators” is proposed
by Guidotti et al. [13]. The state of the art highlights a lack of global methods aiming at extracting
symbolic rules from CNNs. Local methods could represent good candidate techniques, in order to
define a global algorithm that may aggregate all local models in an ensemble. Currently, the approach
of generating rules from aggregated local models has not been tackled, since ensembles tend to be
more opaque than single models. Note however that it could be carried out by the same technique
used in [6].

In this article we propose a rule extraction technique for a CNN, typically used in Sentiment
Analysis [2] with textual data. Our technique is not restricted to local regions, but it is global to
all the samples of the input space. The layers of this network are: A two-dimensional input layer
representing sentences by means of word embeddings [14]; a convolutional layer; a max-pooling layer;
and finally a fully connected layer. After the training phase, the fully connected layer is replaced
by a DIMLP [7] that makes it possible to generate propositional rules. The DIMLP subnetwork
approximates the fully connected part of the original CNN to any desired precision. The antecedents
of the extracted rules represent maximal responses of convolutional filters. By propagating the rules
back to the input layer, it is possible to determine the discriminative combination of words in the
decision-making process. These words are structured into n-grams that depend on the size of the
convolutional filters. As a result, each antecedent in a rule is given as: “if an n-gram in a sentence is
present and maximal with respect to the list of possible n-grams, then...”. As an example, with the
sentence “Hilarious, touching and wonderfully dyspeptic.”, the following rule with several n-grams is
activated (Symbol “-” separates the words composing an n-gram; it is worth noting that punctuation is
also taken into account.): “if hilarious and hilarious-, and hilarious-,-touching and touching-and-wonderfully
and wonderfully-dyspeptic-. then POSITIVE.

This article extends our recent approach proposed in [15]. Specifically, the rule extraction algorithm
is formalized and more details are provided. The experimental part is now based on cross-validation
with many more examples of extracted rules. We also define a measure that makes it possible to
determine for each rule antecedent its contribution to the final classification. Finally, a comparison
with decision trees and SVMs has been carried out; it shows that our approach is more accurate. In the
following paragraphs, Section 2 illustrates a number of representative works aiming at giving insight
into deep architectures, Section 3 describes the proposed model with the CNN architecture and the
DIMLP subnetwork, then we present the experimental results, followed by the conclusion.

2. Related Work

In the next paragraphs we give a non-exhaustive view of representative works aiming at
explaining deep networks classifications. First, we briefly describe techniques applied to deep networks
different from CNNs. Then, a number of representative methods related to CNNs are described.

2.1. Rule Extraction from Deep Networks without Convolution

Garcez and Tran proposed the first method of rule inference from Deep Beliefs Networks
(DBN) [16]. In this stochastic network model, Boolean formulas were generated from two successive
layers with a certain level of confidence. Overall, rules were generated by chaining down the boolean
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formulas from the output layer to the input layer. Recently, Hayashi trained DBNs and then transferred
the last layer of weights into MLPs having a unique hidden layer [17]. Rules were generated from
shallow MLPs by the Re-RX algorithm [18].

Zilke proposed a rule extraction technique applied to deep networks of stacked
auto-associators [19,20]. Specifically, rules were first generated by decision trees between two
successive layers. Subsequently, rules putting into play the input layer and the output layer were
formed by transitivity. Similarly, in [21,22] the author generated rules from deep DIMLPs based on
stacked auto-encoders.

2.2. Explanation of CNN Classifications

On object recognition problems, Hendriks et al. explained CNN classifications by training
a second network that learns to produce sentences as an explanation feature [23]. Specifically,
it learned to generate sentences that realized a global sentence property by reinforcement learning.
Babiker et al. proposed to generate a heat map from a CNN to localize important regions of the image
for classification [24]. The key idea behind this approach is the use of the Kullback-Leibler divergence
gradient. Lapuschkin et al. introduced Layer-wise Relevance Propagation (LRP) to determine the
inherent reasoning of deep neural networks [25]. In practice, this technique generated heatmaps
of relevant areas contributing to the final classification. Furthermore, the authors characterized
the importance of the context, with respect to targeted objects in images. For medical images,
Holzinger et al. used very deep CNN architectures with residuals [3]. To understand the internal
structure of the trained networks, they proposed to replace the majority of convolutional layers by
AM-FM components (Amplitude Modulation-Frequency Modulation) and to retrain the upper network
layers. Overall, convolution layers were visualized through their frequency coverage.

Zeiler and Fergus presented DeconvNet [26], in which strong activations are propagated
backward to determine parts of the image causing these activations. Mahendran and Vedaldi proposed
an optimization method based on image priors to invert a CNN [27]. As a result, visualizations yielded
insight on the information represented at each layer. Dosovitskiy and Brox proposed to analyze
which data is preserved by a feature representation and which data is discarded [28]. Specifically,
from a feature vector a neural network was trained to predict the expected pre-image, corresponding
to the average image producing the given feature vector.

Several authors proposed to interpret CNNs in the neighborhood of the instances. As an example,
Ribeiro et al. presented LIME (Locally Interpretable Model Agnostic Explanations), whose purpose is
to learn an interpretable model in the local region close to an input instance [11]. A first disadvantage of
this approach is that the data must be transformed into binary format. Secondly, local explanations were
only provided through linear models and their features relevance. Similarly Turner et al. introduced
the Model Explanation System [29]. Basically, by using a Monte Carlo technique, they derived a scoring
system for finding the best explanation. Koh et al. determined the training instances that are the most
important for the prediction [30]. Finally, LORE (Local Rule Based Explanations) learns a local decision
tree on a synthetic neighborhood generated through a genetic algorithm [13]; then, rules are generated
to explain the outcome, as well as counterfactual rules.

Frosst and Hinton proposed to use a CNN to train a particular decision tree that imitates the
input-output associations found out by the trained CNN [31]. Nevertheless, the decision tree did not
explain the network logic, clearly. As an improvement, Zhang et al. proposed a decision tree to explain
CNN predictions at the semantic level [32]. Specifically, the decision determines with respect to image
recognition tasks, which filters are activated by objects parts and how much they contribute to the final
classification. Overall, their technique provided an approximate explanation of CNN classifications.

The Explanation of CNNs responses in text classification has been rarely explored, as stated in [33].
The authors show that one-dimensional convolution filters can be associated to different semantic
classes of n-grams. Moreover, the max-pooling layer is able to separate important n-grams. In [34] the
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Layer-wise Relevance Propagation (LRP) estimates which individual words are relevant to the overall
classification decision.

2.3. Differences and Similarities with Our Approach

Many approaches aiming at explaining CNN classifications are based on the visualization of
image areas that are mainly relevant to the result. A recent survey on this topic is presented in [9].
Guidotti et al. present a comprehensive survey of techniques aimed at elucidating deep neural
networks [13]. In their view, explanators of black-box models include decision trees, symbolic rules
but also other entities like: Features Importance (FI) and Sensitivity Analysis. Specifically, the latter
allows the inspection of the black-box by observing changes in the classification result when varying
inputs. FI is a measure representing the importance of the inputs, which is very often related to the
coefficients resulting from trained linear models. Note that both Sensitivity Analysis and FI highlight
specific properties of the model, without necessitating an overall understanding of it.

Our ultimate goal is to determine propositional rules, because they are close to the logic used
by humans. Moreover, with the use of symbolic rules, discrimination between different classes is
explained through rule antecedent values. This is much more precise than simply characterizing
the relevant image subregions, because the way in which discrimination between different classes
is carried out is undetermined [10]. The main difference between our method and the most recent
techniques described in [12,13] aiming at generating decision trees or symbolic rules from deep neural
networks is that our method is global and the others are local.

With respect to the taxonomy introduced by Andrews et al. [4] describing the general
characteristics of all rule extraction methods, pedagogical techniques would be able to potentially
generate symbolic rules from any neural network architecture (globally or locally). Specifically,
a pedagogical method learns the associations between the input layer and the classification responses
of the black-box model, without taking into account the values of its weights. Subsequently, rules can be
generated, since the model that has been trained to recognize input-output associations is transparent.
Examples of pedagogical techniques are reported in [35,36]. Despite their potential, pedagogical
techniques have been applied to deep architectures like CNNs, very rarely [31]. It is worth noting that
our rule extraction technique is not pedagogical, since it belongs to the ‘eclectic’ category [4].

Eclectic techniques are both pedagogical and decompositional. The latter category involves that
the transparent model is generated by analyzing weight values of the neural network model. Note that
the majority of decompositional techniques suffers from exponential algorithmic complexity [6].
As a result, in many cases a pruning step is carried out to reduce the number of weights. Hence,
it seems very difficult to apply decompositional algorithms to CNN architectures. DIMLP rule
extraction method has polynomial algorithmic complexity [8]. It is eclectic because weights of the first
hidden layer define possible rule antecedents. In a second step these rule antecedents are confirmed or
rejected in the rules by a pedagogical algorithm.

3. Proposed Model

3.1. CNN Architecture

A CNN architecture is composed of several successive layers of neurons. Specifically, in this work
we use:

• a two-dimensional input layer;
• a convolutional layer;
• a max-pooling layer;
• a fully connected layer.
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This network model shown in Figure 1 is very similar to that proposed in [2]. The only structural
difference is the number of fully connected layers, which is equal to one in this work and equal to two
in Figure 1. The different layers are described with more details in the following paragraphs.

Output Layer

2D Input

Convolutional Layer Max Pooling Layer

Figure 1. The Convolutional Neural Networks (CNN) architecture used in this work. From left to right
are shown a two-dimensional input layer, a convolutional layer, a max-pooling layer, and an output
layer which is fully connected.

3.1.1. Two-Dimensional Input Layer

A two-dimensional input layer is used to encode text. As shown by Figure 2, several words are
represented on the vertical axis. Horizontally, a single word could be viewed as a boolean vector with
zeros everywhere, except for a component whose value is equal to one. However, a drawback is the
fact that thousands of components are typically required. A more parsimonious coding is achieved
by word embeddings [14]. Specifically, a word is not anymore a boolean vector, but a vector with
continuous values of typical size equal to 300. It is worth noting that the dimensionality of word
embeddings is often between 100 and 300. As stated in [37], 300 is one of the most adopted sizes in
various studies.

Figure 2. Representation of text by a matrix of real numbers. A word is represented on the horizontal
axis by word embeddings, while vertically several words are expressed.

3.1.2. Two-Dimensional Convolutional Layer and Max-Pooling Layer

A key element in CNNs is based on the convolution operator. Given a two-dimensional kernel
wp,q of size PxQ and a data matrix of elements xa,b, the calculation of an element cij of the convolutional
layer is

cij = f (
P

∑
p

Q

∑
q

wp,q · xi+p,j+q + bp,q); (1)
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with f a transfer function and bp,q the bias. As a transfer function we use a hyperbolic tangent:

tanh(x) =
exp(2x)− 1
exp(2x) + 1

. (2)

We define Sp and Sq as the stride parameters along the horizontal and vertical axis between two
successive convolutions. In this work Sp = Sq = 1. Moreover, we require the kernel to be completely
inside the sample matrix (without zero padding). As an example, with data samples of size 6 × 6 and
P = Q = 3, the resulting convoluted map has size 4 × 4.

Figure 3 illustrates a particular case of convolution with respect to a text matrix of size 7 × 5
and a kernel of size 4 × 5. This kernel moves over the text matrix, carrying out an element-wise
multiplication with the part of the data it is currently on. This is repeated by sliding down the
kernel by one position, vertically. Hence, the result of convolution is a vector of four components.
“Wide convolution” is the denotation when the horizontal size of the kernel is equal to the horizontal
size of the data matrix. With wide convolution, the size of a kernel is defined as its vertical size.
For instance, in Figure 3 the kernel size is equal to four.

Figure 3. Wide convolution: The number of columns of the kernel is equal to the number of columns
of the text matrix. The result of convolution (showed after the arrow) is a vector.

A remarkable relationship is fulfilled between the size of the kernels and the number of
consecutive words taken into account by the convolution operator. Since the size of a kernel is
the number of components on the vertical axis, it corresponds to the number of consecutive words
processed at any position in a sentence. As an example, three consecutive words are denoted as
’trigrams’ and can be detected by kernels of size three. Similarly, two consecutive words are called
’bigrams’ and can be taken into account by kernels of size two. Finally, to emphasize single words it is
possible to define filters of size one.

The max-pooling layer reduces the size of a vector or a matrix by applying a “Max” operator over
non-overlapping regions. Figure 4 illustrates in the left a number of vectors obtained after convolution.
From each vector the maximal value is extracted and concatenated in a new layer, which enables
n-gram position invariance.
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Figure 4. The max-pool operator: The maximal value of each vector in the left is selected and
concatenated in a new layer denoted as the “Max-pooling” layer (right most vector).

3.1.3. Fully Connected Layer

In this work, a unique fully connected layer of weights follows the max-pooling layer. First, a dot
product of sl scalars is calculated:

sl = ∑
k
(vkl ·mk). (3)

Symbol mk represents vector components of the max-pooling layer and vkl is a matrix term of
weight coefficients, the bias being included in the sum. Then, a Softmax activation function is applied.
Specifically, for a number N of si scalars it calculates an N-dimensional vector with values between 0
and 1:

ol =
exp(sl)

∑k exp(sk)
; (4)

with ol as the activation of a neuron in the output layer. The architecture of the CNN used in this work
is summarized in Table 1. Specifically, I designates the input layer, C represents the convolutional
layer with 40 kernels for each size (this value has been fixed empirically, without trying to reach
the possible best predictive accuracy). (C1, C2, C3), M is the max-pooling layer (120 neurons), and O
designates the output layer including two neurons. Each word is coded in a vector of 300 components,
with a maximum number of words per sample equal to 59.

Table 1. CNN architecture. Symbols for each layer are specified in the second row and sizes in the last.

Input Convolution Max-Pooling Layer Output

I C = (C1, C2, C3) M O
59 × 300 1 × 300 × 40 2 × 300 × 40 3 × 300 × 40 120 2

To train the network, the loss function is the cross-entropy (J); here we give its version for
two classes:

J(W) = −∑
p

∑
l

[
t(p)
l log(o(p)

l ) + (1− t(p)
l ) log(1− o(p)

l )
]

. (5)

Symbol W represents all the network weights, index p is related to training samples, index l
designates an index for the neurons of the output layer, o(p)

l is the activation of an output neuron,

and t(p)
l represents a target value.
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3.2. The DIMLP Model

DIMLP differs from a standard MLP in the number of connections between the input layer and
the first hidden layer. Specifically, any hidden neuron receives only a connection from an input neuron
and the bias neuron, while all other layers are fully connected [7]. The activation function above the
first hidden layer of a typical DIMLP is a sigmoid function given as:

σ(x) =
1

1 + exp(−x)
. (6)

For the first hidden layer a step function or its generalization corresponding to a staircase
activation function is used. For simplicity, we first give the step function τ(x), which is a particular
case of the staircase function with only one step:

τ(x) =

{
1 if x > 0;
0 otherwise.

(7)

The key idea behind rule extraction from DIMLPs is the precise localization of axis-parallel
discriminative hyperplanes. In other words, the input space is split into hyper-rectangles representing
propositional rules. Specifically, the first hidden layer creates for each input variable a number of
axis-parallel hyperplanes that are effective or not, depending on the weight values of the neurons
above the first hidden layer. As an example, Figure 5 illustrates an elementary DIMLP network with
a hidden neuron, a weight w between the input neuron and the hidden neuron and a bias b between the
bias neuron and the hidden neuron. Because of the step function as the activation of the hidden neuron,
a potential hyperplane discriminator lies in −b/w. It will depend on the layers above the first hidden
layer, whether the hyperplane discriminator will be effective or not. Generally, these hyperplanes are
parallel to the axis of the input neurons. Hence they represent possible rule antecedents.

The starting point of the rule extraction algorithm is the list of all potential hyperplane
discriminators. The number of these hyperplanes depends on the number of stairs in the staircase
activation function. Then, a decision tree is built and rules are generated from each tree path. Typically,
at this stage the number of rules and antecedents is too large. Hence, a greedy algorithm progressively
removes antecedents and rules. More details on the rule extraction algorithm can be found in [8].

w

b

1

x

h

y

Figure 5. A Discretized Interpretable Multi Layer Perceptron (DIMLP) network that potentially creates
a discriminative hyperplane in −b/w. The activation function of the hidden neuron is a step function,
while for the output neuron it is a sigmoid.

Since the CNN defined in the previous Section is trained with a Softmax function in the output
layer (cf. Equation (4)), we replace the sigmoid by it. As stated previously, the activation function
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in the first hidden layer of DIMLPs is a staircase function S(x), with Θ stairs that approximate the
Identity function (I(x)) on a compact interval:

I(x) = x; (8)

S(x) = Rmin, if x ≤ Rmin; (9)

Rmin represents the abscissa of the first stair. By default Rmin = −1.

S(x) = Rmax, if x ≥ Rmax; (10)

Rmax represents the abscissa of the last stair. By default Rmax = 1. Between Rmin and Rmax, S(x) is:

S(x) = I(Rmin +

[
θ · x− Rmin

Rmax − Rmin

]
(

Rmax − Rmin
θ

)). (11)

Square brackets indicate the integer part function, with θ = 1, . . . Θ. The approximation of the
Identity function by a staircase function depends on the number of stairs Θ. The larger the number of
stairs the better the approximation.

3.3. The Interpretable CNN Architecture

The interpretable CNN architecture used in this work is illustrated in Table 2. Its layers are:
I-C-M-H-O, with a DIMLP subnetwork included in layers M-H-O. Rule extraction is performed after
the training of a CNN with layers I-C-M-O. Note that the CNN with layers I-C-M-H-O is not trained.
Specifically, the weight matrix between layers M and O of the trained CNN is transferred to layers H
and O of the CNN with layers I-C-M-H-O. Because of the Identity function between M and H, network
I-C-M-H-O approximates network I-C-M-O to an arbitrary precision that depends on the number of
stairs of the staircase activation function. Hence, rules can be generated from the DIMLP subnetwork.
Yet, rule antecedents are related to layer M representing filter values. From that layer, discriminative
combinations of words represented in the input layer have to be determined (see below).

Table 2. Interpretable CNN architecture with symbols and sizes.

Input Conv. Max-Pooling Layer DIMLP Hid. Layer Output

I C = (C1, C2, C3) M H O
59 × 300 1 × 300 × 40 2 × 300 × 40 3 × 300 × 40 120 120 2

Figure 6 depicts an example going from a tweet to a rule. First, each word of a sentence is
provided to the input layer as horizontal vectors of numbers. Subsequently, these vectors are convolved
by the convolutional layer; note that each rectangle on this layer represents a convolution filter.
After convolution, the max-pooling layer takes over; its role is to simplify the processed data by
retaining maximal values. From this layer to the output layer we have a DIMLP subnetwork. Hence,
the extracted rule antecedents represent activation values of the the Max-Pooling layer. For clarity,
those which are not represented in the rule at the bottom are left blank. Finally, the correspondence
between antecedents and n-grams is shown at the bottom; the algorithm described below allows us to
determine them.
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Max−Pooling Layer

Convolutional Layer

a

warn
,

engaging

funny
,

film
.

2D Input

DIMLP Hidden Layer

Output Layer

0.9

0.1

0.2

0.3

0.6

0.4

0.3

0.2

0.3

0.4

0.6

0.3

m2

m4

m7

m8

m9

Positive Class

Negative Class

if (m2<0.3) and (m4>0.2) and (m7>0.2) and (m8 > 0.4) and (m9 > 0.1) then Positive

engaging engaging−film engaging−film−.funny−,−engaging warm−,−funny

Dimlp subnetwork

Figure 6. Flow of data in the interpretable CNN (see the text for more details).

Generally, many rule extraction techniques generate ordered rules, which means that rules are
given in a sequential order, with two consecutive rules linked by an “else” statement. A long list
of ordered rules involve many implicit antecedents that makes the interpretation difficult. Rules
generated from the DIMLP subnetwork (M-H-O) are unordered. With this type of rules, the “else”
statement is absent. Thus, each rule is considered as a single piece of knowledge that can be examined
in isolation [38].

Each rule antecedent related to the max-pooling layer is given as a < t, or a ≥ t. Since a rule
antecedent can be true with one or more n-grams in the input layer, it involves a disjunction of n-grams
(one or more n-grams connected by a logical or). Nevertheless, for a given sample and with the use
of the “Max” function in the M layer, a unique n-gram becomes dominant (the one with the highest
activation). Before giving an algorithm that allows us to determine discriminative n-grams for a given
sample, let us define several sets and variables:

• G: Set of n-Grams generated from a dataset;
• R: Set of rules (with respect to layer M);
• Ri: A rule in R;
• Aij: An antecedent in Ri; specifically Aij = (mj < cij) or Aij = (mj ≥ cij), with mj designating

a neuron in the M layer and cij ∈ <;
• Sk: A sample covered by Ri;
• H: Set of n-Grams generated from Sk;
• Γ: Set of sought discriminative n-grams (Γ ⊆ H);
• act(.): The activation(s) of a specified neuron in layer M, with respect to one or more inputs in the

input layer.

It is worth noting that with this CNN architecture the activation of neuron mj in the M layer
depends solely on kernel Kj in the C layer. Hence, given a sample Sk covered by Ri and its set
of n-grams H, each discriminative n-gram related to antecedent Aij is found by characterizing the
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n-gram (in H) activating neuron mj the most. Given Ri and Sk, the following algorithm generates
discriminative n-grams:

1. Γ = ∅
2. For all Aij ⊂ Ri loop (w.r.t variable j)
3. Gj =

{
g ∈ G

⋂
H | Aij is true

}
4. Fj =

{
x ∈ <q | q =

∣∣Gj
∣∣ , x = act(Gj) for neuron mj

}
5. f ∗j = max(Fj)

6. g∗j =
{

g ∈ Gj | f ∗j = act(g) for neuron mj
}

7. Γ = Γ
⋃

g∗j
8. end loop

For clarity let us explain the different steps of the algorithm specified above. First, its result
will be stored in Γ, which is initialized as an empty set. Secondly, a main loop that iterates on all
rule antecedents is defined. Subsequently, in step three, for each rule antecedent Aij we determine
the n-grams of Sk (a sample) that makes Aij true. Then, for each antecedent Aij the purpose is to
determine the n-gram involving the highest activation of neuron mj in the M layer (steps four to six).
For instance, with the antecedent f113 ≥ 0.24 of a particular rule generated from an interpretable CNN
and a sentence given as “a real movie, about real people, that gives us a rare glimpse into a culture
most of us don’t know”, four trigrams makes the antecedent true:

1. “culture most of” (0.251715)
2. “rare glimpse into” (0.257523)
3. “into a culture” (0.273310)
4. “us a rare” (0.311517)

the number after each trigram is the activation value of the 113th neuron in the M layer. The fourth
trigram provides the highest activation, hence it is the detected trigram. Generally, it is plausible to
obtain a global view of each extracted rule by characterizing for each antecedent its winning n-grams
with respect to all the covered samples.

For a given rule antecedent and a given sample, it is useful to determine the linear contribution of
each winning n-gram g∗j , with respect to the final classification. Specifically, this measure corresponds
to the product of the filter activation in the M-layer multiplied by the weight connecting the neuron
of highest activation in the output layer. The output neuron of strongest activation indicating the
class, a positive value of this measure means that the n-gram contributes in favor of the classification,
while a negative value is against it. The linear contribution is given as a function:

LC(g∗j ) = vk · act(g∗j ); (12)

with act(g∗j ) designating the activation of a neuron mk in the M layer and vk corresponding to a weight
between mk and the output layer (the one related to the neuron of highest activation).

4. Experimental Results

In this section, we first present the general results on the accuracy of CNNs based on
cross-validation. Secondly, Decision Trees (DTs) [39] are trained with CNN prediction classes instead
of the true label. Thirdly, CNNs are compared to Support Vector Machines (SVMs) [40]. Subsequently,
we replace DIMLP subnetworks by DTs. Then, representative examples of rules extracted from CNNs
are shown. They emphasize how discriminative n-grams intuitively explain “tweet” classifications.
Finally, we illustrate with two examples how to inspect rules, globally.
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4.1. General Results

A CNN including a convolutional layer with 120 kernels of size one, two and three was defined
empirically (cf. Section 3.1.3). Note that our purpose was not to find the best possible CNN architecture,
but rather to create an acceptable CNN in terms of performance and then to generate rules to
explain classifications. Training was performed with Lasagne libraries, version 0.2 [41]. The training
parameters were:

• learning rate: 0.02;
• momentum: 0.9;
• dropout = 0.2;

To illustrate the results of rule extraction, we applied the CNN architecture defined
above to a well-known binary classification problem related to “tweets” of movie reviews [42].
The characteristics of the dataset are:

• number of samples: 10,662;
• maximal number of words in a “tweet”: 59;
• positive sentiment samples: 5331;
• negative sentiment samples: 5331;
• single words: 21,426;
• bigrams: 111,590;
• trigrams: 174,628.

The positive and negative subsets have been divided into 10 folds, in order to carry out ten-fold
cross validation trials. Moreover, a randomly selected subset of the training set representing 10% of it
was extracted as a tuning set for early-stopping [43], which is useful to avoid over-training. Table 3
illustrates the results. The first row of this Table is related to the original CNN, while the other ones
provide results obtained by interpretable CNNs, which depend on the number of stairs in the staircase
activation function. Columns from left to right designate:

• average train accuracy;
• average predictive accuracy on the testing set;
• average fidelity, which is the degree of matching between generated rules and the CNN;
• average predictive accuracy of the rules;
• average predictive accuracy of the rules when rules and CNN agree;
• average number of extracted rules;
• average number of rule antecedents.

Table 3. Average results based on cross-validation. The models are CNNs and interpretable CNN
approximations with varying numbers of stairs in the staircase activation function. Standard deviations
are given between parentheses.

Tr. Acc. Tst. Acc. Fid. Rul. Acc. (1) Rul. Acc. (2) #Rul. #Ant.

CNN 82.1 (1.3) 74.1 (1.1) – – – – –
CNN (Θ = 100) 82.1 (1.3) 74.1 (1.1) 95.3 (0.6) 73.7 (1.0) 75.1 (1.0) 651.7 (53.1) 5368.9 (379.3)
CNN (Θ = 200) 82.2 (1.4) 74.1 (1.0) 95.8 (0.4) 73.7 (1.0) 74.9 (1.0) 573.8 (49.0) 5040.7 (354.0)
CNN (Θ = 500) 82.1 (1.4) 74.1 (1.1) 95.6 (0.8) 73.6 (1.0) 75.0 (0.9) 566.1 (28.0) 4980.7 (364.5)

The average predictive accuracy of the rules is slightly lower than that obtained by the CNN
(73.7% versus 74.1%, for the best result). Moreover, average fidelity on the testing set is above 95%,
meaning that rules explain CNN responses in a large majority of cases. Finally, the best average
predictive accuracy of the rules when rules and model agree is higher than that obtained by the CNN
(75.1% versus 74.1%).
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As a baseline, a simple pedagogical technique aiming at explaining CNN predictions is
represented by a DT that learns training samples with CNN prediction classes, instead of true labels.
Table 4 illustrates the results obtained by cross-validation. The λ parameter, which is the minimum
number of samples required to be at a leaf node makes it possible to control the size of the trees.
The number of nodes of a tree is in turn related to the proportion of learned training samples. It is
worth noting that the fidelity on the training samples decreases when λ is increased. Moreover,
the average predictive accuracy is never above 60%, the average fidelity being always below 63%.
On one hand, this performance is substantially lower than that obtained by interpretable CNNs
with DIMLP subnetworks (see Table 3). On the other hand, with λ ≥ 10, a lower number of rules
are generated.

Table 4. Average results obtained by Decision Trees (DTs) trained to learn datasets with CNN targets,
instead of true labels. Columns from left to right represent average results on: Training accuracy; predictive
accuracy; fidelity on the training set; fidelity on the testing set; number of extracted rules; and number of
antecedents in the rules. In the rows, the λ parameter controlling the size of the trees varies.

Tr. Acc. Tst. Acc. Tr. Fid. Tst Fid. #Rul. #Ant.

DT (λ = 1) 82.1 (1.3) 57.5 (1.4) 100.0 (0.0) 60.9 (0.8) 797.9 (16.9) 10,354.3 (704.6)
DT (λ = 5) 78.6 (1.1) 57.9 (0.9) 94.3 (0.2) 61.0 (1.0) 615.7 (6.4) 7134.4 (304.6)
DT (λ = 10) 75.6 (0.8) 58.4 (1.3) 89.1 (0.2) 61.4 (1.3) 456.8 (7.4) 4863.7 (149.3)
DT (λ = 15) 73.3 (0.7) 58.5 (1.4) 85.4 (0.4) 61.6 (0.8) 362.2 (5.6) 3666.2 (116.4)
DT (λ = 20) 71.9 (0.6) 58.5 (1.5) 82.9 (0.3) 61.5 (2.2) 299.5 (4.5) 2904.5 (86.4)
DT (λ = 25) 70.6 (0.6) 58.6 (1.6) 81.1 (0.4) 61.4 (1.8) 253.9 (3.5) 2363.1 (71.6)
DT (λ = 30) 69.8 (0.6) 59.3 (1.0) 79.8 (0.4) 62.1 (1.8) 222.7 (4.4) 2015.9 (52.1)
DT (λ = 35) 69.0 (1.0)) 59.3 (1.6) 78.5 (0.4) 62.5 (1.5) 194.4 (4.2) 1707.9 (64.1)
DT (λ = 40) 68.5 (0.7) 59.7 (1.8) 77.4 (0.3) 62.3 (1.4) 173.9 (3.8) 1482.8 (42.4)
DT (λ = 50) 67.6 (0.6) 59.6 (1.1) 75.9 (0.4) 62.7 (1.2) 143.8 (2.7) 1168.4 (31.5)

We may wonder about replacing the DIMLP subnetwork in interpretable CNNs by Decision Trees,
from which rules can be extracted. Note that a decision tree can be viewed as a set of rules, with each
rule represented by a path going from the root to a leaf. Table 5 illustrates the results with respect to
the extracted rules, by varying the λ parameter. The best average predictive accuracy is equal to 68.6%,
which is much lower that that obtained by CNNs with the DIMLP subnetwork (68.6% versus 73.7%).
An intuitive reason explaining this result is that the fully connected layer of the original CNN is better
approximated by DIMLPs than DTs. However, DTs generate a significant smaller number of rules,
on average: 201.8 versus 573.8.

Table 5. Average results obtained by the rules generated from Decision Trees that replace the fully
connected layer of CNNs. Columns from left to right represent average results on: Training accuracy;
testing accuracy; number of extracted rules; number of antecedents in the rules. In the rows, the λ

parameter controlling the size of the trees varies.

Tr. Acc. Tst. Acc. #Rul. #Ant.

DT (λ = 1) 100.0 (0.0) 66.0 (1.6) 943.2 (23.6) 11,160.8 (367.7)
DT (λ = 5) 93.4 (0.2) 66.8 (1.4) 640.0 (16.3) 6710.8 (191.2)
DT (λ = 10) 89.0 (0.3) 67.0 (1.4) 450.4 (9.3) 4414.5 (97.7)
DT (λ = 15) 86.5 (0.4) 67.6 (1.1) 342.6 (5.6) 3198.0 (60.5)
DT (λ = 20) 84.8 (0.4) 68.0 (1.0) 276.8 (7.4) 2483.2 (69.9)
DT (λ = 25) 83.6 (0.4) 67.9 (1.3) 234.6 (4.7) 2043.1 (38.4)
DT (λ = 30) 82.7 (0.4) 68.6 (0.9) 201.8 (4.2) 1704.5 (38.1)
DT (λ = 35) 82.0 (0.5) 68.3 (1.1) 178.0 (3.5) 1468.0 (40.1)
DT (λ = 40) 81.3 (0.5) 68.3 (1.2) 159.1 (3.5) 1281.6 (29.0)

Support Vector Machines are usually very competitive with very highly dimensional classification
problems. Here we have 17,700 (59 ∗ 300) input variables for each sample; thus, a natural question is
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whether SVMs perform better than CNNs. Due to the high input dimensionality it is recommended
to use linear SVMs. Table 6 present the results by varying the C parameter, which controls the
proportion of misclassified training samples [44]. The best average predictive accuracy is less than that
obtained by interpretable CNNs (70.6% versus 73.7%). A question arising is whether this difference is
statistically significant.

Table 6. Average results obtained by Support Vector Machines (SVMs). Each row illustrates the
accuracy results with respect to the C parameter.

Tr. Acc. Tst. Acc.

SVM (C = 0.005) 75.1 (0.1) 70.5 (1.4)
SVM (C = 0.01) 77.1 (0.2) 70.6 (1.3)
SVM (C = 0.05) 81.6 (0.2) 70.2 (0.8)
SVM (C = 0.1) 83.6 (0.3) 69.9 (1.0)
SVM (C = 0.5) 88.6 (0.2) 68.1 (0.9)
SVM (C = 1) 90.7 (0.2) 67.5 (0.9)

A multiple statistical comparison test is performed to find out whether average predictive
accuracies are significantly different. With an ANOVA statistical test we aim at determining whether
all the models used here obtain the same average predictive accuracy against the alternative hypothesis
that they are not all the same. In other words, the null hypothesis states that the means are all
equal. For this statistical test we define a significance level equal to 0.01, which involves a 1% risk of
concluding that a difference exists when there is no actual difference. Not surprisingly, ANOVA rejects
the null hypothesis that all model average predictive accuracies are equal (p-value = 3.1252 · 10−59).

At this point it is within reach to compare a subset of the models, such as the SVMs related
to their highest average predictive accuracy and interpretable CNNs. These results are shown in
Table 7. The small p-values involve that with very high probability the predictive accuracy of the rules
generated from each interpretable CNN is significantly different from the one measured on SVMs
with C parameter equal to 0.01. Similar results are illustrated in Table 8, with respect to SVMs with C
parameter equal to 0.005.

Table 7. ANOVA comparison between CNNs and SVMs providing the better average predictive
accuracy (equal to 70.6%).

CNN Rul. Acc. (Average) CNN Rul. Acc. (Median) p-Value

CNN (Θ = 100) and SVM (C = 0.01) 73.7 73.8 1.0946 · 10−6

CNN (Θ = 200) and SVM (C = 0.01) 73.7 73.6 9.6623 · 10−7

CNN (Θ = 500) and SVM (C = 0.01) 73.6 73.9 1.5288 · 10−6

Table 8. ANOVA comparison between CNNs and SVMs providing the second better average predictive
accuracy (equal to 70.5%).

p-Value

CNN (Θ = 100) and SVM (C = 0.005) 8.8375 · 10−7

CNN (Θ = 200) and SVM (C = 0.005) 8.4786 · 10−7

CNN (Θ = 500) and SVM (C = 0.005) 1.0091 · 10−6

4.2. Examples of Detected N-Grams from the Rules

First, rules are expressed with antecedents given as filter responses. Then, n-grams are determined
from the antecedents. Specifically, the truthfulness of the antecedents involve long lists of n-grams.
Nevertheless, for a given sample and a given rule antecedent, only a unique n-gram “wins the
competition” (cf. Section 3.3). Rules are ranked according to their support with respect to the training
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set, which corresponds to the number of covered samples. Finally, rules are not disjointed, which means
that a sample can activate more than a rule.

4.2.1. Discriminative N-Grams Determined from R26

We first illustrate rule number 26 (R26), with support equal to 464 samples with respect to the
training set and 47 samples with respect to the testing set:

• (m35 < 0.24) (m54 ≥ 0.16) (m77 < 0.22) (m98 ≥ 0.18) (m112 ≥ 0.12) (m120 < 0.1)
Class = NEGATIVE

Here, mi (i = 1, . . . 120) designates neuron activations in the max-pooling layer. Indexes between
one and 40 are related to single words, those between 41 and 80 correspond to bigrams, and those
between 81 and 120 involve trigrams. The accuracy of this rule is 93.3% on the training set and 87.2%
on the testing set.

In the following Figures are depicted examples of “tweets” belonging to the testing set and
including the discriminative n-grams, ranked according to the linear contribution in the output layer
(cf. Equation (12)). Figure 7 shows a correctly classified “tweet” related to R26. Single words, bigrams
and trigrams are illustrated vertically. A “*” or a “+” designates a repeated n-gram, since two different
antecedents are able to code the same n-gram. In Figure 7 “too-bad-the” is a trigram, “too-bad” is
a bigram and “style” is a single word. Note that “style” and “style-.” (punctuation is also coded in
word embeddings) are against the final classification. The most contributing n-gram is “too-bad-the”,
which appears twice. In this case, all n-grams containing “bad” contribute to the negative polarity.
This fact is also in agreement with our common sense.

-0.05 0 0.05 0.1 0.15 0.2

too-bad-the

too-bad

too-bad-the*

bad-the-film's

style

style-.

Figure 7. N-grams determined from R26 and the following “tweet” (in the testing set): “it is just too
bad the film’s story does not live up to its style”. On the vertical axis are represented the n-grams
classified according to their linear contribution. Negative values are against the final classification,
while positive values are in its favor. The sum of the n-grams linear contributions is 0.435.

Figure 8 illustrates another example in which the most contributing n-gram to the final
classification is a trigram: “mediocre-special-effects”. Note that this is also in accordance with our
perception. Bigram “worst-of” is the second most contributing n-gram. Surprisingly, single word
“worst” is almost neutral with respect to the final classification.
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0 0.05 0.1 0.15

mediocre-special-effects

worst-of

of-mediocre-special

dialogue-,-fluxing

worst

dialogue-,

Figure 8. N-grams determined from R26 and the following “tweet”: “a zippy 96 min of mediocre
special effects, hoary dialogue, fluxing accents, and—worst of all—silly-looking morlocks”. The sum of
the n-grams linear contributions is 0.302.

Figure 9 shows that the most discriminative n-gram is trigram “so-mind_numbingly-awful”,
then follows bigram “so-mind_numbingly”. Note also that three n-grams are against the final
classification. Among them, single word “as” is the strongest element in contradiction with the
final classification.

-0.05 0 0.05 0.1 0.15

so-mind-numbingly-awful

so-mind-numbingly

mind-numbingly-awful-that

time-,-as

movies-are

as

Figure 9. N-grams determined from R26 and the following “tweet”: “so mind-numbingly awful that
you hope britney won’t do it one more time, as far as movies are concerned”. The sum of the n-grams
linear contributions is 0.211.

As a last example for rule R26, we can see in Figure 10 that trigram “just-bad-;” and bigram
“just-bad” are the most contributing n-grams. Again, “as” is the strongest element in favor of the
positive polarity (thus, in contradiction with the “tweet” classification).
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-0.05 0 0.05 0.1 0.15 0.2

just-bad-;

just-bad

was-,-as

was-,-as*

wasn't-just

as

Figure 10. N-grams determined from R26 and the following “tweet”: “the tuxedo wasn’t just bad;
it was, as my friend david cross would call it, hungry-man portions of bad.” The sum of the n-grams
linear contributions is 0.283.

4.2.2. Discriminative N-Grams Determined from R24

As a second rule, R24 is:

• (m29 < 0.18) (m54 < 0.26) (m93 < 0.16) (m95 < 0.18) (m110 ≥ 0.22) (m113 ≥ 0.24) (m118 < 0.20)
Class = POSITIVE

Its accuracy is 93.4% on the training set with support equal to 469 samples and 98.0% on the
testing set, with support equal to 51 samples. Figure 11 depicts a covered “tweet” in the testing set.
The most important n-gram is trigram “has-a-subtle”, which is evoked by two different antecedents.
Moreover, n-grams related to “it’s over” are associated to negative polarities.

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

has-a-subtle*

has-a-subtle

way-of-getting

it's

it's-over-.

it's-over-.*

it's-over

Figure 11. N-grams determined from R24 and the following “tweet”: “it has a subtle way of getting
under your skin and sticking with you long after it’s over”. The sum of the n-grams linear contributions
is 0.260.

In Figure 12, we illustrate a “tweet” that is more difficult to classify, since it starts in
a rather negative manner and then becomes strongly positive. As a consequence, the CNN detects
a considerable number of negative elements. Four n-grams are not in favor of the correct classification,
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with two of them including “not”. Overall, the contribution of the positive parties is stronger,
with a strongest trigram related to two different antecedents (“offers-gorgeous-imagery”).

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

offers-gorgeous-imagery*

offers-gorgeous-imagery

filmmaker's-latest-effort

is-not

effective

effort-is-not

though-the-controversial

Figure 12. N-grams determined from R24 and the following “tweet”: “though the controversial korean
filmmaker’s latest effort is not for all tastes, it offers gorgeous imagery, effective performances, and an
increasingly unsettling sense of foreboding.” The sum of the n-grams linear contributions is 0.251.

Figure 13 illustrates a short “tweet”. Two trigrams appear twice and surprisingly single
word “entertaining” contributes negatively to the final class. In Figure 14 the strongest
n-gram is: “beautifully-accomplished-lyrical”, which is very complimentary. Curiously, bigram
“beautifully-accomplished” is slightly negative in its contribution to the final class. This would
indicate a defect in the classifier, as well as “entertaining” in the previous “tweet”. An explanation
for the negative connotation of this single word would be that it appears 31 times in the dataset of
negative “tweets”. Finally, Figure 15 illustrates a testing case, which is wrongly classified by the CNN,
but correctly classified by R24. Here, “is-a-feast” is the only element that contributes positively to
the classification.

-0.05 0 0.05 0.1 0.15 0.2 0.25

thoughtful-,-provocative

provocative-and-entertaining*

provocative-and

and-entertaining-.

provocative-and-entertaining

and-entertaining-.*

entertaining

Figure 13. N-grams determined from R24 and the following “tweet”: “thoughtful, provocative and
entertaining”. The sum of the n-grams linear contributions is 0.398.
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-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

beautifully-accomplished-lyrical

it's-a-beautifully

meditation-on-a

and-vulnerable-characters

chelsea-hotel-.

it's

beautifully-accomplished

Figure 14. N-grams determined from R24 and the following “tweet”: “it’s a beautifully accomplished
lyrical meditation on a bunch of despondent and vulnerable characters living in the renown chelsea
hotel . . .”. The sum of the n-grams linear contributions is 0.355.

-0.1 -0.05 0 0.05 0.1 0.15 0.2

is-a-feast*

is-a-feast

a-feast-

tasty-hors-d'oeuvre-;

;

are-like

are-like-a

Figure 15. N-grams determined from R24 and the following “tweet” (in the testing set): “some movies
are like a tasty hors-d’oeuvre; this one is a feast”. It is correctly classified by the rule, but wrongly
classified by the network.

4.3. Global View of Rules

A rule antecedent can be true with several different n-grams. Hence, to analyze a rule as a whole
we must detect its related n-grams for each antecedent and for all covered samples. Note that a rule
with antecedents depending on neuron activations in the M-layer can be formulated in the input
layer as:

• “if one of the n-grams related to the first antecedent is present and maximal (Only the n-gram that
activates the most its related neuron in the M layer is the one that makes the antecedent true.) then
. . . ” and . . . “if one of the n-grams related to the last antecedent is present and maximal then . . . ”.

Let us give a first example with a rule covering a moderate number of tweets in the training set.
We take into account a CNN network with parameter Θ equal to 100. Rule 347 (R347) presents two
antecedents. It covers 32 samples in the training set and it is given by:
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• (m36 ≥ 0.28) (m110 ≥ 0.28) Class = POSITIVE;

with m36 and m110 representing neurons in the M-layer. Antecedent m36 is related to five
single words: “cinema”; “see”; “you”; “you’ll”; “your”. Antecedent m110 is related to
31 different trigrams, with five of them starting with “is” (“is-a-beautiful”, “is-a-compelling”,
“is-a-satisfying”, “is-a-startling”, “is-a-sweet”, “is-the-heart”); four trigrams starting with “it’s”
(“it’s-a-beautiful”, “it’s-a-smart”, “it’s-a-sweet”, “it’s-a-very”); three trigrams starting with
“yet” (“yet-deeply-watchable”, “yet-sensual-entertainment”, “yet-shadowy-vision”); two trigrams
starting with “warm” (“warm-and-charming”, “warm-your-heart”), and 17 other trigrams
(“touching-and-tender”, “simple-,-sweet”, “intriguing-and-beautiful”, etc.). Note that these n-grams
clearly belong to the class of positive polarity.

Another example with a rule covering more samples is represented by rule R66 (253 samples in
the training set):

• (m74 ≥ 0.12) (m84 < 0.24) (m110 ≥ 0.28) Class = POSITIVE;

Antecedent m74 is related to 155 distinct bigrams. About two thirds of them start with “a” or “an”
or “and” (for instance: “a-perfect”; “an-amusing”, “and-touching”). Other bigrams start with “deeply”,
such as: “deeply-moving”; “deeply-absorbing”; “deeply-moving”; “deeply-touching”, etc. Finally,
“surprisingly” is also present in five bigrams (“surprisingly-charming”, “surprisingly-engaging”,
“surprisingly-manages”, “surprisingly-powerful”, “surprisingly-touching”).

Regarding m110, similarly to R347 in which this antecedent is present, we see many trigrams
starting with “is” or “it’s”. Other trigrams having several times the same first word starts with:
“charming”; “deeply”; “funny”; “heart”; “intelligent”; “intriguing”; “lovely”; “offers”; “powerful”;
“smart”; “surprisingly”; “touching”; “warm”; “yet”; etc. For antecedent m84 we also have a certain
number of trigrams starting with “is” or “it’s”, though significantly less than previously. Moreover,
we counted more than 40 trigrams starting with “,” and more than 20 trigrams starting with
“and”. Other non-numerous trigrams with the same first word start with: “a”; “but”; “film”; “in”;
“melodrama”; “movie”; “smart”; “surprisingly”; “that”; “smart”.

Since we generate unordered rules, each rule can be viewed as a single classifier that can be
analyzed without considering the other rules. The more the number of rule antecedents and samples
covered, the longer the examination will take. However, in principle this is always possible. Specifically,
by looking at the n-grams related to each antecedent it is realizable to understand in which context
a rule is applied.

4.4. Discussion

DTs were not as good as DIMLPs at approximating the fully connected layer at the top of the
original CNN. Nevertheless, more rules were generated from DIMLPs. Thus, the best approximation
precision is at the cost of more complicated rulesets. With DIMLPs it would be feasible to alleviate the
size of extracted rulesets with the use of reduced training sets, as it was carried out in [22].

The linear contribution of n-grams is a measure that allows us to characterize the relative
importance of discriminative combinations of words. On one hand, it helps to characterize flaws in
the classifier, such as the detection of n-grams that contribute to an opposite class. On the other hand,
it enables to understand which word combinations are used correctly. The contribution of n-grams is
easily calculated with only a unique fully connected layer, but an open question is to find a way to
calculate it with a greater number of fully connected layers. A solution to this problem could be the
use of a feature importance value, as described in the framework reported in [45].

To determine a rule as a whole, it is sufficient to characterize all discriminative n-grams over all
covered samples. From the linear contributions it is plausible to determine the n-grams that go against
the rule class. Then, flaws can be detected and possibly a corrective strategy could be developed with
the use of additional training examples putting into play problematic n-grams.
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The CNN architecture used in this work is simple, as it includes a unique convolutional
layer. We might wonder whether our rule extraction technique could be adapted to more complex
architectures used in object recognition, such as LeNet [46], AlexNet [47], and VGGNet [48]. In a similar
manner to what has been achieved here, we would extract unordered rules at the level of the first fully
connected layer. Given a sample and a rule activated by this sample, it would be conceivable for each
rule antecedent to determine one or more image regions that contribute positively or negatively to the
final classification. The extent of these regions would be characterized by going back to the input layer,
after passing through an arbitrary number of convolutional and max-pooling layers.

5. Conclusions

We presented a new rule extraction technique applied to a CNN in sentiment analysis.
Our approach is global and could be extended to object recognition problems encompassing a moderate
number of convolutional layers. Our rule extraction method consisted in approximating a trained CNN
by transforming the top layers into a transparent neural network model. Thus, rules generated from
the transparent subnetwork were propagated backward to the input layer and became comprehensible,
as the antecedents represent n-grams. The rules can be inspected globally, by determining for each
antecedent all the related n-grams, or locally, by characterizing for a given sample the discriminative
n-grams that contribute to the final classification. These n-grams allowed us to explain with several
examples why the classifier worked well or badly. In the future it will be interesting to determine
how to correct flaws in a neural network with the help of the extracted rules. One way could
be to inject supplementary training examples, aiming at modifying the linear contributions of
discriminative n-grams.
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The following abbreviations are used in this manuscript:

SA Sentiment Analysis
CNN Convolutional Neural Network
DIMLP Discretized Interpretable Multi Layer Perceptron
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