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Featured Application: Development of a small fleet of fully autonomous boats capable of
subsurface invasive aquatic plant identification and treatment, consequently minimizing manual
labor with more efficient, safe, and timely weed management.

Abstract: Invasive aquatic plant species can expand rapidly throughout water bodies and cause
severely adverse economic and ecological impacts. While mechanical, chemical, and biological
methods exist for the identification and treatment of these invasive species, they are manually
intensive, inefficient, costly, and can cause collateral ecological damage. To address current deficiencies
in aquatic weed management, this paper details the development of a small fleet of fully autonomous
boats capable of subsurface hydroacoustic imaging (to scan aquatic vegetation), machine learning
(for automated weed identification), and herbicide deployment (for vegetation control). These
capabilities aim to minimize manual labor and provide more efficient, safe (reduced chemical
exposure to personnel), and timely weed management. Geotagged hydroacoustic imagery of three
aquatic plant varieties (Hydrilla, Cabomba, and Coontail) was collected and used to create a software
pipeline for subsurface aquatic weed classification and distribution mapping. Employing deep
learning, the novel software achieved a classification accuracy of 99.06% after training.

Keywords: autonomous vehicles; robotics; machine learning; deep learning; image preprocessing;
hydroacoustic sensing

1. Introduction

1.1. Impact and Treatment of Aquatic Weeds

While native aquatic plants are essential components of aquatic ecosystems, non-native invasive
species can expand rapidly throughout water bodies and cause severe economic and ecological
impacts (Figure 1) [1,2]. Adverse economic impacts include: impairing recreational activities (fishing,
swimming, and boating); flooding caused by reduced drainage; hindering boat navigation; blocking
water intakes for hydroelectric turbines, drinking water, and irrigation; and reducing the potability
of fresh water due to foul taste and odor [1,3–5]. Indirect economic effects include reduced property
values and reduced revenue from impacted businesses [2,6]. Aquatic flora consume oxygen at night;
thus, excessive weed growth can deprive fish and other aquatic animals of this vital resource, leading
to their death. Other ecological effects include overpopulation of small fish, which find shelter in the
plants, and the creation of breeding habitats for some mosquito species [3]. Of the many invasive
aquatic plant species, Hydrilla verticillata, commonly known by its genus Hydrilla, likely causes the
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most economic damage in the United States [1]. In Florida alone, state and federal entities spend
millions of dollars annually towards Hydrilla management ($14.5 million in 1997 [1] and $66 million
total from 2008 to 2015 [7]). The economic impact on a single water body is significant; a detailed study
on a single Florida lake estimated potential Hydrilla-related losses of $40 million per year (property
values, agricultural support, flood control, recreation, etc.) [6].
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Figure 1. Watermeal infestation in a central North Carolina pond: (a) aerial view; (b) ground view.

Given these adverse impacts, management of invasive aquatic vegetation is of utmost concern.
While mechanical control (plucking or raking the plants) is the most direct approach, it can be
time-consuming and costly (estimated cost of $1000 per acre in 1996) [8,9]. Biological control methods
(e.g., fish which consume large quantities of aquatic weeds) are routinely employed but can be
counter-productive. One example is the grass carp, which can consume and control vegetation [9];
however, their body waste compromises water quality, killing sensitive plants and animal species,
and fertilizing additional weed growth [3,10]. Biological approaches also introduce the risk of invasive
animal species [11]. Seven species of carp native to Asia, introduced to control invasive plant species,
have recently spread up the Mississippi River system and have crowded out native fish populations.
While not without its drawbacks, chemical control (the application of herbicides) is considered the
most attractive aquatic weed management method in terms of minimizing cost, time, and collateral
damage [5].

Efficient chemical-based vegetation control in aquatic bodies requires proper identification and
quantification of the extent to which vegetation is present, both for optimal chemical selection and
treatment strategies [3,4]. The approach of manually identifying weed-infested regions within a water
body and applying herbicides at the target location(s) is labor intensive, time-consuming, and involves
risk of herbicide exposure to personnel [12]. Spraying herbicide throughout the water body leads
to much higher usage, resulting in economic loss, longer decomposition times, and subsequent
environmental hazards.

Two unmanned watercraft, the TORMADA (Lake Restoration Inc., Rogers, MN) and WATER
STRIDER (Yamaha Motor Company, Iwata, Shizuoka, Japan) are commercially available for herbicide
dispersal in water bodies. These boats offer remote control by a human operator but have limited tank
capacity (3.8 and 8.0 L for TORMADA and WATER STRIDER, respectively) and lack autonomous
navigation and weed identification functionality. Hänggi outlined the design, fabrication, and testing
of an autonomous boat for monitoring algae blooms in Lake Geneva and has included a summary of
multiple autonomous watercraft developed by other authors [13]. These prototypes are intended for a
variety of measurement and mapping tasks, but none are purposed for aquatic vegetation identification
and treatment.
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1.2. Image-Based Machine Learning: Application to Aquatic Weed Identification

Automated plant identification, which relies on photographic images, is a well-developed
methodology for agricultural applications. With recent advances in artificial intelligence,
several machine learning algorithms have been developed for image classification. Current
identification/classification methods involve image preprocessing followed by feature extraction.
The extracted features, which typically include the color, shape and texture of leaves, Histograms
of Oriented Gradients (HOG), etc., are then used to train classifiers. This approach was applied to
identify certain Ficus plant species by acquiring photographic images of leaves, performing the image
preprocessing operations shown in Figure 2, and extracting features from the modified images [14].
These authors separately implemented a support vector machine (SVM) and artificial neural network
(ANN) as classifiers. A similar approach was adopted by another group of researchers to identify
aquatic weeds growing on the water surface, namely Eichhornia crassipes, Pistia stratiotes, and Salvinia
auriculata [15]. Visible light images captured from unmanned aerial vehicles (UAVs) were utilized to
train multiple classifiers. In addition to SVM, the optimum-path forest classifier (OPF), and Bayesian
classifier were investigated.
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Figure 2. Extraction from an image of a leaf (adapted from [4]): (a) original photograph; (b) conversion
from RGB to HSV format to serve as a guide for subsequent edge detection; (c) grayscale conversion to
improve image contrast; and (d) feature extraction after identifying leaf boundaries.

In similar research, feature learning on high resolution weed images (water hyacinth, tropical soda
apple, and serrated tussock) was performed using a filter bank, followed by image classification via
the texton approach (K-means clustering) [16]. Feature extraction and OPF classifiers were successfully
implemented in another study to identify invasive yellow flag iris plants [17].

Despite the documented success of these feature extraction-based plant classification methods,
they cannot be directly applied to subsurface plant identification due to limited visibility and the
associated lack of photographic clarity. Despite lacking the resolution and clarity of photography,
hydroacoustic imaging is an emerging option for the quantification of underwater vegetation. Currently,
hydroacoustic data files can be uploaded and processed offline via a web-based service (Navico BioBase),
which generates biomass-concentration maps. However, the limited resolution of hydroacoustic data
impedes feature extraction and typical machine learning approaches to species classification.

Deep learning is a more advanced machine learning technique that could overcome these
limitations [18]. It employs deep neural networks (DNNs) to simultaneously accomplish feature
extraction and classification tasks [19]. The fundamental component of a DNN is an artificial neural
network (ANN). As shown in Figure 3, a standard feedforward ANN consists of multiple fully
connected layers (input, hidden, and output layers); each layer consists of a varying number of nodes
(artificial neurons) depending on the complexity of the network.

The input layer X = [x1, x2, . . . xn]
T takes n extracted features, which are multiplied by

an adaptable weight matrix W1 = [w1
11, w1

12, . . . , w1
1h; . . . ; w1

n1, . . . , w1
nh], where h is the number of

neurons in the hidden layer. These values are multiplied by another adaptable weight matrix
W2 = [w2

11, w2
12, . . . , w2

1m; . . . ; w2
h1, . . . , w2

hm], where m is the number of ANN outputs B2. Each ANN
output corresponds to a specific classification (m classes in this case). By incorporating non-linear
activation functions in the output layer neurons (e.g., softmax or sigmoid), the output layer values can
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be transformed to predict the classification for an input image. ANN weights are randomly initialized
and optimized through a repetitive training process.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 21 
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Figure 3. Architecture of a feedforward artificial neural network.

Unlike standard ANNs, DNNs integrate feature extraction by incorporating several additional
layers [20]. Convolutional neural networks (CNNs, Figure 4), one of the most popular subtypes of
DNNs, replace matrix multiplication with convolution in the initial layers. Instead of multiplying
all inputs (pixels of image) with different weight sets, a small window of inputs is multiplied by a
weight set and the window is iteratively shifted to cover the entire input matrix (image) while using the
same weights. This decreases the number of weights and reduces network complexity and associated
preprocessing [21]. However, with significantly deeper structures (as compared to ANNs), CNNs
and other DNNs have a significantly larger numbers of learnable parameters. Consequently, DNN
training is computationally intensive and has only recently become viable due to advances in computer
processing. After training, however, DNNs can be utilized for real-time image classification with
minimal processor capabilities.
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Figure 4. Architecture of a convolutional neural network (CNN) [22].

1.3. Research Objective

To address current deficiencies in aquatic weed management, this research seeks to develop and
demonstrate a small fleet of fully autonomous boats capable of subsurface hydroacoustic imaging
(to scan aquatic vegetation), machine learning (for automated weed identification), and herbicide
deployment (for vegetation control). These capabilities aim to minimize manual labor and provide
more efficient, safe (reduced chemical exposure to personnel), and timely weed management.



Appl. Sci. 2019, 9, 2410 5 of 21

2. Methods

2.1. Autonomous Boat Development

The first phase of research and development was the design and fabrication of water vehicles
which provided the following functionality: fully autonomous navigation, coordination between at
least two vehicles, hydroacoustic data collection, variable rate herbicide application, and at least two
hours of continuous operation without refuel/recharge (Figure 5). For practical purposes, a surface
vehicle, rather than a submarine platform, was chosen. Other design choices included the use of
a 15-gallon (56.8 L) herbicide tank, a capacity recommended by the herbicide manufacturer sponsoring
this research for the applications detailed here; electric propulsion; and battery-based energy storage.
Additional design considerations and details are presented below.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 21 

 

least two vehicles, hydroacoustic data collection, variable rate herbicide application, and at least two 

hours of continuous operation without refuel/recharge (Figure 5). For practical purposes, a surface 

vehicle, rather than a submarine platform, was chosen. Other design choices included the use of a 15-

gallon (56.8 liter) herbicide tank, a capacity recommended by the herbicide manufacturer sponsoring 

this research for the applications detailed here; electric propulsion; and battery-based energy storage. 

Additional design considerations and details are presented below.  

 

 

Figure 5. Autonomous boat prototype for identification and chemical treatment of invasive aquatic 

plant species. 

2.1.1. Hull Design and Fabrication 

A multi-hull, V-shaped design was selected for each vehicle to provide optimal stability and 

drag characteristics in the low-speed operating range (0.5–1.5 m/s) best suited to hydroacoustic 

mapping. With the use of hydrostatic analysis, pontoon dimensions were computed to support the 

geometry and weight of fully loaded payload components (batteries, electronics, herbicide tank filled 

to 15 gallon capacity, electronics, propulsion system, etc.) with 50% or less pontoon submersion [23]. 

The resulting geometry of each pontoon was 244 × 26 × 30 cm (96.0 × 10.2 × 11.9 in), not including keel 

dimensions. 

Production of fiberglass pontoons was a multi-step process involving the fabrication of 

polystyrene plugs (Figure 6 a,b) and fiberglass molds (Figure 6c) for the left and right halves of each 

pontoon, bolting the mold halves together (Figure 6d), and forming each pontoon within the mold 

(Figure 6e). Pontoon caps were fabricated using a separate mold (Figure 6f). A keel was integrated 

into the base of the pontoons for improved tracking performance. Multiple coats of polyester resin 

and liquid rubber were applied to the surface of the pontoons and caps for enhanced waterproofing 

and cosmetics.  

Internal and external struts were waterjet-cut from aluminum sheets, bent to final geometry, and 

bolted between and within the pontoons (Figure 7). The struts provided enhanced lateral support 

and load-bearing capabilities. Low-density (32 kg/m3 or 2 lbf/ft3), high-buoyancy urethane foam was 

added to the interior of the pontoons both to cradle batteries and electrical components and prevent 

sinking following capsizing or hull penetration. Hatch doors with water-resistant draw latches were 

installed above this region (Figure 5) to provide access to the batteries and electronics for battery 

recharging and electronics troubleshooting.  

Figure 5. Autonomous boat prototype for identification and chemical treatment of invasive aquatic
plant species.

2.1.1. Hull Design and Fabrication

A multi-hull, V-shaped design was selected for each vehicle to provide optimal stability and drag
characteristics in the low-speed operating range (0.5–1.5 m/s) best suited to hydroacoustic mapping.
With the use of hydrostatic analysis, pontoon dimensions were computed to support the geometry and
weight of fully loaded payload components (batteries, electronics, herbicide tank filled to 15 gallon
capacity, electronics, propulsion system, etc.) with 50% or less pontoon submersion [23]. The resulting
geometry of each pontoon was 244 × 26 × 30 cm (96.0 × 10.2 × 11.9 in), not including keel dimensions.

Production of fiberglass pontoons was a multi-step process involving the fabrication of polystyrene
plugs (Figure 6a,b) and fiberglass molds (Figure 6c) for the left and right halves of each pontoon,
bolting the mold halves together (Figure 6d), and forming each pontoon within the mold (Figure 6e).
Pontoon caps were fabricated using a separate mold (Figure 6f). A keel was integrated into the base of
the pontoons for improved tracking performance. Multiple coats of polyester resin and liquid rubber
were applied to the surface of the pontoons and caps for enhanced waterproofing and cosmetics.



Appl. Sci. 2019, 9, 2410 6 of 21

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 21 

 

 
(a) 

 

 
 

(b) (c) 

 

   
(d) (e) (f) 

Figure 6. Fabrication of fiberglass pontoons: (a) cutting, sanding, and bonding polystyrene plug 

sections; (b) epoxy coating, sanding, and gel-coating of plug; (c) fiberglass lay-up of mold over 

polystyrene plug; (d) assembly of mold halves (shown with keel upward); (e) fiberglass pontoon after 

lay-up inside mold and application of multiple finish coats; and (f) separately cast pontoon cap 

installed. 

2.1.2. Propulsion and Steering 

An off-the-shelf electric trolling motor (Figure 8a, Minn Kota Powerdrive 45, Johnson Outdoors, 

Racine, WI, 200.2 N thrust rating) was selected for propulsion, owing to its relatively high efficiency 

and thrust capability and its quiet operation. For remote steering, the factory-installed steering motor 

was interfaced to a motor controller with remote control (RC) input and feedback capabilities (Pololu 

Jrk 12v12, Pololu Corporation, Las Vegas, NV). Measurement of the shaft position for closed-loop 

control was implemented through a custom-mounted potentiometer rotationally coupled to the shaft 

via mechanical gears on each of these components (Figure 8b). A translating, spring-loaded frame 

and oversized gear teeth accommodated bow-to-stern shaft wobble, inherent in the system, to 

maintain gear meshing and avoid damage to the potentiometer. An airboat propulsion system, 

consisting of a direct current (DC) motor-driven propeller on a RC-servo-actuated rotating platform, 

was also evaluated. Despite its impressive steering capabilities (0.2 m turning radius) and low 

Figure 6. Fabrication of fiberglass pontoons: (a) cutting, sanding, and bonding polystyrene plug
sections; (b) epoxy coating, sanding, and gel-coating of plug; (c) fiberglass lay-up of mold over
polystyrene plug; (d) assembly of mold halves (shown with keel upward); (e) fiberglass pontoon after
lay-up inside mold and application of multiple finish coats; and (f) separately cast pontoon cap installed.

Internal and external struts were waterjet-cut from aluminum sheets, bent to final geometry, and
bolted between and within the pontoons (Figure 7). The struts provided enhanced lateral support and
load-bearing capabilities. Low-density (32 kg/m3 or 2 lbf/ft3), high-buoyancy urethane foam was added
to the interior of the pontoons both to cradle batteries and electrical components and prevent sinking
following capsizing or hull penetration. Hatch doors with water-resistant draw latches were installed
above this region (Figure 5) to provide access to the batteries and electronics for battery recharging and
electronics troubleshooting.
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2.1.2. Propulsion and Steering

An off-the-shelf electric trolling motor (Figure 8a, Minn Kota Powerdrive 45, Johnson Outdoors,
Racine, WI, 200.2 N thrust rating) was selected for propulsion, owing to its relatively high efficiency
and thrust capability and its quiet operation. For remote steering, the factory-installed steering motor
was interfaced to a motor controller with remote control (RC) input and feedback capabilities (Pololu
Jrk 12v12, Pololu Corporation, Las Vegas, NV, USA). Measurement of the shaft position for closed-loop
control was implemented through a custom-mounted potentiometer rotationally coupled to the shaft
via mechanical gears on each of these components (Figure 8b). A translating, spring-loaded frame and
oversized gear teeth accommodated bow-to-stern shaft wobble, inherent in the system, to maintain
gear meshing and avoid damage to the potentiometer. An airboat propulsion system, consisting
of a direct current (DC) motor-driven propeller on a RC-servo-actuated rotating platform, was also
evaluated. Despite its impressive steering capabilities (0.2 m turning radius) and low entanglement
risk, this system was thrust-limited (22.7 N max thrust), inefficient with regards to power consumption,
noisy, and highly sensitive to wind and wave disturbances.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 21 

 

entanglement risk, this system was thrust-limited (22.7 N max thrust), inefficient with regards to 

power consumption, noisy, and highly sensitive to wind and wave disturbances. 

 

  

   (a)                      (b) 

Figure 7. Aluminum struts bolted within the pontoons for enhanced lateral support: (a) before foam 

filling); (b) urethane foam filling process. 

2.1.3. Navigation and Control Unit 

At a minimum, autonomous navigation requires a GPS receiver and magnetic compass for 

localization (sensing position and heading) and processor for maintaining real-time closed-loop 

control of steering and propulsion systems. A wireless transmitter/receiver with reasonable 

transmission range is also needed for communication with a base station and other autonomous 

vehicles in the fleet. The Pixhawk autopilot module, an open-hardware device originally 

manufactured by 3DR (3DR, Berkeley, CA), was selected from the available alternatives for its 

widespread usage and support community and its compatibility with a wide range of sensors and 

software (Figure 9a). Mission Planner open-source software, installed on a standard notebook 

computer (Dell Latitude 5550, Windows 7 OS), coupled with USB-based telemetry radios, served as 

the primary on-shore interface between the human operator and the onboard autopilot module 

(Figure 9b). User-configurable remote-control transmitters (FrSky Taranis X9D Plus, FrSky Electronic 

Co., Limited, Jiangsu, China), each paired with an X8R receiver aboard each vehicle, could be used 

for direct control of a vehicle as desired (launching, object avoidance, etc.). Toggling a transmitter 

switch alternated between autonomous and manual control modes for the corresponding vehicle. 

 

  
(a) (b) 

Figure 8. Propulsion and steering systems: (a) Minn Kota marine propulsion unit and (b) rotational 

potentiometer used for shaft position feedback. 

Figure 8. Propulsion and steering systems: (a) Minn Kota marine propulsion unit and (b) rotational
potentiometer used for shaft position feedback.



Appl. Sci. 2019, 9, 2410 8 of 21

2.1.3. Navigation and Control Unit

At a minimum, autonomous navigation requires a GPS receiver and magnetic compass for
localization (sensing position and heading) and processor for maintaining real-time closed-loop control
of steering and propulsion systems. A wireless transmitter/receiver with reasonable transmission
range is also needed for communication with a base station and other autonomous vehicles in the
fleet. The Pixhawk autopilot module, an open-hardware device originally manufactured by 3DR
(3DR, Berkeley, CA), was selected from the available alternatives for its widespread usage and support
community and its compatibility with a wide range of sensors and software (Figure 9a). Mission Planner
open-source software, installed on a standard notebook computer (Dell Latitude 5550, Windows 7
OS), coupled with USB-based telemetry radios, served as the primary on-shore interface between the
human operator and the onboard autopilot module (Figure 9b). User-configurable remote-control
transmitters (FrSky Taranis X9D Plus, FrSky Electronic Co., Limited, Jiangsu, China), each paired with
an X8R receiver aboard each vehicle, could be used for direct control of a vehicle as desired (launching,
object avoidance, etc.). Toggling a transmitter switch alternated between autonomous and manual
control modes for the corresponding vehicle.
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Figure 9. Features utilized for autonomous vehicle control: (a) Pixhawk autopilot module as installed
within a prototype (receivers and other electronics in background); (b) Mission Planner interface
showing generation of transects.

Hydroacoustic mapping for weed quantification typically involves navigation of a watercraft
through a series of parallel linear trajectories, commonly known as transects, spread throughout
the target region (Figure 9b). Such navigation requires tracking accuracy. Transects, compiled
within Mission Planner, were loaded to the module via telemetry communication. From the Mission
Planner interface, the operator can also remotely adjust autonomous navigational control parameters,
as well as monitor navigational performance in real-time (actual vs. desired trajectories, velocity,
heading, etc.; Figure 10). The autopilot module implements a version of L1 trajectory tracking [24,25].
In this method, a reference point “L1_ref” on the desired trajectory is calculated, and the vehicle
is directed (through steering inputs) towards that point (Figure 10). L1 tracking period, a key
user-defined parameter, determines the aggressiveness of the vehicle in reaching the L1_ref point.
The reference point is kept sliding constantly along the required trajectory. Due to trade-offs in
parameter tuning (e.g., increasing gains can lead to oversteering and weaving), the parameters
(primarily L1 tracking period and proportional, integral, and derivative (PID) controller gains) were
fine-tuned with intensive experimentation.
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2.1.4. Herbicide Dispersal System

For design of the herbicide dispersal system, Hydrilla was chosen as the targeted aquatic weed
and Aquathol-K, a liquid-based chemical effective in the treatment of Hydrilla and other aquatic weeds,
was selected as the treatment herbicide. A downstream chemical dilution system, with a drop hose
outlet and an RC-controlled (via electronic speed controller, ESC) variable-speed pump, was utilized
for dispersal. With this design, herbicide concentrate is stored within an onboard tank, diluted with
water drawn from the lake, and dispersed through a hose submerged below the water surface. Dilution
occurs at an injector downstream the pump, which passively combines the concentrate with lake water
via the Venturi effect. Fluid analysis of the dispersal system and a series of tests were conducted for
pump selection (8000 series SHURflow industrial pump, 100 psi rating) and to characterize chemical
dispersal rates as a function of RC input (Figure 17b). These relationships allowed optimal RC pump
control inputs to be determined as a function of transect spacing, boat velocity, desired application
rate, and lake depth. Dispersal system design and analysis is further detailed in [23].

Design optimization methodologies, incorporating Stevin’s law of fluid statics, were used to
optimize the placement of onboard components (batteries, electronics bin, chemical tank, propulsion
system, dispersal pump, etc.). The objective of the algorithm, implemented with Excel Solver, was
to minimize the pitch angle of the boat throughout all levels of tank payload (empty to full); a key
constraint was avoidance of forward pitching (bow pitched downward). The methods and results,
as detailed in [23], were adapted for later prototype generations as component dimensions, weights,
and placement options (e.g., component storage within the pontoons), were altered.

2.1.5. Hydroacoustic Imaging

An off-the-shelf hydroacoustic imaging system (Lowrance Elite 4 Chirp, Lowrance Electronics,
Tulsa, OK) was purchased and integrated within each boat. Its transducer was silicone-mounted within
the base of a plastic container at the fore region of the boat. The unit allowed geo-tagged transducer
data to be stored on a micro secure digital (microSD) card in .sl2 file format.

2.2. Machine Learning for Aquatic Vegetation Classification

The second phase of the project involved the development of automated methods for classifying
and quantifying aquatic weeds, and successively utilizing this data to determine locations for targeted
herbicide treatment.
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2.2.1. Data Preprocessing

The acquired .sl2 data, being in a binary format with no manufacturer-provided tools or guidelines
for opening and reading the contents, could not be directly used for machine learning classification
algorithms. To convert this .sl2 data into a series of standard digital images (.jpg format) with
geotagging, a two-step approach was used. First, the .sl2 file was opened using the Reefmaster Sonar
Viewer (ReefMaster Software Ltd., West Sussex, U.K.), a software program that enables the display of
sonar data (hydroacoustic imagery and corresponding geographical location) in a continuous video
form. Figure 11 is a screenshot of hydroacoustic data recorded at Lake Raleigh viewed using the
Reefmaster Sonar Viewer software. Primary and DownScan™ images are displayed along with a
map indicating the scanning location. Both images show the ground surface with aquatic plants.
DownScan™ (bottom right in Figure 11) was selected since it provides a relatively clearer view of
the ground and vegetation, compared to Primary scan. Imagery display options, including contrast
and brightness, horizontal scaling, and color scheme, were selected within Reefmaster for maximum
visual clarity.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 21 
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Figure 11. Screenshot from Reefmaster Sonar Viewer software illustrating hydroacoustic imagery
acquired on Lake Raleigh: left—map location corresponding with imagery (indicated by boat icon) and
traversed path (with increasing depth, path color changes from red to blue); top right—Primary scan
sonar; bottom right—DownScan™ sonar.

Next, still hydroacoustic images were acquired at fixed time intervals using the MATLAB Toolbox
‘Screen Record’ by Nassim Khaled [26], which captures PC monitor contents in real-time. Playback
of imagery at nine times the original speed expedited the capture process. The image capture rate
was selected to achieve 20%-30% spatial overlap between consecutive images. The toolbox code was
modified to incorporate clock time instead of CPU time, creating images with consistent overlap
by eliminating dependence on CPU load. Images were digitally masked and cropped to remove
unnecessary information and facilitate the machine learning process (Figure 12). The top left portion
of the image contains the GPS coordinates, while DownScan™ covers the remaining portion.
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2.2.2. Hardware and Software Configuration

As noted earlier, DNNs, being computationally-intensive, require powerful processing units for
training in a reasonable timeframe. DNNs have millions of learnable parameters which undergo
hundreds or thousands of optimization cycles during training. This precludes the usage of standard
CPUs, which have a limited number of cores (eight in typical desktop computers), for DNN training.
However, modern graphics processing units (GPUs), developed for gaming purposes, have thousands
of cores which facilitate parallel computation via the Nvidia CUDA platform. For this research,
a single Dell Precision T7500 workstation was configured with the following hardware: Intel Xeon CPU
(2.13 GHz, 2 processors), 12GB RAM, and Nvidia GTX 1070 Ti GPU with 8 GB memory. The Nvidia
CUDA deep neural network (cuDNN) library and other supporting software was installed to enable
MATLAB, Python, and Google Colab to take advantage of the GPU.

2.2.3. DNN Training

“Alexnet,” an advanced CNN supported by MATLAB’s neural network toolbox, was used in the
algorithm for plant species classification. Figure 13 shows the layer-wise structure of Alexnet. Due to a
limited availability of preliminary data, transfer learning was implemented on the pretrained CNN.
Initial algorithm training focused on only two training classes: the target species (Hydrilla: 466 images;
Figure 14a) and non-target species (other: 1751 images including some with no vegetation; Figure 14b).
Images of each class were randomly divided into training and validation sets (with 420 and 46 images,
respectively). The DNN achieved 100% training accuracy, indicating sufficient network complexity.
However, significant differences between training and validation accuracies indicated overfitting.
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Figure 14. Example hydroacoustic images of each of the weed classes: (a) Hydrilla, (b) Other, (c) Cabomba,
and (d) Coontail.

2.2.4. Reducing Overfitting

The primary causes of overfitting include insufficient training data for generalization [27] or
excessive model complexity. Since the network structure already contained two dropout layers, data
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augmentation and model training with additional data were implemented to reduce overfitting [28,29].
Additional data was collected and Hydrilla images were generated with an increased overlap of
approximately 50%, expanding the training and validation sets to 720 and 89 images, respectively.
To implement data augmentation, artificial training data was generated by modifying original images
via horizontal reflection, translation, and scaling. Furthermore, iterative parameter tuning was
performed on optimization functions, learning rates, learning rate drop schedules, batch sizes, and data
augmentation parameters to increase classification accuracy.

2.2.5. Generalizing Over Multiple Species

Although image classification based on two classes (Hydrilla and Other) achieved satisfactory
accuracy, classification across multiple plant species or classes was pursued to produce even better
results with increased utility. To enable treatment of multiple species and enhance model generalization,
hydroacoustic imagery of Cabomba (Figure 14c) and Coontail (Figure 14d, Ceratophyllum demersum),
two common aquatic plant varieties, was collected and the DNN was trained on four classes. The data
set was divided into training, validation, and test sets with 657, 80, and 80 images, respectively, of each
class. Equal numbers of images in each class during training ensured prevention of sample bias; any
significant difference was found to affect the classification probabilities. Cross verification on the test
set following parameter tuning confirmed/ensured adequate model generalization.

2.2.6. Extracting GPS Coordinates from Images Post-Classification

In conjunction with image classification, precise location of identified plant species is necessary for
efficient treatment and recordkeeping. To create the required location database, the GPS coordinates
superimposed on each hydroacoustic image (Figure 12) were extracted using the optical character
recognition (OCR) functionality of MATLAB. Image preprocessing techniques, namely cropping,
resizing, gray scaling, and binarizing, enabled extraction of accurate GPS coordinates from the
classified images (Figure 15).
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3. Results

3.1. Autonomous Vehicle Performance

Autonomous water vehicles were deployed into multiple water bodies for a variety of weather
conditions, spanning seasons from mid-summer to early winter. The majority of trials were conducted
on Lake Raleigh, a 75-acre lake located on North Carolina State University’s Centennial Campus,
to evaluate the boats’ manual and autonomous navigational capabilities and confirm the herbicide
dispersal system functionality.
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3.1.1. Autonomous Navigation

With the marine propulsion system, prototypes achieved speeds up to 2.3 m/s and were able
to navigate in the presence of moderate wind (4.5 m/s, 10 mph), light rain, and choppy surface
water conditions. An iterative controller tuning process was completed to ensure high-performance
tracking in autonomous navigation mode. Figure 16 shows typical autonomous tracking performance.
No degradation in tracking performance was observed due to wind gusts or high fluid levels in the
herbicide tank, though the maximum speed decreased with heavier herbicide payloads.
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Figure 16. Tracking performance of a prototype at Lake Raleigh: (a) desired and actual trajectories
as displayed from Mission Planner software and (b) corresponding boat deviations from intended
trajectories (180◦ turns excluded).

3.1.2. Hydraulic Stability and Operational Depth

Since the required submersion depth of the trolling motor exceeds the pontoon draft, the boat
can be operated at any depth that can accommodate marine props. Nonetheless, with the prop motor
positioned at minimal depth for shallow operation, angular travel of the vertical shaft (for steering
purposes) must be software-limited to avoid collision of the blades with the pontoons during steering
maneuvers. It must be noted that even with this angular limitation, adequate navigation was achieved.
Bow-to-stern inclination of the boat was minimal at all tank fill levels; the boat exhibited a slight,
almost indiscernible, upward pitch (bow upward) at full tank capacity.

3.1.3. Battery Life

Prototypes were powered by two 12-volt lithium iron phosphate (LFP) batteries (Bioenno Power,
Santa Ana, CA, USA) wired in parallel, each rated at a 60 amp-hour capacity. While the batteries
were not operated to depletion, data from multiple tests of over three hours suggests up to eight
hours of operation time can be achieved on a single charge without falling below safe (80% discharge)
levels. Battery discharge monitoring (Figure 17a) revealed a noticeable decrease in battery voltage
over approximately the first 15 min followed by a relatively steady voltage over the remaining
operation period.

3.1.4. Herbicide Dispersal System

Laboratory testing, completed before lake trials, revealed that the dispersal system could provide
moderate application rates of Aquathol-K (1.0-1.8 gal/A-ft) for typical pond depths, boat velocities,
and transect widths. Figure 17b shows the range of chemical dispersal rates (Aquathol concentrate)
achievable by varying the RC input.
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Figure 17. (a) Battery voltage measurements for multiple test runs and (b) characterization of chemical
dispersal rates as a function of RC input. Voltage fluctuations were a function of power supplied to the
propulsion system.

Functionality of the dispersal system with chemical dilution modality was also demonstrated in
Lake Raleigh; water was substituted for the herbicide to avoid unnecessary release of chemicals into
the water body. Herbicide application was completed in a small (approximately 0.29 acres) private
pond with watermeal infestation (Figure 18). Due to the small surface area and volume of the pond,
a premixed herbicide/water solution was dispersed directly from the tank and manual control, rather
than autonomous navigation, was utilized.
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3.2. Machine Learning Algorithm

Vegetation Classification

The deep learning algorithm, in conjunction with data augmentation, successfully extracted
features and accurately classified underwater vegetation using hydroacoustic imagery. Figure 19
shows classification accuracy as a function of training iterations for both training and validation sets;
it clearly illustrates how data augmentation reduced overfitting in the validation sets.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 21 

 

3.2. Machine Learning Algorithm 

3.2.1. Vegetation Classification 

The deep learning algorithm, in conjunction with data augmentation, successfully extracted 

features and accurately classified underwater vegetation using hydroacoustic imagery. Figure 19 

shows classification accuracy as a function of training iterations for both training and validation sets; 

it clearly illustrates how data augmentation reduced overfitting in the validation sets.  

 

 
(a) 

 
(b) 

Figure 19. Training progress (a) before and (b) following data augmentation. Overfitting in (a) is 

evident through high variation between training and validation accuracy. 

Initial parameter tuning readily improved the validation accuracy to approximately 97%; further 

parameter tuning produced only marginal gains. The optimizers ‘sgdm’, ‘rmsprop’, and ‘adam’ gave 

similar performance, with ‘sgdm’ and ‘adam’ producing marginally better accuracy. Increased 

smoothness of the training curve and improved accuracy were observed for all optimizers by 

Figure 19. Training progress (a) before and (b) following data augmentation. Overfitting in (a) is
evident through high variation between training and validation accuracy.

Initial parameter tuning readily improved the validation accuracy to approximately 97%; further
parameter tuning produced only marginal gains. The optimizers ‘sgdm’, ‘rmsprop’, and ‘adam’
gave similar performance, with ‘sgdm’ and ‘adam’ producing marginally better accuracy. Increased
smoothness of the training curve and improved accuracy were observed for all optimizers by reducing
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the learning rate. A learning rate drop schedule further improved the accuracy as compared to
a constant learning rate. The “MiniBatch Size” parameter contributed heavily to runtimes and
smoothness of the training curve. Greater batch sizes smoothed the curve and reduced runtimes,
but increased memory requirements. Limiting batch sizes to 256 or less helped avoid the “sharp
minimizers” that tend to impede generalization [30].

Following parameter tuning, the DNN achieved a classification accuracy of 99.06% for both
the validation and test data sets, clearly indicating excellent generalization (Cabomba: precision = 1,
recall = 1; Coontail: precision = 1, recall = 1; Hydrilla: precision = 0.9873, recall = 0.975; Other: precision
= 0.9753, recall = 0.9875). Analysis of the confusion matrices for different tuning parameters revealed
more misclassifications within the Hydrilla and Other classes (and between the two) than within the
Cabomba and Coontail classes. Figure 20 shows the confusion matrices for the optimal parameter set.
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Subsequent analysis revealed that misclassified Hydrilla images tended to be associated with
limited plant growth (Figure 21a). The majority of images containing Cabomba and Coontail were
associated with more mature plant growth, which perhaps led to higher classification accuracies.
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This suggests that timing of data capture within the growing season might play an important role
in classification accuracy. Data for Hydrilla was collected from June to November while Cabomba
and Coontail were scanned during December, a time of year associated with more mature growth.
Other instances of misclassification included images containing floating vegetation or schools of fish
(Figure 21b), and vegetation being only partially contained within the image (Figure 21c).
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During DNN training, weights of all layers undergo continuous optimization. Successful feature
learning creates smooth filters with uniform weight gradients. Figure 22 visualizes the 96 filters (each
with 11 × 11 × 3 weights) of the first convolutional layer for two separate cases. Parameter tuning
generated smoother, blended (less discretized) gradient patterns, which are characteristics of effective
training (Figure 22b) [31], while filters in Figure 22a indicate lack of sufficient training.
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4. Discussion

This research was successful in developing the necessary hardware and software for automated
identification and treatment of submerged aquatic weeds. A small fleet (two watercraft) with the
required systems and capabilities (self-navigation, hydroacoustic data collection, and herbicide
dispersal) were developed over three prototype generations. Hydrilla, being a very invasive weed
species with severe impacts, was chosen as the targeted aquatic weed. The deep learning model
was later extended to multiple species, namely Hydrilla, Cabomba, and Coontail (four classes in total,
including “Other”). High classification accuracy of 99.06% on both the validation and test sets indicate
excellent generalization. Training on four classes with a higher volume of data improved the algorithm
accuracy as compared to training on two classes. Geotagged information from classified images was
reliably extracted for treatment of the target areas with herbicides.

While the integration of autonomous scanning, identification, and treatment of invasive plant
species was to some extent limited by software and hardware capabilities, the current practice
of manually scanning and treating entire water bodies can be eliminated using this approach.
The technologies detailed here clearly have the potential to reduce the cost and increase the effectiveness
of aquatic plant management.

Future Work

Because plant maturity was found to have an impact on classification accuracy, it may be advisable
to collect data of each plant variety throughout the growing season and at multiple locations to
help further generalize the model. Future research will likely focus on improved hardware and
software integration, which will enable synchronous execution of all system tasks: hydroacoustic
data collection, weed classification and distribution mapping, and targeted herbicide treatment.
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The integrated process would involve automated weed classification during hydroacoustic scanning,
which could be accomplished through one of several methods. The first option involves performing all
classification and location extraction tasks on a central computer, located with the operator. In this
option, the hydroacoustic data could be transferred to the central computer using existing hydroacoustic
wireless technology (e.g., the “Navico gofree wifi1”), a wireless module (Navico Marine Electronics,
Egersund, Norway), or a Wi-Fi enabled SD card. To overcome limited transmission range, transects
could be configured to periodically direct boats close to the operator for wireless data transmission.
Following weed classification and target location identification by the computer, an operator could
generate transects covering these locations and transmit them to the vehicles for herbicide application.
Multiple boats could be employed simultaneously for weed detection and treatment with a single
operator (based on the shore or in another watercraft, (e.g., canoe or motorized craft)).

The second option involves the use of onboard computer processing systems (e.g., Raspberry Pi
units or tablets), for real-time image classification. Live data could be transferred from the terminals of
the fish finder to the processor using Wireshark software [32]. The herbicide application system could be
triggered immediately upon detection of targeted weed species. Applying this methodology, scanning
and treatment could be completed in a single completion of the transects. In spite of its benefits,
this method would require extensive research to successfully configure real-time communication
between software (Wireshark, Reefmaster, MATLAB, Mission Planner) and hardware components
(hydroacoustic scanner, autopilot module, etc.).
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