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Featured Application: Generation and sorting of optical beams carrying orbital angular momentum
of light for combined polarization- and mode-division multiplexing in the telecom infrared, either
for free-space or multi-mode fiber transmission.

Abstract: The simultaneous processing of orbital angular momentum (OAM) and polarization
has recently acquired particular importance and interest in a wide range of fields ranging
from telecommunications to high-dimensional quantum cryptography. Due to their inherently
polarization-sensitive optical behavior, Pancharatnam–Berry optical elements (PBOEs), acting on
the geometric phase, have proven to be useful for the manipulation of complex light beams with
orthogonal polarization states using a single optical element. In this work, different PBOEs have
been computed, realized, and optically analyzed for the sorting of beams with orthogonal OAM
and polarization states at the telecom wavelength of 1310 nm. The geometric-phase control is
obtained by inducing a spatially-dependent form birefringence on a silicon substrate, patterned
with properly-oriented subwavelength gratings. The digital grating structure is generated with
high-resolution electron beam lithography on a resist mask and transferred to the silicon substrate
using inductively coupled plasma-reactive ion etching. The optical characterization of the fabricated
samples confirms the expected capability to detect circularly-polarized optical vortices with different
handedness and orbital angular momentum.

Keywords: Pancharatnam–Berry optical elements; silicon metasurfaces; mode division multiplexing;
orbital angular momentum; polarization division multiplexing; electron beam lithography;
subwavelength digital gratings; nanofabrication; reactive ion etching

1. Introduction

In the last decades, the possibility to structure the spatial degree of freedom of light has acquired
increasing interest, with applications in a wide range of fields. In particular, the exploitation of
light beams with helical phase-fronts has provided disruptive achievements in microscopy [1,2],
astronomy [3], particle manipulation [4], holography [5], and information and communication
technology (ICT) [6,7]. Since the seminal paper of Allen and coworkers [8] demonstrated that such
beams carry orbital angular momentum (OAM), the study on methods and devices to generate and
control this still unexploited degree of freedom has given rise to a flourishing research field [9]. It is
especially in the ICT that the orbital angular momentum of light has demonstrated the most promising
applications, in combination with other degrees of freedom of light [10]. As a matter of fact, the OAM
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degree of freedom opens to an unbounded state space, in which light beams carrying different integer
OAM values are orthogonal to each other and can be exploited for the transmission of different data
streams at the same frequency with no interference [11]. The aggregate combination of OAM-mode
division multiplexing (OAM-MDM) with other well-established multiplexing methods, e.g., time,
polarization, wavelength, and amplitude/phase, has demonstrated to provide a significant increase in
the spectral efficiency of today’s optical networks [12], both in free-space [13] and optical fibers [14,15],
offering a solution to the problem of optical network saturation [16]. Both in the classical and quantum
regimes, the combined manipulation of OAM and polarization has acquired paramount importance,
and novel devices are required for the parallel detection in a compact and effective way. As a matter
of fact, optical vortices propagating in multi-mode fibers have been demonstrated to be circularly
polarized [15]. In the single-photon regime, the combination of orbital angular momentum and
polarization opens to a wider state space for quantum-key distribution (QKD) applications [17], in
which higher security and robustness against errors and eavesdropping are guaranteed with respect to
standard protocols limited to polarization [7]. Novel formulations and innovative implementations
of standard QKD protocols have been developed and demonstrated [18], both in discrete variable
(DV-QKD) and continuous variable (CV-QKD) scenarios [19]. Concurrently, research efforts have
focused on the design and realization of polarization-sensitive OAM (de)multiplexers, in order to
generate and sort the state space exploited for high-dimensional QKD [20,21].

In the last decade, several methods have been conceived for demultiplexing, i.e., the separation, of
a superposition of beams with different values of OAM [22]. In particular, increasing interest has been
devoted to solutions which could offer high miniaturization and integration levels, fabrication protocols
suitable for mass-production, and backward compatibility with different multiplexing techniques. In
order to improve the miniaturization level, we recently disclosed the realization of 3D multi-level
phase-only diffractive optical elements [23–26] performing OAM-mode generation and detection in
the visible range, based either on log-pol optical transformation [27] or OAM-mode projection [28,29].
In comparison with bulky refractive elements, the diffractive version provides a miniaturized and
almost flat implementation, in particular, when shorter focal lengths are necessary, i.e., for high
miniaturization. On the other hand, the design of diffractive optics turns out to be optimized within a
narrow bandwidth, therefore they exhibit a decrease in efficiency when operating far from the optimal
wavelength. The optical thickness is inversely proportional to the refractive index of the material,
and increases proportionally to the design wavelength. If the transparency of silicon in the telecom
infrared suggests the exploitation of this high-refractive index material in order to further reduce the
optical thickness, then, on the other hand, the fabrication of 3D surface-relief patterns in silicon is still
undoubtedly challenging.

An alternative method for phase-fronts manipulation is provided by Pancharatnam–Berry optical
elements (PBOE) acting on the geometric phase of light. Unlike refractive and diffractive optics, in
PBOEs the phase change is not produced by means of an optical path difference, but is the result
of a space-variant modification of the polarization state of light [30]. This is achieved by realizing
an artificial material, i.e., a metasurface, which is both inhomogeneous and anisotropic, in order to
create an effective anisotropic medium whose extraordinary axis orientation is spatially variant. The
phase transferred to the input beam is equal to twice the value of the fast-axis orientation, therefore
by properly engineering the anisotropy pattern it is possible to reshape the input phase-front in the
desired way. With respect to conventional optics, the approach with metasurfaces can offer greater
advantages owing to their digital profile and fixed thickness. In comparison with diffractive optics,
metasurfaces show a broader band [31], since the wave-front is tailored by the geometric pattern of the
optical element. In addition, since the optical response becomes inherently dependent on the input
polarization [32], polarization-division multiplexing (PDM) can be easily implemented without the
need of additional optics [33].

In this paper, we present the design and realization of sorting optics for OAM-MDM, in the
form of Pancharatnam–Berry optical elements in silicon for the telecom wavelength of 1310 nm. We
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considered the demultiplexing method based on OAM-mode projection and we computed and realized
different metasurfaces in silicon, performing both OAM-MDM and PDM. Despite its lower efficiency
with respect to other methods, this technique allows to customize the channel constellation and the
sorting OAM range, depending on the desired application. Different OAM sets and far-field channel
configurations have been selected and presented, in order to demonstrate the versatility offered by this
demultiplexing method.

The birefringence of the single PBOE subunit has been achieved artificially by structuring the
silicon substrate with a digital subwavelength grating, which is experienced by the impinging wave as
a uniaxial crystal whose fast axis is perpendicular to the grating ridges [34]. The resist mask fabricated
on the silicon surface with high-resolution electron-beam lithography (EBL) was transferred to the
substrate by a finely-tuned inductively coupled plasma—reactive plasma etching (ICP-RIE) process.
The optical tests at the wavelength of 1310 nm, in the telecom O-band, confirm the expected capability
of the designed optics to detect correctly input beams with different circular-polarization states and
orbital angular momentum values.

2. Materials and Methods

2.1. Phase Pattern Calculation

A diffractive optical element designed to analyze the OAM spectrum in the set of OAM values
{`j} presents a phase pattern Ω(u,v) which is given by the linear superposition of n orthogonal OAM
modes {ψj} as follows [35]:

Ω(u, v) = arg


n∑

j=1

c jψ
∗

j exp
[
iα ju + iβ jv

], (1)

being {ψj = Rj(ρ,ϑ)exp(i`jϑ)}, where ϑ = arctan(v/u), ρ =
√

u2 + v2, {Rj(ρ,ϑ)} describe the field spatial
distributions and depend on the family of modes. {(αj, βj)} are the n vectors of carriers spatial frequencies
in Cartesian coordinates, and {cj} are complex coefficients whose modulus is usually unitary, and the
phases are fitted so that Equation (1) is an exact equality [23]. The set of parameters {cj} is calculated
with the following integral:

c j =

+∞∫
−∞

du

+∞∫
−∞

ψ j exp(iΩ) exp
(
−iα ju− iβ jv

)
dv, (2)

The diffractive element is basically a computer-generated hologram originated from the linear
combination of n fork-holograms. Each term in Equation (1) is given by the interference pattern of
the jth OAM-mode with azimuthal phase term exp(i`jϑ) with the tilted plane-wave exp(iαju + iβjv)
defined by the corresponding carrier frequency. In the Fourier plane, the carrier frequencies manifest
as separate spatial coordinates {(xj, yj)} given by:

x j = α j
f
k

y j = β j
f
k

, (3)

being f the focal length of the lens which is used for far-field reconstruction in f -f configuration, and
k = 2π/λ, where λ is the working wavelength. When the optical element is illuminated with an integer
OAM beam, the projection of the beam is optically performed over the selected OAM set, and a bright
spot appears at the position corresponding to the input OAM value in far field (Figure 1) [23].
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Figure 1. Scheme of the working principle of Pancharatnam–Berry optical elements (PBOEs)for
orbital angular momentum (OAM) demultiplexing with the method of OAM-beam projection. If a
circularly-polarized OAM-beam illuminates the optical element, a bright spot appears in the far field,
at a position which depends on the polarization handedness and on the carried OAM. In the presented
work, the PBOE has been fabricated in the form of a pixelated metasurface of rotated subwavelength
gratings (a), and designed for the demultiplexing of 7 OAM channels and circular polarization states
(14 channels in total) over different OAM sets, centered in ` = 0, with increasing OAM separation
∆` = 1 (b), ∆` = 2 (c), ∆` = 3 (d). Three different channel configurations have been considered and
tested: Linear array (b), regular polygon (heptagon) (c), semicircle (d).

In a metasurface realization of the optical element, the phase pattern Ω(u,v) is obtained by
fabricating an inhomogeneous and anisotropic effective medium, whose extraordinary-axis orientation
θ(u,v) changes point-by-point and is equal to half the local phase value Ω(u,v). The two orthogonal
circular polarizations exhibit a different behavior, as it follows [32]:

T(u, v)
(

1
±i

)
= cos

(
δ
2

)( 1
±i

)
− i sin

(
δ
2

)
exp[±iΩ(u, v)]

(
1
∓i

)
(4)

being T the transmission matrix of the optical element, δ the phase delay between the ordinary and
extraordinary axes of the metasurface effective medium, [1, +i] and [1, −i] the vectors of right-handed
and left-handed circular polarizations in Jones matrix formalism, respectively (the normalization factor
1/
√

2 has been omitted). In particular, when the metasurface is engineered in order to achieve the
condition δ = π (π-delay between the two optical axes), the zero-order term is cancelled out and a total
polarization conversion is obtained:

T
(

1
±i

)
= −i exp(±iΩ)

(
1
∓i

)
(5)
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In this case, the two orthogonal circular polarizations experience opposite phase patterns:

Ω(+)(u, v) = arg

 n∑
j=1

c jR
∗

j exp
[
−i` jϑ+ iα ju + iβ jv

]
Ω(−)(u, v) = arg

 n∑
j=1

c jR j exp
[
+i` jϑ− iα ju− iβ jv

]
, (6)

and their corresponding sets of intensity spots appear at symmetric coordinates in far field:

x(−)
(
` j
)
= −x(+)

(
−` j

)
y(−)

(
` j
)
= −y(+)

(
−` j

) (7)

where the subscripts (+) and (−) stand for right-handed and left-handed circular
polarizations, respectively.

As expressed by Equation (7), a beam carrying OAM equal to ` and right-handed circular
polarization generates a bright spot at a position which is center-symmetric to the spot formed by
the left-handed circularly-polarized state with opposite value of OAM. Hence, during the design of a
metasurface performing demultiplexing over a properly-designed set of modes, particular attention
should be paid to carefully choosing the spatial frequency carriers in order to prevent different channels
from overlapping.

A custom code has been developed in MATLAB® in order to compute the phase patterns for the
selected set {`j} of OAM values and the corresponding carriers frequencies {(αj, βj)}. The implemented
algorithm is based on a successive computation of the integrals in Equation (2) and of the sum in
Equation (1), implementing the fast Fourier transform algorithm and applying precise constrains, as
explained in [5,23], in particular phase quantization into 16 equally-spaced values in the range [0, 2π).

In the following, three different configurations are presented and described. Each phase pattern
performs the demultiplexing of circularly-polarized beams over 7 OAM values, for a total of 14
channels, with different OAM separation and far-field channel constellation: Linear array, regular
polygon, semicircle.

2.1.1. Linear Array

We limited the choice to OAM values in the set from ` = −3 to ` = +3 for a total of 7 OAM values
(n = 7). The spatial frequencies have been fixed in such a way that the far-field peaks were arranged
along a line at equally spaced x-positions (see Figure 2b):

x(+)
j = α

(
n+1

2 − j
) f

k = α(4− j) f
k

y(+)
j = β

f
k

, (8)

where j = 1, . . . 7. Considering Equation (7) and the symmetry of the far-field channels constellation, it
results that:

x(−)j = −α(−4 + j) f
k = x(+)

j

y(−)j = −β
f
k = −y(+)

j

, (9)

The two orthogonal polarizations are therefore sorted over two distinct linear arrays without
overlapping, as depicted in Figure 2b.
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Figure 2. (a) Numerical phase pattern for the demultiplexing of optical beams with OAM in the set
{−3, −2, −1, 0, +1, +2, +3} on a linear array. Pixel size: 6.250 µm × 6.250 µm. 16 phase levels. Radius
length: 180 pixels. (b) Far-field channel scheme for the given OAM set and circular polarization states.
Right-handed (in blue) and left-handed (in red) circularly-polarized OAM beams are detected in far
field on two distinct linear arrays.

2.1.2. Regular Polygonal Configuration

We considered the OAM values in the set {−6, −4, −2, 0, +2, +4, +6} for a total of 7 OAM channels.
We fixed the carrier spatial frequencies in order to arrange the far-field peaks at the vertices of a regular
polygon, in the specific case a heptagon. In polar coordinates, the spatial frequencies are given by {(ρj,
θj)} = {(γ, j2π/7)}, j = 1, . . . 7. Therefore, the far-field points appear at equally-spaced angular positions,
specified as follows:

r(+)
j = r = γ

f
k

ϕ
(+)
j = j 2π

n = j 2π
7

, (10)

where j = 1, . . . 7, being r the radius of the circumscribed circle. According to Equation (7), we have:

tan
[
ϕ(−)

(
` j
)]
= tan

[
ϕ(+)

(
−` j

)]
(11)

that is
ϕ(−)

(
` j
)
= ϕ(+)

(
−` j

)
+ π, (12)

The two orthogonal polarizations are sorted over two overlapping heptagons, as shown in the
scheme in Figure 3b. According to Equation (12), the far-field intensity peaks are expected to be at the
following angular positions for the left-handed beams:

ϕ
(−)
j = (7− j + 1)

2π
7

+ π = −( j− 1)
2π
7

+ π, (13)

As shown in Figure 3b, for increasing OAM values, the corresponding spots appear
counterclockwise (clockwise) for incident right-handed (left-handed) circular polarization.
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Figure 3. (a) Numerical phase pattern for the demultiplexing of optical beams with OAM in the
set {−6, −4, −2, 0, +2, +4, +6} on a heptagonal configuration. Pixel size: 6.250 µm × 6.250 µm. 16 phase
levels. Radius length: 180 pixels. (b) Far-field channel scheme for the given OAM set and circular
polarization states. Right-handed (in blue) and left-handed (in red) circularly-polarized OAM beams
are detected in far field on two distinct heptagons.

2.1.3. Equally-Spaced Hemi-Circular Configuration

In order to arrange the far-field channel at equally-spaced angular positions without overlap, a
semicircle configuration appears to be the best choice. In this case we considered the set {−9, −6, −3,
0, +3, +6, +9} and we fixed the carrier spatial frequencies in such a way that the far-field peaks were
arranged over a semicircle of constant radius r at equally-spaced angular positions (see Figure 4b),
specified as follows:

r(+)
j = r = γ

f
k

ϕ
(+)
j = j 2π

2n = j 2π
14

, (14)

where j = 1, . . . 7. According to Equation (7), the far-field intensity peaks are expected to be at the
following angular positions:

ϕ
(−)
j = (7− j + 1)

2π
14

+ π = −( j− 1)
2π
14

, (15)

The two orthogonal polarizations are therefore sorted over two complementary semicircles
without overlapping, as shown in the scheme in Figure 4b.
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Figure 4. (a) Numerical phase pattern for the demultiplexing of optical beams with OAM in the set {−9,
−6, −3, 0, +3, +6, +9} on a semicircular configuration. Pixel size: 6.250 µm × 6.250 µm. 16 phase levels.
Radius length: 180 pixels. (b) Far-field channel scheme for the given OAM set and circular polarization
states. Right-handed (in blue) and left-handed (in red) circularly-polarized OAM beams are detected in
far field on two distinct and complementary semicircles.

2.2. Subwavelength Grating Design

The metasurface version of the computed optical elements has been realized in the form of
spatially-variant subwavelength gratings, whose ridges orientation is rotated pixel-by-pixel introducing
a spatially-dependent form birefringence. The key element of the metasurface is represented by the
subwavelength linear grating cell, whose local orientation θ(u,v) is fixed in order to transfer the desired
geometric-phase Ω(u,v) to the input wavefront, according to Reference [36]:

θ(u, v) =
Ω(u, v)

2
(16)

being (u,v) the coordinates of the reference frame on the optical element plane. The phase-patterns of
the designed optical elements have been calculated as 4-bit grayscale images (16 phase levels) and
converted into subwavelength grating metasurfaces with custom MATLAB® codes. The gray level
j, in the range from 0 to 15, has been associated to the rotation angle j2π/32 of the corresponding
subwavelength grating vector. For a given grating thickness, numerical simulations must be performed
in order to identify the optimal profile, in terms of duty-cycle and period, providing the maximum
conversion efficiency, i.e., π-delay between ordinary and extraordinary axes. In Reference [36], a
numerical study was performed implementing Rigorous Coupled-Wave Analysis (RCWA) [37,38] for a
binary silicon grating in air at 1310 nm, in order to extract the optimal configurations of period and
duty-cycle which provide π-retardation. For a thickness of 535 nm with a duty-cycle around 0.5, the
grating period providing a π-delay is around 290 nm. This configuration was chosen for the design
and fabrication of the silicon PBOEs presented in this study.

2.3. Fabrication

For the fabrication of subwavelength gratings with high aspect ratio a three-step stamp process was
considered. Electron-beam lithography (EBL) provides the ideal method to transfer the computational
patterns from a digitally-stored format to a physical layer with high-resolution profiles. The original EBL
pattern was transformed into an imprinting mold for subsequent imprinting replica and inductively
coupled plasma—reactive ion etching (ICP-RIE) to achieve the final sample.

Electron-beam lithography was performed with a JBX-6300FS EBL machine (JEOL, Tokyo, Japan)
12 MHz, 5 nm resolution, working at 100 kV with a current of 100 pA. A thin layer of positive resist
(AR-P 672.03, ALLRESIST GmbH, Strausberg, Germany) was spun at 4000 rpm obtaining a thickness
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around 130 nm, followed by a hot plate soft-baking process at 150 ◦C for 3 min. Afterwards, the sample
was developed in an isopropyl alcohol (IPA):deionized water 7:3 solution for 60 s, in order to remove
the exposed areas.

To achieve the transfer from the EBL-patterned resist to the Silicon substrate, a 7-seconds stripping
process in O2 plasma was performed, followed by a 72-seconds etching in fluorine-based plasma with
STS MESC MULTIPLEX ICP (SemiStar Corp, Morgan Hill, CA, USA).

Next, a Thermal-NanoImprint Lithography (T-NIL) was performed with a Paul-Otto Weber
hydraulic press with heating/cooling plates, for high-resolution replica [39,40]. The process
was conducted using the previously-etched EBL master as cast after a silanization process with
Trichloro(1H,1H,2H,2H-perfluorooctyl)silane PFOTS (Thermo Fisher (Kandel) GmbH, Karlsruhe,
Germany) [41,42]. A layer of MR-I 7010E was deposited on a silicon wafer at 1750 rpm, achieving a
thickness around 120 nm, followed by a 2-min soft bake at 140 ◦C. The sample was placed in contact
with the master within a system of compliances in order to homogenize the temperature and pressure
on the entire surface. The T-NIL process was performed at 100 ◦C for 10 min at 100-bar pressure. At the
end of the imprinting step, a temperature decrease down to 35 ◦C occurred, maintaining the pressure
fixed at 100 bar.

After a 13-second O2 treatment to remove the residual layer, a 10-nm Cr hard mask was deposited
by e-gun evaporation and the transfer of the resist pattern was carried out by a lift-off process in a
sonicated acetone bath for 180 s. Finally, an ICP-RIE etching was performed to remove the residual
layer and hence obtain the required grating thickness. The etching time was finely adjusted to reach a
final depth around 535 nm, as recommended by numerical simulations. In Figure 5, inspections at
scanning electron microscopy (SEM) of the final sample are shown. In particular, the well-defined
line profile is evidence of the suitability of the nanofabrication recipe for pattern transfer onto the
silicon substrate.
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Figure 5. (a) SEM inspections of the fabricated PBOE on silicon substrate performing PDM and
OAM-MDM according to the scheme in Figure 3 (heptagonal configuration). (b–d) Details at higher
magnification. Grating period Λ = 290 nm, duty-cycle 0.5, thickness 535 nm, pixel size 6.250 µm. 16
rotation angles.
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2.4. Optical Characterization Setup

The experimental setup for the optical analysis of the fabricated samples is depicted in Figure 6.
The performance of the metasurfaces has been analyzed with input optical beams endowed with integer
orbital angular momentum, generated by uploading the proper phase patterns on a LCoS spatial light
modulator (SLM) (X13267-08, Hamamatsu, Shizuoka, Japan) with amplitude/phase modulation [43].
An aspheric lens with focal length f F = 7.5 mm (A375TM-C, Thorlabs, Newton, NJ, USA) was used to
collimate the output of a DFB laser (λ = 1310 nm) emerging at the end of a single mode fiber. Then the
output beam was linearly polarized and expanded with a first telescope (f 1 = 3.5 cm, f 2 = 10.0 cm)
before illuminating the display of the SLM. A beam-splitter (50:50) was inserted after the telescope in
order to produce a second coherent Gaussian beam for interferometric analysis. A second telescope
(f 3 = 20.0 cm, f 4 = 12.5 cm) with an aperture in the Fourier plane was used to isolate and image the
first-order encoded mode onto the sorter. A second beam-splitter (50:50) was used to split the beam
and check the input beam profile with a first camera (WiDy SWIR 640U-S, NIT, Verrières-le-Buisson,
France). A Mach–Zehnder interferometric bench was added, as shown in Figure 6, in order to analyze
the phase pattern of the modes generated with the SLM. Afterwards, the OAM beam illuminated the
silicon sample, mounted on a 6-axis kinematic mount with micrometer drives (K6XS, Thorlabs, Newton,
NJ, USA). Finally, a second camera (WiDy SWIR 640U-S, NIT, Verrières-le-Buisson, France) was used
to collect the far field at the back-focal plane of a lens with focal length f 5 = 7.5 cm. A sequence of
linear polarizer (LPIREA100-C, Thorlabs, Newton, NJ, USA) and quarter-wave plate (WPQ10M-1310,
Thorlabs, Newton, NJ, USA) was placed before and after the sorter, in reverse order, to control and
select the circular polarization state of the input and output beams.
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Figure 6. Experimental setup used for the optical analysis of the fabricated Pancharatnam–Berry optical
elements (PBOE). The output of the DFB laser (λ = 1310 nm) is collimated after a single mode fiber
(SMF) using an aspheric lens (focal length f F = 7.5 mm), linearly polarized (P1) and magnified with a
first telescope (f 1 = 3.5 cm, f 2 = 10.0 cm). The first order of the spatial light modulator (SLM) used for
OAM-beam generation is filtered (D) and resized (f 3 = 20.0 cm, f 4 = 12.5 cm) before impinging on the
demultiplexer. A beam splitter (BS) is exploited both to check the input beam and collect the output
intensity at the back-focal plane of a fifth lens (f 5 = 7.5 cm). A sequence of quarter-wave plates (Q) and
linear polarizers (P) is placed before (P2, Q1) and after (Q2, P3) the sorter, in reverse order, in order to
control and select the desired circular polarization. A Mach–Zehnder interferometric setup is used to
analyze the spiralgram of the input optical vortices and infer the carried OAM value and sign.
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3. Results

The output of the fabricated PBOEs has been analyzed and recorded for input circularly-polarized
beams with well-defined OAM. For each PBOE, beams carrying OAM in the sorting set of the selected
metasurface have been produced, in sequence, and circularly polarized before impinging on the optical
element, according to the scheme in Figure 6. Using a Mach–Zehnder interferometric bench, as shown
in Figure 6, the interference pattern between the generated OAM beam and a reference Gaussian beam
was generated and collected in order to check the input OAM value. As a matter of fact, since the phase
structure of an integer-OAM beam presents ` intertwined helical phase fronts, being ` the amount of
OAM, the interference with a coaxial Gaussian beam generates a fringe pattern of ` spirals, whose
helicity is given by the sign of ` [44] (Figure 7a, Figure 8a, and Figure 9a).
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Figure 7. Optical characterization of the demultiplexer in Figure 2. (a) Experimental interference
pattern of the input beams. The twist-handedness and number of the spiral arms reveal the sign and
value of orbital angular momentum, respectively. Experimental output intensity for input right-handed
(b) and left-handed (c) circular polarization states. The position of the far-field bright spots is in
accordance with the channel scheme depicted in Figure 2b.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 15 
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Figure 8. Optical characterization of the demultiplexer in Figure 3. (a) Experimental interference
pattern of the input beams. The twist-handedness and number of the spiral arms reveal the sign and
value of orbital angular momentum, respectively. Experimental output intensity for input right-handed
(b) and left-handed (c) circular polarization states. The position of the far-field bright spots is in
accordance with the channel scheme depicted in Figure 3b.
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Figure 9. Optical characterization of the demultiplexer in Figure 4. (a) Experimental interference
pattern of the input beams. The twist-handedness and number of the spiral arms reveal the sign and
value of orbital angular momentum, respectively. Experimental output intensity for input right-handed
(b) and left-handed (c) circular polarization states. The position of the far-field bright spots is in
accordance with the channel scheme depicted in Figure 4b.

When a beam carrying OAM illuminates the demultiplexer, the optical element performs the
projection over the mode set for which the phase pattern has been calculated. Next, a bright spot
is detected in correspondence of the input OAM value, when it is present, at the coordinates given
by corresponding far-field channel scheme. Otherwise, a non-null OAM beam is generated, i.e., an
annular intensity profile with a central dark singularity.

In Figure 7, the optical characterization is reported for the PBOE performing OAM sorting in
the range {−3, . . . , +3} with OAM step ∆` = 1 (Figure 7a). In Figure 7b,c, the far field is shown for
input beams with right-handed and left-handed circular polarizations, respectively. As expected, the
demultiplexer can sort the orthogonal polarization states onto two different linear arrays, while the
OAM value is detected correctly according to the scheme in Figure 2b. A similar analysis is reported
in Figure 8, for the PBOE performing OAM demultiplexing in the range {−6, . . . , +6}, step ∆` = 2,
according to the scheme in Figure 3b. In Figure 8b,c, the far field is shown for input optical vortices
with right-handed and left-handed circular polarizations, respectively. The demultiplexer separates
the orthogonal polarization states onto two heptagons, while the OAM content is detected correctly.
Figure 9 reports the optical analysis of the PBOE performing sorting in the OAM range {−9, . . . , +9},
step ∆` = 3, over a circular configuration, as depicted in the scheme in Figure 4b. In Figure 9b,c, the far
field is shown for input vortices with right-handed and left-handed circular polarization, respectively.
As expected, the demultiplexer can distinguish between orthogonal polarization states, by projecting
them onto two complementary, i.e., non-overlapping, semicircles.

4. Discussion

In this work, we described the design, nanofabrication, and optical characterization of silicon
metasurfaces for the parallel sorting of orbital angular momentum and polarization using the method
of optical-mode projection. The samples were fabricated in the form of dielectric Pancharatnam–Berry
optics, whose inhomogeneous anisotropy imparts a spatially-variant phase-change due to a local
control of the input polarization. In particular, the phase is geometric in nature and equal to twice the
rotation angle of the local extraordinary axis, corresponding to the direction of the subwavelength
grating vector. Three different sorters have been designed and fabricated, performing combined
PDM and OAM-MDM over different OAM sets and channel configurations, with the aim to exhibit
the versatility of the demultiplexing method in terms of channels geometry and OAM values. In
particular, we demonstrated the possibility to sort a symmetric range of OAM beams over a linear
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array and over 2D regular distributions, specifically a regular polygon and a semicircle. By properly
designing the far-field channel scheme, fixed by the spatial frequency carriers in the phase pattern
definition of the sorter, it was possible to originate two non-overlapping channel geometries for the
two orthogonal polarizations. The optical characterization has been reported at the wavelength of
1310 nm, in the telecom O-band, showing the expected capability to distinguish between modes
with different orbital angular momentum and spin values by using a single element. With respect to
the diffractive counterpart [23], the number of available channels is redoubled without the need of
additional optical elements.

Metasurfaces have become one of the most rapidly expanding frontiers of nanophotonics to
revolutionize optics by substituting refractive and diffractive optics in many widespread applications
and introducing entirely altogether novel functionalities [45,46]. In particular, the possibility to use
silicon as optical material has promoted the flourishing of a new framework in which optics design
and silicon photonics merge to create a new generation of optical elements with unprecedented
levels of integration. In comparison with plasmonic metamaterials, the importance of silicon in
optics design and fabrication is based not only on its optical properties, low-cost, and well-established
nanofabrication techniques, but also on the peculiar and promising prospects that silicon nanostructures
can provide in terms of integration into existing photonic architectures and complementary metal-oxide
semiconductor (CMOS) compatibility [47,48].

By including optics design and silicon photonics, the presented metasurfaces pave the way to
novel optical devices for combined polarization- and OAM-mode division multiplexing with an
unprecedented combination of miniaturization and integration.
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