Derivation of Surface Area-To-Total Volume ratio for Fiber scaffolds, as a function of Geometric parameters, $S_{\text {Fiber }}=f\left(D_{\text {Fiber, }}, \varepsilon\right)$

Assume that fiber scaffolds are composed of only cylindrical fibers, with the average diameter of fiber as $D_{\text {Fiber, }}$ average length as L and number of fibers as n.

The surface area of the all fibers can be evaluated as the total surface area of all cylindrical fibers:

$$
\begin{equation*}
S=n \times \pi L D_{\text {Fiber }} \tag{1}
\end{equation*}
$$

The porosity of scaffold (unitless) is defined as follows:

$$
\begin{equation*}
\varepsilon=\frac{V_{\text {cavities }}}{V_{\text {total }}} \tag{2}
\end{equation*}
$$

The surface area-to-total volume ($S_{\text {Fiber }}$) can be expressed by its relationship with the surface area-to-solid volume (S $S_{\text {Fiber.Solid }}$) and the porosity (ε) of the scaffold as follows:

$$
\begin{equation*}
S_{\text {Fiber }}=S_{\text {Fiber.Solid }}\left(1-\frac{V_{\text {cavities }}}{V_{\text {total }}}\right)=S_{\text {Fiber.Solid }}(1-\varepsilon) \tag{3}
\end{equation*}
$$

The surface area-to-solid volume of fiber scaffold can be calculated as:

$$
\begin{equation*}
S_{\text {Finer.Solid }}=\frac{\text { Surface Area }}{\text { Solid volume }}=\frac{n \times \pi L D_{\text {Fiber }}}{n \times \frac{\pi D_{\text {Fiber }}^{2}}{4} L}=\frac{4}{D_{\text {Fiber }}} \tag{4}
\end{equation*}
$$

Replacing $S_{\text {Fiber.Solid }}$ into the equation for calculating $S_{\text {Fiber }}$ above, we obtain:

$$
\begin{equation*}
S_{\text {Fiber }}=\frac{4}{D_{\text {Fiber }}}(1-\varepsilon) \tag{5}
\end{equation*}
$$

Derivation of Surface Area-To-Total Volume ratio for Foam scaffolds, as a function of Geometric

 parameters, $S_{\text {Foam }}=f\left(D_{\text {SaltGrain }}, \varepsilon\right)$Assume that foam scaffolds are composed of polymer matrix with spherical holes, with the average diameter of salt grains as $D_{\text {SaltGrain }}$ and number of holes as n.

The surface area of the foam scaffold will be evaluated as the total internal surface area of all spherical pores:

$$
\begin{equation*}
S=n \times \pi D_{\text {SaltGrain }}^{2} \tag{6}
\end{equation*}
$$

In this model, ε can be calculated as:

$$
\begin{equation*}
\varepsilon=\frac{V_{\text {cavities }}}{V_{\text {total }}}=\frac{n \times \pi D_{\text {SaltGrain }}^{3}}{6 V_{\text {total }}} \tag{7}
\end{equation*}
$$

So, the total number of holes can be derived as:

$$
\begin{equation*}
n=\frac{6 V_{\text {total }} \times \varepsilon}{\pi D_{\text {SaltGrain }}^{3}} \tag{8}
\end{equation*}
$$

Replacing n value into the equation for calculating S above, we get:

$$
\begin{equation*}
\mathrm{S}=n \times \pi D_{\text {SaltGrain }}^{2}=\frac{6 V_{\text {total }} \times \varepsilon}{\pi D_{\text {SaltGrain }}^{3}} \times \pi D_{\text {SaltGrain }}^{2}=\frac{6 V_{\text {total }} \times \varepsilon}{D_{\text {SaltGrain }}} \tag{9}
\end{equation*}
$$

Resulting in,

$$
\begin{equation*}
S_{\text {Foam }}=\frac{S}{V_{\text {total }}}=\frac{6 \varepsilon}{D_{\text {SaltGrain }}} \tag{10}
\end{equation*}
$$

