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Abstract: As the number of textual data is exponentially increasing, it becomes more important to
develop models to analyze the text data automatically. The texts may contain various labels such
as gender, age, country, sentiment, and so forth. Using such labels may bring benefits to some
industrial fields, so many studies of text classification have appeared. Recently, the Convolutional
Neural Network (CNN) has been adopted for the task of text classification and has shown quite
successful results. In this paper, we propose convolutional neural networks for the task of sentiment
classification. Through experiments with three well-known datasets, we show that employing
consecutive convolutional layers is effective for relatively longer texts, and our networks are better
than other state-of-the-art deep learning models.
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1. Introduction

In the Big Data era, the amount of various data, such as image, video, sound, and text, is
increasing exponentially. As text is the largest among them, studies related to text analysis have been
actively conducted from the past to the present. In particular, text classification has drawn much
attention because the text may have categorical labels such as sentiment (e.g., positive or negative),
author gender, language category, or various types (e.g., spam or ham). For example, the users of
Social Network Services (SNS) mostly represent their sentimental feeling, and they often share some
opinions about daily news with the public or friends. Emotional analysis involves mood categories
(e.g., happiness, joy, satisfaction, angry), while sentiment analysis involves categories such as positive,
neutral, and negative. In this paper, we target the sentiment analysis that classifies the given text
into one of sentiment categories. On websites about movies, people are likely to post their comments
that probably contain sentiment or opinions. If such a sentiment is accurately predicted, then it
will be applicable to various industrial fields (e.g., movie recommendation, personalized news-feed).
Indeed, the international market of movies is growing much faster than before, so many companies
(e.g., Netflix) provide movie recommendation services that essentially predict the sentiment or rating
scores of customers.

There have been many studies that have adopted machine learning techniques for text
classification. Although the machine learning techniques have been widely used and have shown
quite successful performance, they strongly depend on manually-defined features, where the feature
definition requires much effort of domain experts. For this reason, deep learning techniques have
been drawing attention recently, as they may reduce the effort for the feature definition and achieve
relatively high performance (e.g., accuracy). In this paper, we aim at sentiment classification for text
data and propose an architecture of the Convolutional Neural Network (CNN) [1–3], which is a type of
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deep learning model. We demonstrate the effectiveness of our proposed network through experimental
comparison with other machine learning models.

The contributions of this paper can be summarized as follows: (1) we design an architecture of two
consecutive convolutional layers to improve performance for long and complex texts; (2) we provide
a discussion about the architectural comparison between our models and two other state-of-the-art
models; (3) we apply the CNN model to binary sentiment classification and achieved 80.96%, 81.4%,
and 70.2% weighted F1 scores for Movie Review (MR) data [4–6], Customer Review (CR) data [7],
and Stanford Sentiment Treebank (SST) data [8], respectively; and (4) we also show that our model
achieved 68.31% for ternary sentiment classification with the MR data.

The remainder of this paper is organized as follows. Section 2 reviews related studies about
sentiment classification, machine learning, and deep learning models. Section 3 presents a detailed
description of our proposed network. Section 4 describes the experimental settings and datasets
and compares the proposed model with some other models. Thereafter, Section 5 discusses the
experimental results. Finally, Section 6 concludes this paper.

2. Background

2.1. Machine Learning for Sentiment Classification

The sentiment can be defined as a view of or an attitude toward a situation or event. It often
involves several types of self-indulgent feelings: happiness, tenderness, sadness, or nostalgia. One may
define the sentiment labels as a polarity or valence (e.g., positive, neutral, and negative) or several
types of emotional feeling (e.g., angry, happy, sad, proud). The definition of sentiment labels will
affect the outcome of the sentiment analysis, so we need to define the sentiment labels carefully. There
have been studies that defined three or more sentiment labels (e.g., opinion rating scores, emotional
feelings) [9–13], and some studies adopted two-dimensional labels (e.g., positive and negative) [14–26].
Although there has been much performance improvement in the field of sentiment analysis, the binary
classification of sentiment still remains challenging; for example, the performance (e.g., accuracy)
of recent studies varied from 70–90% in terms of the characteristics of data. In this paper, we aim
at the binary classification (positive or negative) and the ternary classification (positive, neutral,
and negative).

There have been many studies on classifying sentiments using machine learning models, such
as Support Vector Machine (SVM), Naive Bayes (NB), Maximum Entropy (ME), Stochastic Gradient
Descent (SGD), and ensemble. The most widely-used features for such machine learning models
have been n-grams. Read [14] used unigram features for sentiment binary classification and obtained
88.94% accuracy using the SVM. Kennedy and Inkpen [15] adopted unigram and bigram features
for sentiment binary classification and achieved 84.4% accuracy for movie review data [27] using
the SVM. Wan [20] tackled binary classification with unigram and bigram features and achieved
86.1% accuracy for translated Amazon product review data. In [21], Akaichi utilized a combination
of unigram, bigram, and trigram features and obtained 72.78% accuracy using the SVM. Valakunde
and Patwardhan [28] aimed at five-class (e.g., strong positive, positive, neutral, negative, and strong
negative) sentiment classification and obtained 81% accuracy using the SVM with bigram features. In
the study of Gautam and Yadav [18], they utilized the SVM along with the semantic analysis model
for the sentiment binary classification of Twitter texts and achieved 89.9% accuracy using unigram
features. Tripathy et al. [19] also used the SVM with n-gram features and obtained 88.94% accuracy
for sentiment binary classification. Hasan et al. [25] adopted unigram features for sentiment binary
classification and achieved 79% using the NB for translated Urdu tweets data. All of these studies
that utilized n-gram features generally achieved 70–90% accuracies, and the most effective model was
the SVM.

There also have been studies that have defined hand-crafted features for sentiment classification.
Yassine and Hajj [29] used affective lexicon, misspelling, and emoticons as features and obtained
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87% accuracy for ternary classification using the SVM. Denecke [22] defined three scores (e.g.,
positivity, negativity, and objectivity) as features and achieved 67% precision and 66% recall for
binary classification using the Logistic Regression (LR) classifier. Jiang et al. [16] tackled binary
classification using the SVM and achieved 67.8% accuracy for Twitter texts, where they adopted two
kinds of target-independent features (e.g., twitter content features and sentiment lexicon features).
Bahrainian and Dengel [23] used the number of positive words and the number of negative words
as features and achieved 86.7% accuracy for binary classification with Twitter texts. Neethu and
Rajasree [17] combined unigram features and their own Twitter-specific features and obtained 90%
accuracy for binary classification using the SVM. Karamibekr and Ghorbani [30] defined the number
opinion nouns as a feature and combined the feature with unigrams. They achieved 65.46% accuracy
for ternary classification using the SVM. Antai [24] used the normalized frequencies of words as
features and obtained 84% accuracy for binary classification using the SVM. Ghiassi and Lee [31]
aimed at five-class sentiment classification, and they defined a domain-independent feature set for
Twitter data. They achieved a 92.7% F1 score using the SVM. Mensikova and Mattmann [26] utilized
the results of Named Entity (NE) extraction as features and obtained a 0.9 False Positive Rate (FPR).
These studies elaborated on feature definition rather than using only n-gram features, and they
accomplished better performance (e.g., 92.7% F1 score). It is not fair, of course, to compare the
performance between the previous studies because they used different datasets. However, as shown
in [17,30], it is obvious that the combination of hand-crafted features and the n-grams must be better
than using only n-gram features.

Although there has been success using machine learning models with the hand-crafted features
and the n-gram features, these studies have a common limitation that their performance varied
depending how well the features were defined; for different data, much effort of domain experts will
be required to achieve better performance. This limitation also exists in information fusion approaches
for sentiment analysis [32] that combine other resources (e.g., ontology, lexicon), as it will cost much
time and effort of domain experts. Deep learning model is one of the solutions for such a limitation,
as it is known to capture arbitrary patterns (i.e., features) automatically. Furthermore, as stated in [33],
using the deep learning model for sentiment analysis will provide a meta-level feature representation
that generalizes well on new domains.

In this paper, we take the deep learning technique to tackle the sentiment classification. In the
next subsection, we review previous studies that adopted the deep learning techniques for the
sentiment classification.

2.2. Deep Learning for Sentiment Classification

The deep learning technique, one of the machine learning techniques, has been recently widely
used to classify sentiments. Dong et al. [34] designed a new model, namely the Adaptive Recursive
Neural Network (AdaRNN), that classifies the Twitter texts into three sentiment labels: positive,
neutral, and negative. By experimental results, the AdaRNN achieved 66.3% accuracy. Huang et al. [35]
proposed Hierarchical Long Short-Term Memory (HLSTM) and obtained 64.1% accuracy on Weibo
tweet texts. Tang et al. [36] introduced a new variant of the RNN model, the Gated Recurrent Neural
Network (GRNN), which achieved 66.6% (Yelp 2013–2015 data) and 45.3% (IMDB data) accuracies. All
of these studies commonly assumed that there were three or more sentiment labels.

Meanwhile, Qian et al. [37] utilized Long Short-Term Memory (LSTM) [38–41] for binary
classification of sentiment and obtained 82.1% accuracy on the movie review data [27]. Kim [1]
had a result of a maximum of 89.6% accuracy with seven different types of data through their CNN
model with one convolutional layer. Zhang et al. [42] proposed three-way classification and obtained
a maximum 94.2% accuracy with four datasets, where their best three-way model was NB-SVM.
Severyn and Moschitti [43] employed a pretrained Word2Vec for their CNN model and achieved
84.79% (phrase-level) and 64.59% (message-level) accuracies with SemEval-2015 data. The CNN model
used in [43] was essentially the same as the model of [1]. Deriu et al. [44] trained the CNN model that
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had a combination of two convolutional layers and two pooling layers to classify tweet data of four
languages sentimentally and obtained a 67.79% F1 score. In the study of Ouyang et al. [45], the CNN
model, which had three convolution/pooling layer pairs, was proposed, and the model outperformed
other previous models including the Matrix-Vector Recursive Neural Network (MV-RNN) [46]. We
conducted experiments with several of our CNN models that had different structures, and two of our
models (e.g., the seventh and eighth models) were similar to the model of [44,45].

As summarized above, for the sentiment classification, there are two dominant types of deep
learning technique: RNN and CNN. In this work, we propose a CNN model, the structure of which
was carefully designed for effective sentiment classification. In the next subsection, we explain the
advantages of the CNN in analyzing text.

2.3. Convolutional Neural Network for Text Classification

Among the existing studies using deep learning to classify texts, the CNN takes advantage of the
so-called convolutional filters that automatically learn features suitable for the given task. For example,
if we use the CNN for the sentiment classification, the convolutional filters may capture inherent
syntactic and semantic features of sentimental expressions, as shown in [47]. It has been shown
that a single convolutional layer, a combination of convolutional filters, might achieve comparable
performance even without any special hyperparameter adjustment [1]. Furthermore, the CNN does
not require expert knowledge about the linguistic structure of a target language [48]. Thanks to these
advantages, the CNN has been successfully applied to various text analyses: semantic parsing [49],
search by query [50], sentence modeling [2].

One may argue that the Recurrent Neural Network (RNN) [51] might be better for the text
classification than for the CNN, as it preserves the order of the word sequence. However, the CNN
is also capable of capturing sequential patterns, as concerns the local patterns by the convolutional
filters; for example, the convolutional filters along with the attention technique have been successfully
applied to machine translation [52]. Moreover, compared to the RNN, the CNN mostly has a smaller
number of parameters, so that the CNN is trainable with a small amount of data [43]. The CNN is also
known to explore the richness of pretrained word embeddings [53].

In this paper, we design a CNN model for the sentiment classification and show that our network
is better than other deep learning models through experimental results.

3. The Proposed Method

CNN, which has been widely used on image datasets, extracts the significant features of the
image, as the “convolutional” filter (i.e., kernel) moves through the image. If the input data are given
as one-dimensional, the same function of CNN could be used in the text as well. In the text area, while
the filter moves, local information of texts is stored, and important features are extracted. Therefore,
using CNN for text classification is effective.

Figure 1 shows a graphical representation of the proposed network. The network consisted of an
embedding layer, two convolutional layers, a pooling layer, and a fully-connected layer. We padded
the sentence vectors to make a fixed size. That is, too long sentences were cut to a certain length, and
too short sentences were appended with the [PAD] token. We set the fixed length S to be the maximum
length of the sentences. An embedding layer that maps each word of a sentence to an E-dimensional
feature vector outputs an S × E matrix, where E denotes the embedding size. For example, suppose
that 10 is king, 11 is shoes, and 20 is queen in the embedding space. 10 and 20 are close in this space
due to the semantic similarity of king and queen, but 10 and 11 are quite far because of the semantic
dissimilarity of king and shoes. In this example, 10, 11, and 20 are not numeric values, they are just
the simple position in this space. In other words, the embedding layer is a process of placing words
received as input into a semantically well-designed space, where words with similar meanings are
located close and words with opposite meanings are located far apart, digitizing them into a vector.
The embedding is the process of projecting a two-dimensional matrix into a low-dimensional vector
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space (E-dimension) to obtain a word vector. The embedding vectors can be obtained from other
resources (e.g., Word2Vec) or from the training process. In this paper, our embedding layer was
obtained through the training process, and all word tokens including the [UNK] token for unseen
words would be converted to numeric values using the embedding layer.

Figure 1. The graphical representation of the network, where the output dimensions of each layer are
represented at the bottom of the corresponding layers.

The S × E matrix, the output of the embedding layer, is then laid down as the first convolutional
layer. The first convolutional layer is the C1 × E matrix, which stores the local information needed
to classify the sentiment class in a S × E matrix and convey information to the next convolutional
layer. The C1 × E matrix slides (i.e., convolves) all the values of the S × E matrix with an arbitrary
stride, calculates the dot product, and passes the dot product result to the next layer. The second
convolutional layer uses the C2 × 1 matrix to extract features from the contextual information of the
main word based on the local information stored in the first convolutional layer. C1 and C2 denote the
filter size of each convolutional layer, and the two convolutional layers have K1 and K2 distinct filters,
respectively, to capture unique contextual information. In other words, the first convolutional layer is
utilized to look at simple contextual information while looking over the S × E matrix, and the second
convolutional layer is utilized to capture key features and then extract them (e.g., worst, great) that
contain sentiments affecting classification.

The matrix that passed through the consecutive convolutional layer is used as the input to the
pooling layer. While average-pooling and L2-norm pooling have been used as the pooling layer
position, in this paper, we used the max-pooling, which is a technique for selecting the largest value as
a representative of the peripheral values. Since the sentiment is often determined by a combination of
several words rather than expressing the sentiment in every word in the sentence, we adopted the
max-pooling technique. The pooling layer slides all the values of the matrix, which is the output of the
second convolutional layer, with an arbitrary stride, resulting in output vectors. Since max-pooling
is the layer that passes to the next layer the largest value among several values, it results in output
vectors of a much smaller size. In other words, the convolutional layer looks at the context and extracts
the main features, and the pooling layer plays a role in selecting the most prominent features.

After passing through the pooling layer, a flattening process is performed to convert the
two-dimensional feature map from the output into a one-dimensional format and to delivery it
to an F-dimensional Fully-Connected (FC) layer. Since the FC layer takes a one-dimensional vector
as the input, the two-dimensional vector delivered from the pooling layer needs to be flattened. The
FC layer connects all input and output neurons. A vector that passes through the FC layer forms an
output that is classified as positive or negative. The activation function softmax functions to classify
multiple classes in the FC layer. The softmax function outputs, the value, which is the probability
value, is generated for each class.

Most people might think that with many convolutional layer stacks, it may be better to store local
information and to extract contextual information; however, deep networks do not always have higher
performance than shallow networks. Because a network’s variation (e.g., deep or shallow) might rely



Appl. Sci. 2019, 9, 2347 6 of 14

on the length of the data and the number of data and features, in this paper, we argue that data passing
through two consecutive convolutional layers and then passing through the pooling layer is successful
at storing context information and extracting prominent features. This assertion is demonstrated by
experiments and discussed in Section 5.

4. Experiment

4.1. Data

We used three Movie Review (MR) data from kaggle [4–6]. The dataset in [4] consisted of two
labels, positive and negative, while [5] was composed of three labels of positive, neutral, and negative.
Furthermore, the dataset in [6] was composed of five labels of positive, somewhat positive, neutral,
somewhat negative, and negative. The positive class of [4], the positive class of [5], and the positive
and somewhat positive classes of [6] were merged and labeled as the positive class. The neutral class
of [5] and the neutral class of [6] were merged and labeled as the neutral class. Then, the negative
class of [4], the negative class of [5], and the somewhat negative and negative classes of [6] were
merged and labeled as the negative class. Positive, neutral, and negative were assigned as 1, 0, and 2,
respectively. Some 11,800 positive data, 5937 neutral data, and 9698 negative data were used, totaling
27,435. Amazon Customer Review data (CR) [7] were labeled as positive and negative, and the amount
of positive data was more than that of negative data. Therefore, we used only 3671 out of 34,062 data
to control the positive:negative ratio. Stanford Sentiment Treebank data (SST) [8] were labeled as a
value between 0 and 1, so a value of 0.5 or more was relabeled as positive, and a value of less than 0.5
was relabeled as negative.

Table 1 shows the detailed statistics of the data. N is the number of text data, Dist (+, −) is the
ratio of positive:negative classes, and aveL/maxL is the average length/maximum length of the text.
We divide all the data into three sets (i.e., train, validation, and test) with a ratio of 55:20:25, and |V|
was the dictionary size of each dataset.

Table 1. Detailed statistics of the data.

Data N Dist (+,−) aveL/maxL Train:Test:Val |V|
MR 21,498 55:45 31/290 12,095:5375:4031 9396
CR 3671 62:38 19/227 2064:918:689 1417
SST 11,286 52:48 12/41 6348:2822:2116 3550

4.2. Preprocessing

Preprocessing was carried out to modify the text data appropriately in the experiment. We used
decapitalization and did not mark the start and end of the sentences. We deleted #, two or more spaces,
tabs, Retweets (RT), and stop words. We also changed the text that represented the url that began
with “http” to [URL] and the text that represented the account ID that began with “@” to [NAME].
In addition, we changed digits to [NUM], and special characters to [SPE]. We changed “can’t” and
“isn’t” to “can not” and “is not”, respectively, since “not” is important in sentiment analysis.

We split the text data by space and constructed a new dictionary using only the words appearing
more than six times in the whole text. In the MR data, 9394 words out of a total of 38,195 words were
made into a dictionary. In CR data, 1415 out of a total of 5356 words, and in SST data, 3548 out of a
total of 16,870 words were made. The new dictionary also included [PAD] for padding and [UNK] to
cover missing words. Padding is a method of cropping all text to a fixed length and filling it with the
[PAD] token for text shorter than that length. Here, the fixed length was the maximum length of text
in each dataset.
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4.3. Performance Comparison

Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM) [54], and Random Forest
(RF) [55] were used for comparing with our CNN models. Table 2 summarizes the description of the
traditional machine learning models and the parameter settings. The parameters were optimized via a
grid searching. We also compared our CNN models with the state-of-the-art models such as Kim’s [1]
and Zhang et al.’s [42].

Table 2. The description of the traditional machine learning models and the parameter settings.

Model Description

Naive Bayes (NB) - Probabilistic classifier based on the Bayes’ theorem
- Assumes the independence between features

Decision Tree (DT)

- C4.5 classifier using the J48 algorithm
- Confidence factor for pruning: 0.25
- Minimum number of instances: 1
- The number of decimal places: 1
- Determines the amount of data used for pruning: 5
- Reduced error pruning: True

Support Vector Machine (SVM)

- Non-probabilistic binary classification model that finds a decision
boundary with a maximum distance between two classes
- Kernel: RBF
- Exponent = 1.0, Complexity (c) = 10.0

Random Forest (RF)

- Kind of ensemble model that generates final result by incorporating the
results of multiple decision trees
- Maximum tree depth: 30
- Number of iterations: 150
- Each tree has no depth limitation

In order to optimize the CNN model proposed in this paper, we experimented with various
settings, and the optimal settings were as follows: (1) the embedding dimension E = 25; (2) C1 and C2

were set to 3; (3) K1 and K2 were 16 and 8; and (4) the pooling layer dimension P = 2. We set the strides
for the kernels to be 1. Every layer took the Rectified Linear Unit (ReLU) as an activation function
except for the output layer that took a softmax function. The number of the trainable parameter was
476,331, and we adopted Adam’s optimizer with an initial learning rate of 0.001. We took the L2
regularization for the fully-connected layer. The number of epochs was changed according to the
complexity of the network (i.e., the number of layers and parameters). For example, the first network
was trained for 5 epochs, and the model of Kim [1] was trained for 10 epochs.

In the study of Zhang et al. [42], NB-SVM was the best. The effectiveness of the combination
with different models (e.g., NB, SVM, NB-SVM) may vary for different tasks. We tested different
combinations with our datasets and discovered that the SVM with the RBF kernel was the best
enhanced model for our task. Thus, the CNN enhanced by SVM was used for comparison with
other models.

5. Result and Discussion

5.1. Result

The three datasets (movie review data, customer review data, and Stanford Sentiment Treebank
data) were applied to the proposed CNN models, traditional machine-learning models, and other
state-of-the-art models. Note that, we conducted two experiments: binary classification and ternary
classification. Tables 3 and 4 show the experimental results of binary classification, where the two
values for each cell correspond to the “positive” and “negative” classes, respectively. Table 5 shows the
experimental results of ternary classification in MR data. Table 3 shows the experimental results with
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the MR data, while Table 4 describes the experimental results with the CR and SST data. These tables
include the accuracy, precision, recall, F1 score, and weighted-F1 score. For example, the F1 scores of
the decision tree are 67.2% for positive and 31.1% for negative in Table 3.

Table 3. The results with the MR data, where Emb, Conv, Pool, globalpool, FC stand for embedding
layer, convolutional layer, pooling layer, global pooling layer, and fully-connected layer, respectively.

Model Accuracy Precision Recall F1 Weighted-F1

Decision Tree 59.64 58.0/64.0 76.2/39.6 67.4/47.1 57.2
Naive Bayes 56.40 57.5/53.3 77.7/30.7 66.1/38.9 52.0
Support Vector Machine 54.95 57.7/55.2 93.0/9.1 69.3/15.5 44.9
Random Forest 58.73 56.4/59.8 74.7/39.4 66.4/46.4 58.1

Kim [1] 80.85 80.7/80.9 76.2/84.7 78.3/82.8 80.75
Zhang et al. [42] 77.28 72.4/69.1 56.1/82.1 63.2/75.0 69.62

Emb+Conv+Conv+Pool+FC 81.06 81.5/80.7 75.6/85.6 78.4/83.1 80.96
Emb+Conv+Pool+FC 79.70 77.4/81.63 78.2/80.9 77.8/81.3 79.71
Emb+Conv+Conv+Conv+Pool+FC 80.30 80.2/80.4 75.3/84.5 77.7/82.4 80.26
Emb+Conv+Pool+Conv+FC 78.17 74.4/81.8 79.5/77.1 76.8/79.4 78.22
Emb+Conv+globalpool+FC 77.54 77.3/77.7 71.8/82.4 74.4/79.9 77.39
Emb+Conv+Conv+globalpool+FC 79.06 79.1/79.0 73.5/83.8 76.2/81.3 78.98
Emb+Conv+Pool+Conv+Pool+FC 79.11 78.6/79.5 74.3/83.1 76.4/81.2 79.0
Emb+Conv+Pool+Conv+Pool+Conv+Pool+FC 74.61 84.1/72.8 59.5/90.6 69.7/80.7 75.7

Table 4. The results with the CR and SST data, where Emb, Conv, Pool, globalpool, FC stand
for embedding layer, convolutional layer, pooling layer, global pooling layer, and fully-connected
layer, respectively.

Model
CR SST

Weighted-F1 F1 Weighted-F1 F1

Decision Tree 63.7 47.0/74.5 51.5 62.4/41.7
Naive Bayes 61.0 77.7/31.8 35.7 10.6/63.4
Support Vector Machine 59.7 26.5/78.5 37.8 68.6/4.0
Random Forest 64.4 41.8/76.9 51.2 59.0/47.3

Kim [1] 74.8 78.6/65.6 56.1 47.2/66.3
Zhang et al. [42] 54.8 64.7/37.7 52.1 45.6/59.5

Emb+Conv+Conv+Pool+FC 78.3 84.8/67.1 68.3 70.5/65.7
Emb+Conv+Pool+FC 78.3 82.3/71.3 66.5 67.7/65.1
Emb+Conv+Conv+Conv+Pool+FC 70.4 82.0/50.3 68.2 68.4/68.0
Emb+Conv+Pool+Conv+FC 75.3 84.0/60.3 68.6 70.5/66.5
Emb+Conv+globalpool+FC 81.4 86.1/73.4 70.2 72.8/67.2
Emb+Conv+Conv+globalpool+FC 79.4 84.5/70.5 70.0 71.2/68.7
Emb+Conv+Pool+Conv+Pool+FC 73.18 82.8/56.5 66.62 67.7/65.4
Emb+Conv+Pool+Conv+Pool+Conv+Pool+FC 51.57 77.6/6.7 65.21 70.2/59.5

In Table 3, the Random Forest (RF) achieved the best F1 scores, while the Decision Tree (DT)
exhibited comparable results. Our first network was the best among all models including the
state-of-the-art models of [1,42]. Similarly, in Table 4, the RF and the DT achieved the best F1 scores
among the traditional models, but our fifth network outperformed all other models. Note that the best
networks in Tables 3 and 4 were different. That is, the first network was the best with the MR data,
which had relatively longer sentences, as shown in Table 3, whereas the fifth network was the best for
the other two datasets (e.g., CR, SST) that had relatively shorter sentences.

One may argue that stacking more convolutional layers might be better, as the deeper network
is known to capture higher level patterns. This might be true, but it should be noted that the deeper
network is not always better than the shallow networks. The depth of the network needs to be
determined according to the data characteristics; too deep networks will probably overfit, whereas too
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shallow networks will underfit. For example, although the third network was deeper than the first
network, the first network outperformed the third network, as shown in Table 3. To clarify this, we
conducted experiments varying the number of convolutional layers from 1–5, and its result is depicted
in Figure 2. Meanwhile, the first network can be compared with the fourth network to show that
stacking two consecutive convolutional layers is better. The fifth and sixth networks may be compared
with the first and second networks, if one can see if the max-pooling and the global max-pooling
contribute to the models. The seventh and eighth networks had similar structures to that in [44,45].

Figure 2. Classification performance according to the depth of the convolutional layer, where the
horizontal axis means the number of stacked convolutional layers.

We also conducted ternary classification. The binary classification assumed that there were only
two labels (e.g., positive and negative), whereas the ternary classification assumed that there were
three labels (e.g., positive, negative, and neutral). As shown in Table 5, our first network was the best
for the ternary classification, but the performance fell to a 68.31% weighted-F1 score.

Table 5. Performance of ternary classification with the MR data, where Emb, Conv, Pool, globalpool, FC
stand for embedding layer, convolutional layer, pooling layer, global pooling layer, and fully-connected
layer, respectively.

Model Weighted-F1

Decision Tree 46.8
Naive Bayes 27.2
Support Vector Machine 34.9
Random Forest 46.2

Kim [1] 68.2
Zhang et al. [42] 67.5

Emb+Conv+Conv+Pool+FC 68.3
Emb+Conv+Pool+FC 55.0
Emb+Conv+Conv+Conv+Pool+FC 64.6
Emb+Conv+Pool+Conv+FC 66.9
Emb+Conv+globalpool+FC 65.3
Emb+Conv+Conv+globalpool+FC 67.5

5.2. Discussion

5.2.1. Comparison with Other Models

In terms of the F1 scores, our network was about 10% greater than the traditional machine models.
We believe that the biggest reason is the inherent ability of the CNN to capture local patterns. The
CNN has the ability to capture local patterns and higher level patterns through its convolutional and
pooling layers, as explained in [48]. We believe that such an ability of the CNN model produces the
performance gap. The proposed network was also better than the state-of-the-art deep learning models
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such as those of Kim [1] and Zhang et al. [42]. Kim [1] and Zhang et al. [42] commonly utilized three
filters (sizes of 3, 4, and 5) in parallel, in the hope to capture the filters’ arbitrary features with different
sizes. On the other hand, our network had consecutive filters that had two benefits: (1) hierarchical
(higher) features were extracted, and (2) the high-level filters would have a broader range to see
local patterns, where such advantages of consecutive filters were already reported in many previous
studies [56–58]. The three-way approach, employed in [42], gave worse performance than the model
of [1], although it was designed to combine of a CNN model and a traditional machine learning model.
The reason can be explained by the fact that the CNN model itself was already sufficient to achieve
the high performance, as shown in Table 3, so the combination with other traditional models (e.g.,
Naive Bayes) degraded the overall performance. In Zhang et al. [42], among the sentences classified by
CNN [1], the sentences with weak confidence were re-classified by the traditional machine learning
models, and it improved the overall performance. On the other hand, for the three datasets in this
paper, we found that the ratio of weakly-classified instances was biased, as shown in Figure 3; this
means that the entropy of the weakly-classified instances was small, so it was difficult to expect that
the performance would improve by the combination with the traditional models.

Figure 3. The ratio of positive/negative sentences with weak confidence.

5.2.2. Network Structure

As shown in Tables 3 and 4, the max-pooling had better performance in MR data, whereas the
global max-pooling seemed helpful in the CR data and the SST data. The max-pooling layer gave the
largest value in a certain subarea as an output, while the global max-pooling did this in the whole area.
Figure 4 shows the difference.

Figure 4. The difference of max-pooling and global max-pooling.

If MR data adopted global max-pooling, the large number of missing values would be discovered.
Because the length of the total sentence of the MR data was longer than that of CR data and SST data,
the performance of the MR data was lower. On the other hand, CR data and SST data with relatively
a short length of sentences were not degraded even when using global max-pooling and, in some
cases, performed better than using max-pooling. As a result, CR data and SST data showed the highest
performance when one convolutional layer and global max-pooling layer were combined. The reason
is also that they were shorter and simpler data than the MR data, so they showed higher performance
in relatively monotonous models. However, The network with two convolutional layers never lagged
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behind the traditional machine learning models and state-of-the-art models in terms of performance in
this experimental result.

6. Conclusions

In this paper, we designed a convolutional neural network for the sentiment classification.
By experimental results, we showed that the consecutive convolutional layers contributed to better
performance on relatively long text. The proposed CNN models achieved about 81% and 68%
accuracies for the binary classification and ternary classification, respectively. As future work, we
will apply our work to other classification tasks (e.g., gender classification). We will also continue
finding better structures for the sentiment classification; for example, residual connection for stacking
more layers.
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