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Featured Application: The proposed model of this paper is for the bearing fault diagnosis of
industrial rotating machinery. Specifically, the general fault diagnosis model only can predict
the bearing fault based on the predefined number of stored fault information. The proposed
approach provides an online fault diagnosis process, where unknown faults are detected and
updated with knowledge of the proposed diagnosis system.

Abstract: This paper proposes an online fault diagnosis system for bearings that detect emerging fault
modes and then updates the diagnostic system knowledge (DSK) to incorporate information about
the newly detected fault modes. New fault modes are detected using k-means clustering along with a
new cluster evaluation method, i.e., multivariate probability density function’s cluster distribution
factor (MPDFCDF). In this proposed model, a heterogeneous pool of features is constructed from
the signal. A hybrid feature selection model is adopted for selecting optimal feature for learning
the model with existing fault mode. The proposed online fault diagnosis system detects new fault
modes from unknown signals using k-means clustering with the help of proposed MPDFCDF cluster
evaluation method. The DSK is updated whenever new fault modes are detected and updated
DSK is used to classify faults using the k-nearest neighbor (k-NN) classifier. The proposed model is
evaluated using acoustic emission signals acquired from low-speed rolling element bearings with
different fault modes and severities under different rotational speeds. Experimental results present
that the MPDFCDF cluster evaluation method can detect the optimal number of fault clusters, and
the proposed online diagnosis model can detect newly emerged faults and update the DSK effectively,
which improves the diagnosis performance in terms of the average classification performance.

Keywords: online fault diagnosis; k-means clustering; hybrid feature selection; cluster evaluation;
envelope analysis; and acoustic emission

1. Introduction

The industrial motor is vital equipment in modern industrial application such as in pumps, air
compressors, steel mills, paper mills, wind turbines, and others. It is perhaps the most commonly
used rotating machine with the primary goal of providing manufacturing machinery rotation under
different load conditions [1]. Thus, the bearing is the most critical and important piece of equipment in
the industrial motor. However, under the continuous and heavy workload, rapid raising of the voltage
pulse, and contamination of the operating environment, the metal fatigues of different parts of the
bearing appear in the form of surface cracks [2]. The gradual increase of the crack severity becomes
a major cause of failure of the bearing [2,3]. Finally, the unattended bearing-related failures account
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for a significant portion of functional breakdowns in induction motors as well as shutdown of the
industrial process.

To overcome the situation and decrease the tremendous loss of industrial production, several types
of bearing condition monitoring and early fault detection models have been invented. Conventional
model-based condition monitoring is most popular among them. However, model-based condition
monitoring demands a deep knowledge of the whole industrial process [4,5]. Alternatively, the modern
development of sensor technology, information processing techniques, and machine learning models
help to invent an efficient data-driven bearing fault diagnosis model by considering a large amount of
signal data during continuous industrial operations [4].

In the data-driven approach, data are collected from the actual system environment using different
types of sensors for analyzing and distinguishing normal and abnormal conditions without developing
the complex model of the system. To collect the data from the bearing, several types of sensor are
used, i.e., current sensor, thermal sensor, vibration acceleration sensor, and acoustic emission sensor.
Motor current signature analysis (MCSA) is adopted for fault diagnosis [6,7] because of the fact that it
is sensitive to different failures of industrial motor and provides nonintrusive monitoring. Vibration
signal analysis-based fault diagnosis is widely used for this purpose, which may provide the most
information about bearing failures [8–10]. The vibration analysis and MCSA show good performance
for the early detection of bearing defects. However, these approaches can only show suboptimal
performance in the modern complex industrial system because of their difficulty in capturing dynamic
activities at weak vibration and current levels, respectively. Acoustic emission (AE) is a popular
alternative method for fault diagnosis due to its high operating frequency range and low-energy
signals capturing capability [4,11–13]. AE can identify bearing abnormalities before they appear on the
surface at the vibration acceleration range. Thus, AE is used to monitor for incipient bearing defects in
this paper.

In order to develop an efficient fault diagnosis technique, many researchers proposed the
data-driven bearing fault diagnosis model. Thomas et al. proposes a heterogeneous feature extraction
process using envelop power spectrum, time and frequency domain statistical analysis, and wavelet
packet decomposition analysis. In this paper, the authors adopt a simple greedy search model, which
is computational time expensive. The k-NN, feedforward net, and SVM (support vector machine) are
used in a supervised manner in this research [14]. Islam et al. proposed a hybrid feature selection
algorithm and discriminant heterogeneous feature analysis for bearing fault diagnosis. In this paper,
acoustic emission sensor is used for acquiring vibration data of the fault. A novel hybrid feature
selection model is introduced for selecting optimal features from extracted heterogeneous feature
vector. Finally, k-NN is used for identifying bearing fault [15]. In [16], Kun et al. proposed an adaptive
frequency band selection for an empirical wavelet decomposition model for bearing fault diagnosis.
In this paper, the harmonic significance index and particle swarm optimization is used for selecting an
optimal sub band. There are many kinds of research where the traditional fault diagnosis models are
introduced and have achieved high accuracy for detecting faults based on trained knowledge.

The traditional fault diagnosis methods use prior knowledge of failure modes to diagnose bearing
condition. However, in complex modern industrial processes, bearing often operates continuously
under heavy loads, which causes material fatigue and leads to faults (i.e., cracks or spalls). Thus, it is
difficult to have complete failure knowledge in advance, which means traditional diagnostic systems
make decisions based on incomplete knowledge. Due to the progressive nature of bearing faults,
new fault modes can appear during continuous operation. Discounting information about new faults
degrades the effectiveness of fault diagnosis systems. In contrast, an online fault diagnosis system
considers new faults continually for enhancing the fault knowledge in reliable fault diagnosis [17].
Jiang et al. proposed a progressive fault diagnosis model, where a new hybrid ensemble auto-encoder
(HEAE) is used to increase the feature quality for detecting a fault [18]. In this research, several
classification algorithms are used for validating the performance. However, this work still considers a
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background trained model for identifying the new fault. Also, the fault classification model is not
updated by incorporating the new fault information.

To address this issue, an online fault diagnosis model is proposed in this paper that can detect
new faults as they appear using unsupervised clustering technique, update its knowledge in real time,
and use the updated knowledge for a reliable diagnosis. The number of faults can be determined
from a set of condition monitoring data through clustering. The k-means clustering algorithm is
a simple and popular way to solve the unsupervised clustering problem [19] without the need for
training on existing knowledge. It can, therefore, be used to cluster unknown bearing signals and
detect new faults. The k-means algorithm first selects k initial centroids as the centers of k clusters.
Each sample is then assigned to the nearest cluster through an iterative process. The algorithm is
sensitive to the initial centroids, which are generally selected randomly [19,20]. Several methods
have been proposed to select optimal centroids. Bradley et al. proposed a cluster center initialization
algorithm, which divides the overall dataset into subsamples using k-means and then selects final
centroids based on minimum clustering error [21]. Likas et al. introduced global k-means, a tree-based
center initialization algorithm to select initial centroids independently of initial position and empirical
parameters [22]. David et al. proposed the k-means + +, which yield better clustering performance
using random seeds [23]. Those algorithms, however, suffer from randomness, are computationally
expensive, and introduce new parameters. In [20], Khan proposed a simple and effective initial
centroid selection method that reduces randomness, improves clustering performance, and does not
introduce any empirical variables. Thus, this method proposed in [20] is used as a baseline for initial
centroid selection.

In k-means clustering, the number of possible clusters k is an important parameter. Since the
number of fault modes in a bearing cannot be known in advance, an efficient cluster evaluation technique
is required to determine k. The silhouette coefficient is a popular cluster evaluation metric [24,25] that
quantifies the proximity of points in a cluster to one another, which helps in identifying the number of
visible clusters. A silhouette value is calculated for each point by measuring its average dissimilarity ai
to other points in the same cluster and its minimum average dissimilarity bi to points in other clusters.
The silhouette coefficient, calculated by averaging all silhouette values, gives the number of clusters
in the data. In [26], Rahman et al. proposed a computationally simpler cluster evaluation algorithm
called the compactness and separation measure of clusters (COSES). It calculates cluster separability
by measuring the minimum distance between cluster seeds and calculates compactness by averaging
the sum of the distances of all samples of a cluster to its seed.

However, cluster evaluation techniques based on average distances are unsuitable for evaluating
the feature distribution of bearings, because samples at larger distances from the cluster center tend to
dominate those lying closer to it, and the uneven distribution of densities across the feature space can
misrepresent the actual number of clusters in the data. To address these issues, a new cluster evaluation
algorithm, i.e., multivariate probability density function’s cluster distribution factor (MPDFCDF), is
proposed here. The MPDFCDF identifies the optimal number of clusters and uses that information to
detect new faults. Once a new fault mode is detected, the online diagnostic system knowledge (DSK) is
updated through heterogeneous feature pool extraction and optimal fault signature selection based on
existing knowledge and newly detected fault signals. Subsequently, the online fault diagnosis module
uses k-NN for classification.
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Key contributions of this paper are:

• Since it is difficult to know in advance what types of faults a healthy bearing can experience,
traditional offline fault diagnosis systems classify faults on the basis of incomplete knowledge.
To address this issue, we propose an online bearing fault diagnosis model that first detects
unknown fault modes in real-time using k-means clustering and continually updates the DSK for
more reliable fault diagnosis.

• It is difficult to determine the number of discernible fault modes through k-means clustering alone
without knowing how to define kkmean. To address this issue, we propose a new cluster evaluation
method, the MPDFCDF, to identify the optimal number of clusters (kopt) in the fault signatures.

• To evaluate our proposed model, we recorded bearing signals for different shaft speeds
and constructed a heterogeneous fault signatures pool to extract the maximum possible
fault information. We used a hybrid fault signature selection to create discriminative fault
signatures and build a DSK. Finally, we used the k-NN classification algorithm to estimate the
classification performance.

The rest of this paper is organized as follows. Section 2 describes the data acquisition from a
test rig. Section 3 provides details of the proposed online fault diagnosis model, including the DSK
updating process, unknown fault mode detection using the proposed MPDFCDF cluster evaluation
method, and bearing fault diagnosis. Section 4 presents the experimental results and analysis of the
proposed model, and Section 5 concludes the paper.

2. Data Acquisition

To conduct the experiment, AE signals of different faults are collected from the collaborative
experimental setup at Intelligence Dynamic Lab (Gyeonsang National University, Korea). Figure 1
depicts the block diagram of the experimental setup for collecting acoustic emission (AE) signals
from bearings. In this experimental setup, an induction motor is connected to a drive-end shaft,
and a non-drive-end shaft is attached to the drive-end shaft through a gearbox with a 1.52:1 gear
reduction ratio. Both the drive-end and non-drive-end shafts use cylindrical rolling element bearings
(model FAG NJ206-E-TVP2), where the number of rolling elements is 13, the contact angle (αcangle)
is 0◦, and the roller diameter (Bd) and pitch diameters (Pd) is 9 mm and 46.5 mm, respectively [27].
Figure 2 presents the parts and measurements of cylindrical rolling element bearing. In this setup, the
general-purpose wide-band frequency AE sensor (WSα) from Physical Acoustics Corporation (PAC) is
used [28]. The operating frequency is 100–1000 kHz, peak sensitivity is 55 dB, and resonant frequency
125 kHz of the AE sensor. The AE sensor is attached at the top of the non-drive-end bearing house
and the collected signals are sampled at 250 kHz using a PCI-2 based system [28]. Figure 3 presents
the picture of the experimental setup and data acquisition system. Bearing faults are seeded defects
or cracks of different sizes (small size crack: 3 mm and big size crack: 12 mm) as shown in Figure 4,
where fault names are Bearing Crack Outer (BCO), Bearing Crack Inner (BCI), and Bearing Crack
Roller (BCR).
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3. Proposed Online Fault Diagnosis Model

The proposed model for online fault diagnosis consists of three processes, as shown in Figure 5.
An initialization process builds the initial DSK with a heterogeneous feature vector corresponding to a
healthy bearing signal (FFB). An online bearing fault detection and diagnosis process detect new fault
modes in unknown signals using k-means clustering and the proposed MPDFCDF cluster evaluation
method. If new fault modes are detected, an updating process incorporates the newly detected fault
class into the DSK, and the updated DSK is then used for fault diagnosis
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3.1. Heterogeneous Feature Pool Configuration

To discriminate fault signatures, we use maximum possible fault features extraction [14,15].
Different paradigms exist for the extraction of heterogeneous fault features, in which statistical features
from time-domain and frequency-domain signals are used to uncover meaningful information for
fault diagnosis. We use statistical features from the time-domain AE signal: f 1, root-mean-square
(RMS); f 2, square root of the amplitude (SRA); f 3, kurtosis (KV); f 4, skewness (KV); f 5, peak-to-peak
(PPV); f 6, crest factor (CF); f 7, impulse factor (IF); f 8, margin factor (MF); f 9, shape factor (SF); f 10,
kurtosis factor (KF); and frequency-domain features of the signal, including f 11, frequency center (FC);
f 12, RMS frequency (RMSF); and f 13, root variance frequency (RVF) [4]. Equations (1) and (2) present
mathematical equations describing the extracted statistical features.
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To identify particular failure modes, bearing defect properties must be observed at different signal
frequencies. Therefore, we extract RMSF values from frequency ranges that include harmonics of the
following bearing defect frequencies [29]: Ball pass frequency of the outer raceway (BPFO), ball pass
frequency of the inner raceway (BPFI), ball spin frequency (BSF), and fundamental train frequency
(FTF). They are calculated as follows:
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(3)

where Nrollers is the number of rollers, Fshaft is the shaft speed in hertz, αcangle is the contact angle, Bd is
the roller diameter, and Pd is the pitch diameter.

RMSF features are calculated by first determining the power spectral envelope of the AE signal
and then identifying the defect frequency ranges of BPFO, BPFI, and 2× BSF up to their third harmonics.
Except for BPFO, which is caused by the force of the roller on the stationary outer raceway fault, these
frequencies can experience some modulation. BPFI and its harmonics are amplitude-modulated by
Fshaft, and 2 × BSF is modulated by the rotational speed of the cage (FTF). Hence, amplitude modulation
produces sidebands as an explicit symptom of inner-raceway and roller faults in bearings. Furthermore,
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random variations in the analytic bearing defect frequencies on the order of 1–2% are observed [30],
which are accounted for by the factor RVorder = 2% [27]. Frequency ranges for outer-related defects
(NOFreqR,i), inner-related defects (NIFreqR,i), and roller-related defects (NRFreqR,i) are computed using
Equation (4) and depicted in Figure 6.

NOFreqR,i = (1−RVorder) · (BPFOi) ∼ (1 + RVorder) · (BPFOi)

NIFreqR,i = (1−RVorder) ·
(
BPFIi − 2 · Fsha f t

)
∼ (1 + RVorder) ·

(
BPFIi + 2 · Fsha f t

)
NRFreqR,i = (1−RVorder) · (2× BSFi − 2 · FTF) ∼ (1 + RVorder) · (2× BSFi + 2 · FTF)

(4)

where i represents the harmonic number. Using these frequency ranges, we compute nine RMSF
values for three types of defect frequencies up to their third harmonic: RMSFBPFI1(f 14), RMSFBPFI2 (f 15),
RMSFBPFI3 (f 16), RMSFBPFO1 (f 17), RMSFBPFO2 (f 18), RMSFBPFO3 (f 19), RMSF2 × BSF1 (f 20), RMSF2 × BSF2

(f 21), RMSF2×BSF3 (f 22). In total, we extract 22 features from each signal to create its heterogeneous
feature pool.
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3.2. DSK Construction by Selecting Discriminant Fault Signatures of Detected Fault Modes

Discriminant features of candidate data classes are important to effectively distribute class samples
and improve classification accuracy. However, the classifier knowledge varies depending on the
number of emerging fault classes. In a high-dimensional feature space, features differ in their ability
to effectively discriminate a given fault condition. Irrelevant or redundant features degrade the
performance of predictive models (e.g., supervised and unsupervised classifiers). To address this issue,
we use a discriminant fault signature selection process to build a DSK of detected fault modes.

Feature selection involves the evaluation of feature subsets based on processes that are generally
either wrapper or filter based [31]. However, diagnostic performance can be improved by combining
the advantages of both the wrapper-and filter-based approaches [15,32,33]. In this study, we introduce
a hybrid feature selection algorithm that uses an effective combination of filter and wrapper methods
to select the most discriminant signature of emerging faults. In the selection process, extracted features
of detected fault classes (Ndetected_class × Nsample × Nfeature) are divided into two halves, where one half
is used for the filter selection process and the other half is used for the wrapper selection process
(Nfeature is the size of the original feature vector). In the filter selection process, (Ndetected_class × Nsample/2
× Nfeature) are randomly divided into a k-fold cross validation kcv, where k = 2. Optimal feature sets are
selected using sequential forward selection (SFS) with feature subset evaluation. The filter selection
process selects 10 suboptimal feature subsets from Niteration × kcv, where Niteration = 5.

The 10 suboptimal subsets are combined to create a feature occurrence histogram. Subsequently,
in the wrapper selection process, the algorithm selects feature combinations from different levels of the
feature occurrence histogram and estimates the average classification accuracy of the k-NN classifier.
In the classification process, 50% of the (Ndetected_class × Nsample/2 × Nfeature) are used as a training set and
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the rest are used as a resting set. The wrapper selection process picks the best feature combination
depending on the maximum average classification accuracy. Figure 7 illustrates the overall flow of the
DSK construction by selecting discriminant fault signatures of detected fault modes.
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Usually, the SFS algorithm evaluates different subsets and selects an optimal subset based on
an objective value. In this study, we adopt the maximum class separability (MCS) feature subset
evaluation algorithm proposed by Islam et al., which is illustrated in Figure 8 [34]. According to this
algorithm, the final objective value is calculated as Equation (5).

objective_value =
between_class_separability
within_class_compactness

(5)
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3.3. Proposed New Fault Mode Detection

As mentioned in Section 1, a new fault can appear or the severity of an existing crack can increase
during the diagnosis process. Unsupervised clustering algorithms are appropriate for detecting an
unknown number of faults in a fault signal. The process of our proposed online fault diagnosis system
is illustrated in Figure 9. This process compares the optimal features extracted from unknown signals
with the existing DSK to identify the number of fault modes.
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3.3.1. k-Means Clustering

k-means clustering is the simplest unsupervised clustering algorithm and has been adopted in
several application domains [35,36]. In k-means clustering, k centroids are initially selected at random,
and data samples {x1, . . . xn} are assigned to disjoint clusters corresponding to the nearest centroid
based on a clustering criterion function F [19], which is generally the squared distance between each
sample xi and the centroid cj of cluster Cj, as given in Equation (6)

F(c1, . . . , ck) =
k∑

j=1

N j∑
i=1

‖xi, j − c j‖
2 (6)

where c1 . . . ck are the centroids of clusters C1 . . . Ck, respectively, k is the total number of clusters, and
Nj is the total number of samples assigned to the ith cluster. After data samples are assigned to clusters,
centroids are relocated based on their membership information.

This process is repeated until there is no change in the value of F [37]. Since the k-means clustering
algorithm is sensitive to the k initial centroids, it may converge to a suboptimal solution [20,38].
Many algorithms have been devised to reduce the sensitivity of the process to k, but they inevitably
increase the computational cost or introduce new variables. In this study, we use the initial centroid
selection method of Khan [20], which considers the deepest valleys and highest gaps between clusters
in a dataset. This algorithm sorts the data samples in ascending order of their magnitude d1, . . . dn,
then calculates the Euclidean distance between each pair of consecutive points, Di = dist (di − di+1),
where i = 1 . . . n − 1. Next, the distances Di are sorted in descending order while keeping their original
indices i for identifying the position numbers after further processing. The algorithm selects the first k
− 1 distances, where k is the user-defined number of clusters, and points corresponding to the selected
distances are combined into an upper bound set of k data groups {i1 . . . ik−1, n}, and a lower bound set
of k data groups {1, i1 + 1, . . . ik−1 + 1}. Finally, center medians are calculated using the data points
between the lower and upper bound positions. These center medians are the initial k centroids and are
used as the initial seeds for the k-means clustering process. This process is illustrated in Figure 10.
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3.3.2. The Proposed MPDFCDF Cluster Evaluation Method

As mentioned in Section 1, k-means clustering requires kkmeans to be specified in advance. However,
it is difficult to know the number of clusters (fault modes) of unknown signals in online fault detection
and diagnosis system. This problem can be resolved by repeating the clustering process for different
values of kkmeans (e.g., kkmeans = 2 . . . 7) and then determining kopt through an efficient cluster evaluation
method. To do this, elbow is a well-known unsupervised cluster evaluation technique [39,40].
The elbow is a visual graph evaluation technique, where the number of clusters is increased one by one
and evaluate a cost function of the clusters in every stapes. The cost function is basically the calculation
of the sum of squared errors of clusters. During the time of increasing the number of clusters, the value
of cost function dramatically decreased and then became steady. Based on the curve of the graph, it
determines the optimal number of cluster. However, the visual determination is often ambiguous.
Also, the evaluation of the cost function of clusters is challenging.

The silhouette coefficient [24] and COSES [26] methods work as a cluster evaluation for
well-separated data. However, data from faulty bearings have an unusual and complex distribution,
which is not handled well by average-distance-based cluster evaluation methods. In Figure 11a, data are
well separated into easily identifiable clusters, but in Figure 11b, two data groups are in close proximity
to each other but far away from the other groups. In such cases, the larger distance dominates over the
smaller distance, leading to incorrect identification of the number of clusters. Furthermore, unequal
densities of data groups could bias the cluster evaluation. To address these issues, the MPDFCDF is
proposed, which considers the multivariate Gaussian distribution and probability density functions
(PDFs) of the data in feature space.
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The PDF ρ(x) can be used to express the statistical distribution of data in clusters. The univariate
PDF of a normal distribution is given by Equation (7), where µ is the mean, and σ2 is the variance

ρ(x) =
1

σ
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However, real-world problem sets exhibit behavior that is more suitably represented by
multivariate distributions, such as the multivariate normal distribution given by Equation (8)

ρ(X) =
1√

|
∑
|(2π)d
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2
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−1∑
(X − µ)
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where d is the dimension of data, X and µ are 1 × d vectors, and
∑

is the d × d symmetric positive
definite covariance matrix.

The properties of these distributions and the distance between their means represent key
information that can help in identifying kopt. If samples are distributed in a scattered way, the
probability that data exist in dense areas is low, and the deviation of samples from the mean is high.
On the other hand, if samples are distributed in a compact way, the probability that data exist in dense
areas is high and the deviation of samples from the mean is low. Thus, the ratio of the highest PDF
value to the variance of the distribution is a good measure of the cluster density, whereas distances
between means of clusters measure the cluster separation. kopt is identified by evaluating clustered
samples on these criteria, using different values of k. The MPDFCDF cluster evaluation method, thus,
consists of the following steps, which are illustrated in Figure 12:

• Step 1: Classify samples belonging to k clusters by k-means clustering;
• Step 2: Calculate the mean µ and covariance

∑
of all clusters;

• Step 3: Calculate the PDFs for all clusters using Equation (8);
• Step 4: Calculate the local distribution factor for each cluster;

Local_Distribution_Factorc =
max(ρc(X))

2×max(
∑

c)
;

the 2-sigma rule [41] is used here, which states that 95% of samples exist within 2-sigma of the
mean and the remaining 5% can be regarded as outliers.

• Step 5: Calculate the global density factor for the distribution

Global Density Factor = min(Local_density_factor);
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• Step 6: Calculate the global separability factor

Global Separability Factor = min(Inter_Cluster_Dist)

where

Inter_Cluster_Dist(ci − c j) =

√
(ci − c j)

2;

• Step 7: Calculate the MPDFCDF

MPDFCDF = abs(Global Density Factor-Global Separability Factor)

where the minimum MPDFCDF value identifies kopt.
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3.4. System Update

In the proposed online fault detection and diagnosis model, known fault data from the DSK are
combined with the optimal fault signature of unknown signals to detect new fault modes. k-means
clustering and the proposed MPDFCDF cluster evaluation method are used to determine the number
of fault modes (kopt) in the combined data. If kopt is larger than the number of known faults Fdsk, the
model automatically updates the DSK to incorporate the newly detected fault class.

3.5. Fault Classification Using k-NN

The proposed online fault diagnosis model classifies unknown samples using k-NN [11,42].
We validate the model by estimating the generalized classification accuracy through k-fold
cross-validation. The k-NN classifier classifies a sample based on the majority class among its
kknn nearest neighbors, which are determined using distance criteria. Several distance criteria have
been used in previous studies, such as the Euclidean distance, correlation between samples, city block
distance, cosine distance, and Hamming distance. In this study, we use the Euclidean distance, which
is the most widely used distance criterion and can be formulated as Equation (9).

dist(xi, x j) =

√√√ D∑
d=1

(
xi,d − x j,d

)2
(9)

where dist(xi−xj) represents the Euclidean distance between two data points xi and xj, and samples are
represented by d feature dimensions.
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4. Experimental Results and Analysis

4.1. Experimental Datasets

For the experiment of the proposed model, signals were collected from a fault-free bearing (FFB)
and faulty bearings at various shaft speeds. In this study, six fault modes are considered: A 3-mm
crack on the outer raceway (BCO 3 mm), a 3-mm crack on the inner raceway (BCI 3 mm), a 3-mm crack
on the roller (BCR 3 mm), a 12-mm crack on the outer raceway (BCO 12 mm), a 12-mm crack on the
inner raceway (BCI 12 mm), and a 10-mm crack on the roller (BCR 12 mm). Signals are collected for
different rotational speeds (300 rpm to 500 rpm). Finally, AE data are divided into five datasets based
on the shaft rotational speed, where each dataset contains a total of 630 AE signals of 5 s duration each
(i.e., 90 AE signals for FFB and 90 for each of the six bearing faults). Table 1 presents the details of the
experimental dataset.

Table 1. Various datasets with the crack severity specifications considered in this study.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Average RPM 300 rpm 350 rpm 400 rpm 450 rpm 500 rpm

Fault
Severity

Small crack Crack length: 3 mm, width: 0.35 mm, depth: 0.3 mm on outer raceway, inner
raceway, and roller

Big crack Crack length: 12 mm on outer and inner raceways and 10 mm on roller, width:
0.49 mm, depth: 0.5 mm

To validate the proposed model, five test cases are defined to progressively introduce new faults
(small or big cracks) into the system, as shown in Table 2. Actually, to diagnosis the continues growth
of different faults, the data acquisition process should run for a long time (several years) during
operation of a bearing, which is very difficult. Thus, to validate the proposed online baring fault and
identify new faults, faulty signals of different faults are incorporate in progressive test cases. Finally,
the proposed model is validated by five considered datasets. Each dataset is divided into two halves,
one for analysis and the other for evaluation. The analysis dataset, containing 45 of 90 signals from
each class, is used to detect fault modes and update the DSK. The evaluation dataset, also containing
45 samples from each class, is used for diagnosis. It is considered that the system only starts with the
diagnostic knowledge of a healthy machine, originating from 30 FFB signals, where each signal is
represented by a 22-dimensional feature vector. Each test case uses 30 randomly-selected samples from
the corresponding fault class in the analysis dataset to evaluate the unknown fault mode detection
process and update the system. For evaluation, we randomly select 30 samples from each candidate
fault class in the evaluation dataset.
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Table 2. Organization of different test cases.

Initial Test Case 1 Update
System

knowledge

Test Case 2 Update
System

knowledge

Test Case 3 No
Update

Test Case 4 Update System
knowledge

Test Case 5 Update System
knowledge

Final

System
Condition FFB FFB FFB

BCI 3 mm

FFB
BCI 3 mm
BCO 3 mm
BCR 3 mm

FFB
BCI 3 mm
BCO 3 mm
BCR 3 mm

FFB
BCI 3 mm
BCO 3 mm
BCR 3 mm
BCI 12 mm

FFB
BCI 3 mm
BCO 3 mm
BCR 3 mm
BCI 12 mm
BCO 12 mm
BCR 12 mm

Unknown
Signals BCI 3 mm BCO 3 mm

BCR 3 mm
BCI 3 mm
BCR 3 mm BCI 12 mm BCO 12 mm

BCR 12 mm
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4.2. Identification of the Optimal Number of Clusters Kopt Using the MPDFCDF Cluster Evaluation Method

The proposed MPDFCDF cluster evaluation method determines the optimal number of clusters
by considering cluster density and inter-cluster separation based on the multivariate normal PDF.
In Figure 13, the MPDFCDF is compared with two conventional state-of-the-art methods for five
sample distributions containing multiple fault signals.
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Figure 13. (a–e) Sample distribution of different datasets and optimal kopt (blue big circle) selection
using the compactness and separation measure of (f–j) clusters (COSES) method, (k–o) silhouette
coefficient, and (p–t) the proposed MPDFCDF cluster evaluation method.

4.3. New Fault Mode Detection and System Update for Online Fault Diagnosis

Initially, we assume that the system only has knowledge of a healthy machine. Thus, the DSK
includes 22 features of each of the 30 FFB signals. For each test case, the system extracts an optimal
number of features from unknown signals and adds those features to the DSK to form the analysis
set. The new fault mode detection module detects kopt, which represents the number of fault modes in
the analysis set. If kopt is greater than Fdsk, the number of features in the current DSK, the new fault
signatures are added to the DSK.

Here, system knowledge is represented as Cdsk × Ndsk × Fdsk,
As a central part of the online diagnosis system, the DSK updating process extracts a heterogeneous

feature pool from the signals of all detected fault modes. The hybrid feature selection algorithm selects
the discriminant fault signatures and constructs a DSK, which is used in the evaluation process. Table 3
summarizes the optimal feature subsets for different test cases with different datasets. After completing
each test case, the DSK is represented as Cdsk × Ndsk × Fdsk, where Cdsk is the number of emerging
fault classes, Ndsk is the number of samples in each class, and Fdsk is the number of discriminant fault
signature variables.
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Table 3. Optimal feature vector for different test cases of different datasets.

Datasets
Test Cases

Initial Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

Features System
Knowledge Features System

Knowledge Features System
Knowledge Features System

Knowledge Features System
Knowledge Features System

Knowledge

1 f1~f22 1 × 30 × 22 f1, f12, f13, f15 2 × 30 × 4 f2, f9, f10 4 × 30 × 3 f2, f9, f10 4 × 30 × 3 f2, f9 5 × 30 × 2 f2, f9, f13 7 × 30 × 3

2 f1~f22 1 × 30 × 22 f2, f9, f14 2 × 30 × 3 f2, f9, f22 4 × 30 × 3 f2, f9, f22 4 × 30 × 3 f2, f9, f13 5 × 30 × 3 f2, f9, f11, f22 7 × 30 × 4

3 f1~f22 1 × 30 × 22 f2, f15, f16, f20 2 × 30 × 4 f2, f16 4 × 30 × 2 f2, f16 4 × 30 × 2 f2, f11, f15, f16 5 × 30 × 4 f2, f9, f11 7 × 30 × 3

4 f1~f22 1 × 30 × 22 f2, f9, f13 2 × 30 × 3 f2, f9, f20, f21 4 × 30 × 4 f2, f9, f20, f21 4 × 30 × 4 f2, f9 5 × 30 × 2 f2, f9, f13 7 × 30 × 3

5 f1~f22 1 × 30 × 22 f2, f9 2 × 30 × 2 f2, f9, f20, f21 4 × 30 × 4 f2, f9, f20, f21 4 × 30 × 4 f2, f9, f22 5 × 30 × 3 f2, f11 7 × 30 × 2
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4.4. Effectiveness of Online Fault Diagnosis

The effectiveness of the proposed online fault diagnosis system is evaluated by considering its
classification performance using the k-NN classifier. For each test case, the DSK is used as a training set
for the k-NN classifier, where kknn is set to 5 (the number of nearest neighbors k is equal to the nearest
integer to

√
Ndsk [25]). The evaluation process includes five progressive test cases t, each containing an

evaluation set Ceval, t × Neval, t. To calculate the classification accuracy before updating the system, the
DSK of the previous test case Cdsk, t−1 × Ndsk, t−1 × Fdsk, t−1 is used as a training set and Ceval, t × Neval, t

× Fdsk, t−1 is used as a test set. To calculate the classification accuracy after updating the system, the
DSK of the current test case Cdsk, t × Ndsk, t × Fdsk, t is used as a training set and Ceval, t × Neval, t × Fdsk,
t is used as a test set. In the classification process, we use k-cv (cross-validation), where kcv is set to
3. Thus, Neval, t is randomly divided into thirds, and each third is used for testing during each k-cv
iteration. The cross-validation process is executed Niteration times (Niteration = 10 in this study), and the
generalized classification performance is calculated by averaging the classification accuracy. Table 4
presents the diagnosis performance for the five test cases in terms of the average sensitivity per class
and the average classification accuracy (ACA), defined in Equations (10) and (11), respectively.

Sensitivity =
NTP

NTP + NFN
× 100(%), (10)

ACA =

∑
Nclasses

NTP

Nsamples
× 100(%) (11)

where NTP is the number of correctly classified samples in a fault class, NFN is the number of incorrectly
classified samples in a fault class, and Nsamples is the total number of test samples.

Figure 14 shows the average classification performance for different datasets. The proposed
method detects the unknown faults well and updates the DSK (i.e., fault modes and optimum fault
signatures). The updated DSK then provides improved classification performance. For each test case,
when new faults are introduced, the classification performance initially degrades because the system
does not have enough information about the new faults. However, the performance improves once
the DSK is updated with information on the new fault modes. The classification accuracy using the
proposed method is high for test case 1 because it involves only two well-distributed classes. For test
case 3, the classification accuracy of the proposed method is almost 100% because the unknown data
contains no new faults. Otherwise, the classification performance decreases with an increase in new
faults (small or big cracks). However, after updating the DSK, the classification performance improves
by about 21%. Furthermore, classification accuracies for more severe faults (e.g., bigger cracks) are
better than those for less severe faults (e.g., smaller cracks) because more severe faults contain more
separable features. According to the experiment, the proposed model can detect the newly accounted
fault in data. However, in a real monitoring environment like industry, the quality of bearing degrades
very slowly. According to the suggestion of the American Bearing Manufacturing Association (ABMA)
and the American Rolling Bearing Company, the minimum L10 life of a continuous 24 h operated
bearing is 60,000 h, which is around seven years. The proposed model might be deployed in the real
industry environment, where a chunk of data will be captured a certain interval, i.e., once a day, once a
week, once a month, or even more. The proposed automatic diagnosis model will analyze the collected
data and identify the new fault or any abnormality of the bearing if it exists. The newly detected fault
mode may incorporate the database of the diagnosis model. The system may run up to a tolerant level
of quality of bearing.
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Table 4. Diagnosis performance of five successive test cases of datasets 1 to 5 in terms of average sensitivity per class.

Datasets
Average Sensitivities Per Class with Standard Deviation

Test Case System
Condition FFB BCI 3 mm BCO 3 mm BCR 3 mm BCI 12 mm BCO 12 mm BCR 10 mm Average

Dataset-1:
300 RPM

Case-1
Before Update 100.00 (0.0) 100.00 (0.0) 100.00

Updated 100.00 (0.0) 100.00 (0.0) 100.00

Case-2
Before Update 90.45 (2.3) 91.23 (2.1) 65.45 (4.6) 69.56 (4.3) 79.17

Updated 100.00 (0.0) 94.25 (1.3) 100.00 (0.0) 100.00 (0.0) 98.56

Case-3
Before Update 99.58 (0.7) 94.36 (1.8) 100.00 (0.0) 100.00 (0.0) 98.49

Updated 100.00 (0.0) 95.12 (1.1) 100.00 (0.0) 100.00 (0.0) 98.78

Case-4
Before Update 93.67 (2.1) 94.26 (1.9) 90.23 (2.4) 88.59 (3.9) 73.62 (4.3) 88.07

Updated 100.00 (0.0) 93.50 (1.4) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 98.70

Case-5
Before Update 96.56 (1.6) 95.64 (1.7) 91.56 (2.1) 93.12 (1.8) 98.26 (0.9) 79.46 (4.1) 82.69 (3.7) 91.04

Updated 100.00 (0.0) 95.25 (1.6) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 99.32

Dataset-2:
350 RPM

Case-1
Before Update 100.00 (0.0) 97.78 (1.1) 98.89

Updated 100.00 (0.0) 100.00 (0.0) 100.00

Case-2
Before Update 82.23 (3.2) 73.12 (3.9) 75.94 (3.6) 75.45 (3.3) 76.69

Updated 100.00 (0.0) 89.85 (2.1) 100.00 (0.0) 100.00 (0.0) 97.46

Case-3
Before Update 100.00 (0.0) 92.35 (1.6) 100.00 (0.0) 99.56 (0.7) 97.98

Updated 100.00 (0.0) 92.00 (1.5) 100.00 (0.0) 100.00 (0.0) 98.00

Case-4
Before Update 93.42 (1.5) 93.26 (1.6) 91.86 (2.1) 94.56 (1.3) 89.00 (2.0) 92.42

Updated 100.00 (0.0) 97.78 (0.9) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 99.56

Case-5
Before Update 92.65 (1.4) 94.00 (1.0) 92.15 (1.8) 94.22 (1.6) 88.25 (2.5) 82.22 (2.8) 86.00 (2.4) 89.93

Updated 100.00 (0.0) 98.00 (0.9) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 99.71
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Table 4. Cont.

Datasets
Average Sensitivities Per Class with Standard Deviation

Test Case System
Condition FFB BCI 3 mm BCO 3 mm BCR 3 mm BCI 12 mm BCO 12 mm BCR 10 mm Average

Dataset-3:
400 RPM

Case-1
Before Update 96.35 (0.6) 100.00 (0.0) 98.18

Updated 100.00 (0.0) 100.00 (0.0) 100.00

Case-2
Before Update 85.00 (2.1) 82.56 (2.8) 77.26 (3.2) 78.95 (2.7) 80.94

Updated 100.00 (0.0) 98.25 (1.1) 100.00 (0.0) 100.00 (0.0) 99.56

Case-3
Before Update 100.00 (0.0) 99.56 (0.4) 100.00 (0.0) 99.98 (0.1) 99.89

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-4
Before Update 97.25 (1.3) 96.00 (1.7) 94.56 (1.6) 97.15 (1.0) 92.14 (1.7) 95.42

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-5
Before Update 95.45 (1.2) 96.25 (1.1) 96.00 (1.0) 97.43 (0.8) 95.64 (1.5) 82.22 (2.8) 86.00 (2.9) 92.71

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Dataset-4:
450 RPM

Case-1
Before Update 99.45 (0.7) 99.00 (0.6) 99.23

Updated 100.00 (0.0) 100.00 (0.0) 100.00

Case-2
Before Update 88.00 (2.4) 86.59 (2.3) 82.45 (2.8) 83.12 (2.8) 85.04

Updated 100.00 (0.0) 98.00 (1.6) 100.00 (0.0) 100.00 (0.0) 99.50

Case-3
Before Update 98.60 (1.5) 99.45 (0.4) 100.00 (0.0) 99.85 (0.2) 99.48

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-4
Before Update 97.46 (1.3) 98.12 (1.2) 97.23 (1.5) 98.50 (1.3) 93.00 (1.6) 96.86

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-5
Before Update 95.89 (1.4) 98.26 (1.1) 96.23 (1.9) 94.53 (2.1) 97.58 (1.4) 95.68 (1.6) 88.26 (2.2) 95.20

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00
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Table 4. Cont.

Datasets
Average Sensitivities Per Class with Standard Deviation

Test Case System
Condition FFB BCI 3 mm BCO 3 mm BCR 3 mm BCI 12 mm BCO 12 mm BCR 10 mm Average

Dataset-5:
500 RPM

Case-1
Before Update 97.78 (1.6) 100.00 (0.0) 98.89

Updated 100.00 (0.0) 100.00 (0.0) 100.00

Case-2
Before Update 89.00 (1.9) 87.50 (2.1) 85.17 (2.3) 85.85 (2.2) 86.88

Updated 100.00 (0.0) 98.00 (1.6) 100.00 (0.0) 100.00 (0.0) 99.50

Case-3
Before Update 100.00 (0.0) 99.98 (0.3) 100.00 (0.0) 100.00 (0.0) 100.00

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-4
Before Update 97.50 (1.3) 97.80 (1.4) 97.43 (1.2) 98.30 (1.2) 94.50 (1.9) 97.11

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00

Case-5
Before Update 97.12 (1.6) 98.60 (1.4) 95.26 (1.8) 98.20 (1.1) 96.80 (1.3) 87.50 (2.6) 90.76 (1.8) 94.89

Updated 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00 (0.0) 100.00
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5. Conclusions

Reliable and early fault diagnosis of the bearing may reduce the loss of manufacturing production
by decreasing the possibility of an unwanted breakdown of the industrial motor. The traditional
fault diagnosis model worked on the predefined and incomplete knowledge of faults of a bearing.
However, due to the progressive nature of the growing fault during the operation under heavy load,
new faults may appear on the surface of the bearing. To address these issues, this paper proposed a
reliable and online fault diagnosis system for detecting unknown fault modes in the operating life
of the bearing and update the diagnosis system knowledge (DSK) in real time. The heterogeneous
feature vector is extracted from the collected AE signal from the bearing for training the diagnosis
model. To detect the unknown number of faults, the k-means unsupervised clustering algorithm is
used by finding the optimal number of clusters. However, determining the correct number of clusters
kopt is challenging due to the dynamic behavior of faults. For this reason, a new MPDFCDF cluster
evaluation method is introduced to calculate kopt and establish the existence of new fault modes. When
a new fault mode is detected, the system automatically updates the DSK. Finally, the optimal features
selection method is used for selecting optimal features from the updated fault database and the k-NN
classification model is adopted for identifying faults in the unknown signals. For evaluating the
proposed model, sensor signals with multiple faults, different fault severities, and different rotation
speeds were considered. According to the experimental results, the proposed model showed much
better diagnosis performance after incorporating the detected new fault. In addition, the proposed
MPDFCDF algorithm outperformed existing cluster evaluation methods in terms of finding the optimal
number of fault modes in data.
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