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Abstract: Competitive Influence Maximization (CIM) problem, which seeks a seed set nodes of a
player or a company to propagate their product’s information while at the same time their competitors
are conducting similar strategies, has been paid much attention recently due to its application in viral
marketing. However, existing works neglect the fact that the limited budget and time constraints
can play an important role in competitive influence strategy of each company. In addition, based on
the the assumption that one of the competitors dominates in the competitive influence process,
the majority of prior studies indicate that the competitive influence function (objective function)
is monotone and submodular.This led to the fact that CIM can be approximated within a factor of
1− 1/e− ε by a Greedy algorithm combined with Monte Carlo simulation method. Unfortunately,
in a more realistic scenario where there is fair competition among competitors, the objective function
is no longer submodular. In this paper, we study a general case of CIM problem, named Budgeted
Competitive Influence Maximization (BCIM) problem, which considers CIM with budget and time
constraints under condition of fair competition. We found that the objective function is neither
submodular nor suppermodular. Therefore, it cannot admit Greedy algorithm with approximation
ratio of 1− 1/e. We propose Sandwich Approximation based on Polling-Based Approximation
(SPBA), an approximation algorithm based on Sandwich framework and polling-based method.
Our experiments on real social network datasets showed the effectiveness and scalability of our
algorithm that outperformed other state-of-the-art methods. Specifically, our algorithm is scalable
with million-scale networks in only 1.5 min.

Keywords: social networks; competitive influence maximization; optimization; approximation algorithm

1. Introduction

Online social networks (OSNs) have recently been a very effective method for diffusing
information, propagating opinions or ideas. Many companies have leveraged word-of-mouth effect in
OSNs to promote their products. The key problem of viral marketing is Influence Maximization (IM),
which aims to select a set of k users (called seed set) in a social network with maximum influence spread.
Kempe et al. [1] first formulated IM problem in two diffusion models, named Linear Threshold (LT)
and Independent Cascade (IC), which simulate the propagation of influence through social networks.
IM has been widely studied due to its important role in viral marketing [2–10]. However, all of the
above-mentioned studies only focus on studying influence propagation of single player or company in
social networks. In the context of viral marketing, there are often many competitors simultaneously
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implementing the same strategy of marketing spread on OSNs. This phenomenon requires the task of
maximizing a product’s influences under competitive circumstances, called Competitive Influence
Maximization (CIM) problem.

Bharathi et al. [11] first proposed CIM problem, which seeks a seed set to maximize the propagation
of their product’s information while their competitors employ the same strategy. Since then, related
works have tried to investigate CIM in many different contexts. Some authors show that the objective
function is monotone and submodular. A set function f over a ground U is set to be submodular if

f (A ∪ {u})− f (A) ≥ f (B ∪ {u})− f (B) (1)

for any A ⊆ B ⊆ U, u ∈ U \ B. Based on that, they applied the classic hill-climbing algorithm,
which provides a napproximation ratio of (1 − 1/e) to solve CIM problem [12–17]. For example,
Lu et al. [12] studied the problem in context of fair competitive influence from the host perspective.
Chen et al. [13] proposed an independent cascade model with negative opinions (IC-N) model
by extending IC model and showed a greedy algorithm with the approximation ratio of 1− 1/e.
Recently, some works have addressed the problem in other directions, including proposing heuristic
algorithm [15] and studying some variants of CIM [16,18,19].

Although previous works try to solve the CIM problem in many circumstances, the feasibility
of the existing works is limited for following reasons. Firstly, they often assume that one of the
competitors takes advantage of the competitive influence process. In this case, the objective function
is monotone and submodular. As a result, the existing algorithms provide an approximation ratio
of 1− 1/e based on using Greedy framework algorithm, which sequentially selects the node that
has the largest marginal benefit [20]. However, users also have different views when they receive
the same information. As a result, the influence function is no longer submodular and there is no
approximation algorithm for this case. Secondly, the prior works do not take into account time
constraint and cost to select a seed user for CIM. In a more realistic scenario, the effectiveness of
competitive influence process depends very much on these two factors. Thirdly, although many
CIM algorithms have been proposed, there are no scalable and efficient algorithms for CIM in large
social networks (million-scale). For the problems related to information diffusion, the complexity of
calculating the objective function is enormous due to the randomness of the probabilistic diffusion
model [8,9]. To address these challenges, some works use Mote-Carlo method to estimate the objective
function [1,13,15,17]. However, the method requires high complexity, and it takes several hours even
on very small networks. To the best of our knowledge, there is no randomized algorithm for CIM that
can meet approximation guarantee with low complexity.

In this paper, we study a general problem of CIM, Budgeted Competitive Influence Maximization
(BCIM), which takes into account both arbitrary cost and time constraints for CIM problem.
To model this problem, we first introduce Time constraint Competitive Linear Threshold (TCLT)
to capture competitive influence progress within time constraint by extending Competitive Linear
Threshold [21,22]. Under TCLT model, the main challenges of BCIM lie in following aspects. Firstly,
BCIM problem is NP-hard and it is #P-Hard [23] to calculate the objective function. Moreover,
we point out that the objective function is neither submodular nor supermodular. Thus, it makes BCIM
difficult to be solved using greedy-based algorithms, as well as methods for influence maximization.
To address the above challenges, in this article, we present SPBA, an efficient randomized algorithm
based on polling method and Sandwich Approximation framework [16]. Our main contributions are
summarized as follows:

• We formulate Time constraint Competitive Linear Threshold (TCLT) model by extending
Competitive Linear Threshold model in [21,22] to simulate competitive influence within time
constraint τ. Given two competitors A and B who need to advertise their productions on OSNs,
assume that we know nodes that are activated by B (B-seed set). Given the limited budget L,
heterogeneous cost of each node to active by A (i.e., each node has a cost to add it into A-seed



Appl. Sci. 2019, 9, 2274 3 of 29

set), and the time constraint τ, we study BCIM problem, which aims to seek A-seed set nodes
within limited budget L and time constraint τ to maximize nodes influenced by A under TCLT
model. We then show that BCIM is NP-hard and the objective function is neither submodular
nor supermodular.

• We propose SPBA, an efficient randomized algorithm based on Sandwich approximation and
polling method. We first design upper bound and lower bound submodular functions of the
objective function and develop a polling-based approximation algorithm to find the solution of
bound functions that guarantees approximation ratio of (1− 1/

√
e− ε) with high probability.

Based on that, the Sandwich framework approximation in [16] is applied to give a data-dependent
approximation factor.

• We conducted extensive experiments on various real social networks. The experiments suggest
that SPBA provides significantly higher quality solutions than existing methods including
baseline algorithms and influence maximization algorithms. Furthermore, we also demonstrate
that our algorithm can scale to million-scale networks within about 1.5 min.

Organization. The rest of paper is organized as follows. The related work is presented in
Section 2 and the preliminaries for Competitive Linear Threshold model and Competitive Influence
Maximization are introduced in Section 3. We introduce our propagation model, problem definition
and its properties in Section 4. Section 5 presents our proposed algorithms. The experiments are shown
in Section 6. Finally, we give some tasks for future work and conclusion in Section 7.

2. Related Work

Since CIM is one of variants of IM, we review the literature related to this work from two areas,
namely influence maximization and competitive influence maximization.

2.1. Influence Maximization

The IM problem is a crucial problem in information diffusion research due to its potential
commercial value. Basically, IM focuses on finding a set of k seed users on a social network to
maximize the number of influenced nodes. Kempe et al. [1] first proposed two information diffusion
models, Linear Threshold (LT) and Independent Cascade (IC). On these models, they formulated
IM problem as a combinatorial optimization problem and designed a natural greedy algorithm with
approximation ratio is 1− 1/e. IM has been received much attention from the following aspects:
proposing efficiency algorithms [2–9,24] and studying its variants [7,10,25–28].

Kempe et al. [1] first purposed Greedy algorithm based on Monte-Carlo simulation
with (1− 1/e− ε) approximation guarantee. To improve the running time of Greedy algorithm,
Leskovec et al. [3] proposed the cost-effective lazy forward (CELF) algorithm, which is up to 700 times
faster than Greedy algorithm. This algorithm is improved in [29]. Several works propose heuristic
algorithms to find solutions in large networks [8,9,30,31]. Although those heuristics are often faster
in practice, they fail to retain the (1− 1/e− ε) approximation guarantee and often give lower results
than greedy algorithm. Chen et al. [9] proposed a heuristic algorithm based on the maximum
influence arborescence (MIA) structure. In the LT model, Chen et al. [8] proposed using local directed
acyclic graphs (LDAG) to approximate the influence of nodes. Recently, Borgs et al. [2] made a
theoretical breakthrough for finding solution to IM by proposing Reverse Influence Sampling (RIS)
algorithm. RIS algorithm returns a (1− 1/e− ε) approximate solution with probability at least 1− n−l .
The main idea of the RIS algorithm is to generate Reachable Reverse (RR) sets to estimate the objective
function and use greedy algorithm for a collection that includes a large enough RR set to the find
solution. This motivates many state-of-the-art methods for IM including TIM/TIM++ [5], IMM [6],
and SSA/D-SSA [4].

Recently, IM’s variants have also received much attention due to their potential commercial
value [25,27,28]. Lin et al. [28] studied k-Boosting problem, which aims at finding the set of k users
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to boost so that the “boosted” influence spread is maximized. The authors of [25] investigated
distance-aware influence maximization, which takes into account the effect of distance on influence
process for IM problem. They showed that the objective function is monotone and submodular and
proposed RIS-based and MIA-based algorithms. Influence Maximization with awareness of the topic
are also studied in [27]. In this work, each user is associated with a profile that consists of the users
preferences on different topics in their model and the problem asks to select seed set with budget and
topic queries so that the competitive influence function is maximized.

2.2. Competitive Influence Maximization

In the context of viral marketing, it is often the case that many companies propagate their product’s
information simultaneously, leading to the fact that the Competitive Influence Maximization (CIM)
problem has been studied in recent years. Bharathi et al. [11] first proposed CIM problem by proposing
a new propagation model, which is an extension of IC model. Later, some authors proposed variations
of the IC model for CIM problem. Chen et al. [13] investigated CIM under the context of combating the
dissemination of negative opinions under IC-N model. This model is based on the observation that
rumors and misinformation are often more attractive than official information. Lui et al. [14] considered
CIM problem under a new diffusion–containment model and presented a (1− 1/e)-approximation
algorithm. Carnes et al. [17] proposed distance based and wave propagation models in competitive
influence process social networks. They showed that the objective function is submodular and devised
a greedy algorithm with approximation ratio of (1− 1/e). Some other works propose an expanding LT
model approach for CIM problem [12,21,22,24]. For instance, Borodin et al. [24] proposed Competitive
Linear Threshold models and provided some property results of these models. Lu et al. [12] considered
the problem of fair competitive viral marketing from the host’s perspective. They proposed K-LT
model and showed that the influence function is monotone and submodular. Generally, Chen et al. [21]
summarized two competitive influence models, which are extended from the IC model and the LT
model, named Competitive Independent Cascade (CIC) and Competitive Linear Threshold (CLT)
models. They also provided the properties of such models and categorized them by tie-breaking rules
including fixed probability tie-breaking (TB-FP) rule and proportional probability tie-breaking (TB-PP)
rule. TB-FP means that, when a node v is influenced by both competitors, it will be influenced by one
of them with a fixed probability. TB-FP means that v becomes influenced by one competitor with a
proportional probability. TB-FP reflects the dominance of a competitor and most purposed algorithms
are based on this feature to give an approximation of 1− 1/e. However, there is no approximation
algorithm for TP-FP case.

In other directions, Bozrgi et al. [15] proposed a community-based algorithm for CIM under DC
model. Some variants of CIM have been studied. Yan et al. [19] found the seed set with minimum cost
set for threshold competitive influence problem. Lu et al. [16], Yan et al. [19] proposed competition and
complementary approaches for CIM problem by extending IC model. The authors of [18] formulated
Dominated Competitive Influence Maximization (DCIM) problem, which aims to maximize the
difference in value between the influence of desired information and its competitors under a new
competitive independent cascade model with meeting events.

Different from most of the existing works, in this paper, we study a general problem of CIM,
namely BCIM, which considers the CIM within budget and time constraints under condition of fair
competition. We show that the objective function is not submodular and calculate that the objective
function is #P-Hard. To overcome this challenge, we propose a randomized algorithm based on
Sandwich approximation and polling-based method.

3. Preliminaries

To clearly introduce the problem of BCIM, we first introduce some preliminaries. Table 1
summarizes the frequently used notations.



Appl. Sci. 2019, 9, 2274 5 of 29

Table 1. Notations.

Notations Descriptions

n, m the number of nodes and the number of edges

N−(v), N+(v) the sets of incoming, and outgoing neighbor nodes of v

SA, SB seed sets of A and B, respectively

n0 n− |SB|

I(·), L(·), U(·) The expected number of A-active nodes, its lower bound and its upper bound, respectively

Ûc(SA), Ût(SA) Estimations of U(SA) over setRc andRt, respectively

S∗A, S∗L, S∗U Optimal solution for BCIM, optimal solution for maximizing L(·), and U(·)

OPT, OPTl , OPTu I(S∗),L(S∗L),U(S∗U)

Υ(ε, δ) 1 + (1 + ε)(2 + 2
3 ε) ln 2

δ
1
ε2

CovR(S) number of LRR (or URR) sets Rj be covered by S

kmax max{k : ∃A ⊆ V, c(A) ≤ L}

α, β (1− 1√
e )
√

ln( 2
δ ),
√(

1− 1√
e

) (
ln 2

δ + ln ( n
kmax

)
)

N(ε, δ) 2n (α + β)2 1
ε2OPTl

3.1. Competitive Linear Threshold (CLT) Model

In this model, a social network is abstracted by a directed graph G = (V, E), where V is the set
of nodes (or vertices) representing users and E is the set of edges representing links among users.
There are two competitors A and B who want to promote their products in a social network G.
Each edge (u, v) ∈ E has two weights wA(u, v) and wB(u, v) representing the influence of A and B on
edge (u, v), respectively. The weights satisfy conditions

∑
u∈N−(v)

wA(u, v) ≤ 1 , ∑
u∈N−(v)

wB(u, v) ≤ 1, ∀v ∈ V

Each node can choose one of three status: A-active, B-active, and inactive, which represent the nodes
that have been successfully activated by A, activated by B, and have not been activated by either A or
B. Each node v picks two independent thresholds θA(v), θB(v) uniformly from [0, 1], called A-threshold
and B-threshold. The propagation process happens in discrete steps t = 0, 1, . . .. SA and SB are the seed
sets of competitors A and B (SA ∩ SB = ∅). At and Bt are the set of A-active and B-active nodes at step
t, respectively. The process of propagation operates as follows:

• At step t = 0, A0 = SA, B0 = SB.
• At step t ≥ 1, it first sets At = At−1 and Bt = Bt−1. Each node v /∈ At−1 ∪ Bt−1

becomes A-active if {
∑u∈N−(v)∩At−1

wA(u, v) ≥ θA(v)

∑u∈N−(v)∩Bt−1
wB(u, v) < θB(v)

(2)

Node v becomes B-active if {
∑u∈N−(v)∩Bt−1

wB(u, v) ≥ θB(v)

∑u∈N−(v)∩At−1
wA(u, v) < θA(v)

(3)

in the case when node u that has the total influence weight of two competitors are greater
than corresponding thresholds. Chen et al. [21] summarized tie-breaking rules can be used to
determine whether v is A-active or B-active.
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– Fixed probability tie-breaking rule (TB-FP): TB-FP means that with a fixed probability
p, u becomes A-active with probability p and becomes B-active with probability
1 − p. The special cases of this rule include TB-FP(A)-competitor A’s dominance,
TB-FP(B)-competitor B’s dominance.

– Proportional Probability tie-breaking rule (TB-PP): At(v) = N−(v) ∩ At−1 \ At−2 is A-active
successful attempt set of u and Bt(v) = N−(u) ∩ Bt−1 \ Bt−2 is B-active successful attempt set
of u. Node v becomes A-active with probability |At(u)|

|At(u)| + |Bt(u)| , and u is B-activated with

probability |Bt(u)|
|At(u)| + |Bt(u)| .

• Once a node becomes activated (A-active or B-active), its status remains in next steps.
The propagation process ends when no more nodes can be activated.

TB-FP is used in [11,13,22,32,33] to reflect the dominance of one competitor. This is motivated
by the phenomenon of negativity bias, which is well studied in social psychology, and matches
the common sense that rumors or misinformation are usually hard to fight with in social networks.
In contrast, TB-PP reflects fair competition among competitors. This rule is used for IC-N model
(a variant of IC model) [13], while no study uses this rule for a variant of LT model.

3.2. Competitive Influence Maximization

Definition 1. Given a directed graph G = (V, E) representing a social network under an information diffusion
modelM, there a two competitors A and B. Given B-seed set SB ⊂ V and a positive number k, find A-seed set
SA ⊆ V \ SB with |A| ≤ k so that the number of A-active nodes is maximized

4. Models and Problem Definition

4.1. Time Constraint Competitive Linear Threshold (TCLT) Model

In this section, we introduce our model incorporating CLT model with limited spread step τ,
namely Time Constraint Competitive Linear Threshold Model (TCLT). In addition, we propose a new
tie-breaking rule in our model that can truly reflect the competitive context in viral marketing by
our explanation.

In this model, we reuse all notations and symbols in CLT model. Given a constraint of propagation
hop τ ≥ 1, the propagation process happens in discrete steps t = 0, 1, . . . , τ as follows:

• At step t = 0, A0 = SA, B0 = SB.
• At step t ≥ 1, first set At = At−1 and Bt = Bt−1. Each node v /∈ At−1 ∪ Bt−1 becomes A-active if{

∑u∈N−(v)∩At−1
wA(u, v) ≥ θA(v)

∑u∈N−(v)∩Bt−1
wB(u, v) < θB(v)

(4)

Node v becomes B-active if {
∑u∈N−(v)∩Bt−1

wB(u, v) ≥ θB(v)

∑u∈N−(v)∩At−1
wA(u, v) < θA(v)

(5)

• If in step t, a node v has {
∑u∈N−(v)∩At−1

wA(u, v) ≥ θA(v)

∑u∈N−(v)∩Bt−1
wB(u, v) ≥ θB(v)

(6)
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We propose weight proportional probability tie-breaking rule (TB-WPP) to determine its state.
Accordingly, v is A-activated with probability.

pA(v|At−1, Bt−1) =
∑u∈N−(v)∩At−1

wA(u, v)

∑u∈N−(v)∩At−1
wA(u, v) + ∑u∈N−(v)∩Bt−1

wB(u, v)

and v is B-activated with probability

pB(v|At−1, Bt−1) =
∑u∈N−(v)∩Bt−1

wB(u, v)

∑u∈N−(v)∩At−1
wA(u, v) + ∑u∈N−(v)∩Bt−1

wB(u, v)

• Once a node becomes activated (A-active or B-active), it keeps this status in the next steps.
The propagation process ends after τ hops of propagation or no more nodes can be activated.

Different from TB-PP, in TB-WPP rule, we consider the total influence weight of the in-neighbors
to decide state of node v. Our TB-WPP rule reflects more closely the competition process. Consider the
example in Figure 1 to clarify this observation. Graph G contains four nodes {a, b, c, u} and three edges
{(a, u), (b, u), (c, u)}. There is a pair (wA, wB) on each edge, SA = {a, b}, SB = {c}. At step t = 1, if we
use TB-PP, node v will change its state from inactive to A-active or B-active with probabilities 2

3 and 1
3 ,

respectively. In other words, the probability v becomes A-active is higher. If we use TB-WPP, node v
would change its state to inactive to A-active or B-active with probabilities 3

11 and 8
11 , i.e. probability v

becomes B-active is higher. In this case, the influence weight of c (0.8) for u is greater than that of two
nodes a, b (total influence weight is 0.3). Considering the total weigh in TB-WPP rule is more suitable
for the fact that users create different influences on each other depending on the relationship between
them. Therefore, it is reasonable to consider TB-WPP about the competitive influence spread.

u

a

b

c
(0.1, 0) 

(0.2, 0) 
(0, 0.8)

Figure 1. Illustrating for TB-WPP and TB-PP rules.

4.2. Budgeted Competitive Influence Maximization Problem

In this paper, we assume that we have known knowledge that seed set of competitor B is SB ⊂ V
and each node u is associated with an arbitrary cost c(u) ≥ 0 to add in SA. We define Budgeted
Competitive Influence Maximization (BCIM) as follows:

Definition 2. BCIM problem. Given a directed graph G = (V, E) representing a social network under TCLT
model, B-seed set SB ⊂ V, a budget L > 0, and time constraint τ, find A-seed set SA ⊆ V \ SB with total cost
∑u∈A c(u) ≤ L to maximize I(SA).

Theorem 1. BCIM problem is NP-hard and calculating the objective function I(·) is #P-Hard.

Proof. We see that, when SB = ∅ and τ = n, the TCLT model becomes well-known LT model [1]
and BCIM becomes IM problem [1]. In other words, IM is a special case of BCIM so BCIM is NP-hard
problem and calculating the influence I(SA) is #P-hard.
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Although the objective function in IM problem is monotone and submodular function,
unfortunately, the objective function in BCIM is neither submodular nor supermodular. Therefore,
we cannot use the nature greedy for optimizing submodular and supermodular function to get an
approximation guarantee.

Theorem 2. The function I(·) is neither submodular nor supermodular under TCLT model

Proof. We prove that by counter example (see Figure 2). Consider an instance of BCIM problem
G = (V, E) with V = {a, b, c, d, e, f }, E = {(a, b), (b, c), (c, e), (c, d), (c, f )}, and τ = 2. The A-weight
and B-weight on each edge is equal to 1, and we set SB = { f }. In this example, we have I(∅) = 0,
I({a}) = 2, I({a, c}) = 5, and I({a, b, c}) = 5. Therefore, I({a, c})− I({a}) = 3 > I({a})− I(∅) = 2.
That is, I(·) is not submodular. On other hand, we have I({a, c}) − I({a}) = 3 > I({a, b, c}) −
I({a, c}) = 0. Therefore, I(·) is also not supermodular.

a b c f

e

d

(1, 1) (1, 1)

(1, 1)

(1, 1)

(1, 1)

Figure 2. A counter example.

4.3. Competitive Live-Edge (CLE) Model

We follow the method in [22] to construct a live-edge model and prove this model is equivalent to
TCLT model. This property is used for estimating the objective function as well as the designing of our
algorithm in the next sections.

From original graph G = (V, E) under TCLT model, we construct a sample graph (or realization) g
from G as follows. For each v ∈ V, we randomly select one in-edge (u, v) with probability wA(u, v),
and do not select any in-edge with probability 1−∑u∈V wA(u, v). The selected edge is called A-live
edge. On the other hand, we also randomly select one in-edge (u, v) (called B-live edge) with probability
wB(u, v), and do not select any in-edge with probability 1− ∑u∈V wB(u, v). Let gA and gB be the
sub-graph including only A-live edges and B-live edges, respectively. Finally, we return g as union of
gA and gB.

In graph g, we denote A′t and B′t as sets of A-active nodes and B-active nodes on g at step t,
respectively. we denote dA(At, u) (dB(Bt, u)) was the minimum distance from At (Bt) on gA (gB) to
node u. The distribution of A-active and B-active nodes in g happens in discrete steps t as follows:

• At step t = 0, A′t = SA and B′t = SB.
• At step t ≥ 1, first set At = At−1 and Bt = Bt−1. A node v /∈ A′t−1 ∪ B′t−1 becomes A-active if v is

reachable from A′t−1 in one step in gA (i.e., dA(A′t−1, v) = 1) but not reachable from B′t−1 in one
step in gB (i.e., dB(B′t−1, v) > 1), then v is in A′t. Symmetrically, if v is reachable from B′t−1 in one
step in gB but not reachable from A′t−1 in one step in gA, then v is in B′t.

• If at step t ≥ 1, v is reachable from A′t−1 in one step in gA and reachable from B′t−1 in one step in
gB, v is A-activated with probability

pA(v|A′t−1, B′t−1) =
∑u∈N−(v)∩A′t−1

wA(u, v)

∑u∈N−(v)∩A′t−1
wA(u, v) + ∑u∈N−(v)∩B′t−1

wB(u, v)
(7)
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and v is B-activated with probability

pB(v|A′t−1, B′t−1) =
∑u∈N−(v)∩B′t−1

wB(u, v)

∑u∈N−(v)∩A′t−1
wA(u, v) + ∑u∈N−(v)∩B′t−1

wB(u, v)
(8)

• The process of propagation ends after hop t = τ or no more nodes can be activated.

We demonstrate the equivalence of two models through the following theorem.

Theorem 3. For a given A-seed set SA and B-seed set SB, the distribution over A-active sets and B-active node
sets at hop t for any t = 1, 2.., τ on TCLT model and CLE are equivalent.

The proof of Theorem 3 is presented in Appendix A. We denote XG as the set of sample graphs
generated from G and Pr[g|G] as the probability of generating sample graph g in G. We have:

Pr[g|G] = Pr[gA|G] · Pr[gB|G] = ∏
v∈V

pA(v, G, g) · ∏
v∈V

pB(v, G, g) (9)

where

pA(v, G, g) =

{
wA(u, v), If ∃u : (u, v) ∈ E(gA)

1−∑u:(u,v)∈E wA(u, v), otherwise

pB(v, G, g) =

{
wB(u, v), If ∃u : (u, v) ∈ E(gB)

1−∑u:(u,v)∈E wB(u, v), otherwise

E(gA) and E(gB) are the set edges of gA and gB, respectively. We denote Iτ
B(SA) as the expected

number of A-active nodes after τ hops with given B-seed set SB. For convenience, we simplify Iτ
B(SA)

as I(SA). Based on the result of Theorem 3, we have:

I(SA) = ∑
v∈V\SB

∑
g∈XG

Pr[g|G]γv
g(S) (10)

where γv
g(SA) is a random variable under sample graph g, defined as follows:

γv
g(SA) =

{
1, If v is A-active when run CLE model in g

0, Otherwise
(11)

Node v is called source node. Let v be randomly selected in V \ SB and g be a random graph
generated from G. Lemma 1 shows that we can use γv

g(·) to estimate objective function.

Lemma 1. For any SA ⊂ V \ SB, we have I(SA) = n0 ·E[γ(SA)], where γ(SA) is the expectation of γv
g(A)

over all random sources and sample graphs.

Proof. Since the source node is randomly selected, the probability that v is selected is equal to 1
n0

for
n0 = |V \ SB|. We have:

I(SA) = ∑g∈XG
Pr[g|G]∑v∈V\SB

γv
g(SA) = n0 ∑g∈XG

Pr[g]∑v∈V\SB
γv

g(SA)
1

n0

= n0 ·∑g∈XG
Pr[g|G]∑v∈V\SB

γv
g(S)Pr[v is source node]

= n0 ·E[γ(SA)]

(12)

The transition from the second to third equality follows from the definition of γ(SA).
This complete the proof.
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Based on Lemma 1, we design upper and lower submodular functions, which are cores of our
proposed algorithms in next sections.

5. Our Proposed Algorithm for BCIM Problem

In this section, we present SPBA, our approximation algorithm for BCIM problem. Since the I(·)
is not submodular, we use the Sandwich Approximation (SA) method [16] to design approximation for
the problem.

Outline. Our algorithm contains two key components: (1) We devise the lower bound and upper
bound submodular function of I, namely L(·) and U(·), respectively. We then design Polling-Based
Algorithm (PBA) a (1− 1/

√
e− ε) approximation algorithm to find solution to maximize L and U

based on polling-based method [4–7]. (2) We apply SA with upper and lower bound function to
provide a solution with approximation guarantee. It first finds a solution to the BCIM problem with
any strategy. It then finds an approximate solution to the lower bound and the upper bound by PBA

algorithm. Finally, it returns the solution that has the best result for the BCIM problem. The framework
of SPBA is presented in Figure 3.

Upper bound

Lower bound

PBA

PBA

Choose the
best solution
between 3
algorithms

Any algorithm for maximizing
ojective functionInput  Output

Figure 3. Framework of SPBA algorithm.

5.1. Lower and Upper Bound Functions

We leverage the equivalence between the TCLT and CLE model and result of Lemma 1 to design
lower and upper bound of objective functions.

5.1.1. Upper Bound Function

For a random source node v and a sample graph g with given B-seed set SB, the idea of this
method is that we only choose set of nodes satisfying: (1) the distance of influence path from them to
v is smaller than τ; and (2) the influence path from them to v is not blocked by SB. We consider set
CU(g, v) defined as follows:

CU(g, v) = {u|dA(u, v) ≤ τ, dA(u, v) < dB(u, SB)} (13)

Figure 4 shows an example of C(g, v). In this example, the sample graph g contains nine
nodes and eight edges, the source nodes is v and SB = {c, h} and τ = 4. gA contains edges:
(a, v), (b, a), (c, b), (d, h). gB contains edges: ( f , v), (e, f ), ( f , e), (h, f ). We have CU(g, v) = {b, a, v}.
Node d lies on the simple path that ends at v, but it cannot influence v since its influence is blocked by
c. We define Upper bound Reachable Reversal (URR) set as follows:

Definition 3 (URR set). Given graph G = (V, E, wA, wB), a random URR set Rj is generated from G by:
(1) picking a random source node v ∈ V; and (2) generating a sample graph g from G by running CLE model,
and returning Rj ← CU(g, v).
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For any SA ⊆ V \ SB, denote a random variable:

Xj =

{
1, If Rj ∩ SA 6= ∅

0, Otherwise
(14)

b

a fv

ec

d f

B-seed set

A

A

A

A

B

B

B

h

B

Figure 4. Description for CU(g, v).

We denote Rj(g, v) is a URR set with source node v and sample graph g, and Xj(g, v) is value of
Xj corresponding to Rj(g, u). The following lemma shows the upper bound characters of Xj.

Lemma 2. For any set SA ⊆ V \ SB, a random source node v and random sample graph g,
we have Xj(g, v) ≥ γv

g(SA).

Proof. We consider two following cases
Case 1: SA ∩ Rj(g, v) = ∅, each node u ∈ SA cannot reach v in gA after τ steps. By running CLE

model, SA cannot activate v. Hence, Xj(g, v) = γv
g(SA) = 0.

Case 2: SA ∩ Rj(g, v) 6= ∅. Assume that u ∈ S ∩ Rj(g, v), u can reach v in gA after τ steps,
thus E[γv

g(SA)] ≤ 1 = Xj(g, v). Therefore, γv
g(SA) ≤ Xj(g, v).

Define U(SA) = n0 ·E[Xj] andR is a set of URR. We estimate U(SA) as

Û(SA) =
n0

|R| ∑
Rj∈R

Xj (15)

Lemma 3 shows the properties of U function.

Lemma 3. Given seed set SB ⊂ V, for any set of nodes SA ⊆ V \ SB, we have: U(SA) ≥ I(S) and U(·) is a
monotone and submodular function.

Proof. Using Lemma 2, we have

I(A) = n0 ·∑g∈XG
Pr[g|G]∑v∈V\SB

γv
g(A)

≤ n0 ·∑g∈XG
Pr[g|G]∑v∈V\SB

Xj(g, v) = U(A)
(16)

Since U(S) = n0 · E[Xj] = n0 · ∑Xj
Pr[Xj]E(S ∩ Rj 6= ∅) is a form of weight coverage function,

in which every Rj is an element, the universal is set of all URR sets, and each node u ∈ V corresponding
to a subsets that contains LRR Rj is covered by u. The probability n0 Pr[g|G] is the weight of element
Rg

j (u). Since the weighted coverage function is monotone and submodular, it follows that U(A) has
the same properties

Lemma 3 suggests that we can use U as an upper bound submodular function of I. We further
devise an algorithm, which is summarized in Algorithm 1, to generate an URR set. We first randomly
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selected a source node v ∈ V \ SB with uniform distribution (Line 1). After that, it attempts to select an
in-neighbor u of v on gA according to the CLE model (Line 4). Then, it moves from v to u and repeats
the process. The algorithm stops within τ steps (Line 3), when no edge is selected (Line 10), or the
selected node v belongs to SB or belongs to Rj (Line 7).

Algorithm 1: Generate LRR set.
Input: Graph G = (V, E, wA, wB), B-seed set SB ⊆ V, τ

Output: a LRR set Rj

1. Select randomly a node v ∈ V \ SB
2. gB ← ∅; dB ← 0
3. Rj ← ∅
4. repeat
5. Add v to Rj

6. Select an A-edge (u, v) by CLE model
7. if (u, v) is selected then
8. If u ∈ SB then break
9. v← u, dA = dA + 1

10. if CheckBF(u, gB, dA − 1).Check = False then
11. Add v in Rj;
12. gB ← CheckBP(u, gB, dA − 1).gB ; // Update graph gB

13. else
14. return Rj

15. end
16. else
17. break
18. end
19. until dA > τ;
20. return Rj;

5.1.2. Lower Bound Submodular Function

We next devise a lower submodular function of objective function. The idea of this method is that
we only choose set of nodes that make v becomes A-active with probability 1 in estimating of objective
function. We consider set CL(g, v) defined as follows:

CL(g, v) = {u|dA(u, v) < τ, dA(u, w) < dB(SB, w), ∀w ∈ PA(u, v)} (17)

where PA(u, v) is the simple path from u to v in gA. The left inequality in Equation (17) ensures that v
can reach from u on gA. The right inequality ensures the influence from u to v is not blocked by the
influence from SB.

Consider the example in Figure 5. We have the sample graph g that contains nine nodes and eight
edges, the source nodes is v and SB = {c, h} and τ = 5. gA contains edges: (a, v), (b, a), (c, b), (d, b).
gB contains edges: ( f , v), (e, f ), (h, e), (i, e). We have CL(g, v) = {b, a, v}. According CLE model, we can
easily prove that γv

g(u) = 1, ∀u ∈ CL(g, v). Based on that, we define Lower bound Reachable Reversal
(LRR) set as follows:
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Figure 5. Description for CL(g, v).

Definition 4. LRR set. Given graph G = (V, E, wA, wB), a random LRR set Rj is generated from G by:
(1) picking a random node v ∈ V; and (2) generating a sample graph g from G by CLE model and returning
Rj ← CL(g, v).

For any SA ⊂ V \ SB, denote a random variable:

Yj =

{
1, If Rj ∩ SA 6= ∅

0, Otherwise
(18)

and define L(S) = n0 ·E[Yj]. LetR be a set of LRR. We estimate L(S) as

L̂(SA) =
n0

|R| ∑
Rj∈R

Yj (19)

Lemma 4 shows the properties of L function.

Lemma 4. Given seed set SB, for any set of nodes SA ⊆ V \ SB, we have: L(SA) ≤ I(SA) and L(·) is a
monotone and submodular function.

The proof of Lemma 4 is omitted here because it is similar to that of Lemma 3. Based on Lemma 4,
we use L as a lower-bound submodular function of I. Algorithm 1 depicts the generation of LRR
set. We first randomly select source node v, and then select an edge (u, v) on gA according to the
Competitive live-edge model. If edge (u, v) is selected, we update dA as the distance from u to v on gA
and check distance condition dA(u, v) < dB(u, SB) by Algorithm 2. In this algorithm, we sequentially
generate a simple path from u on gB (called B-path) according to the CLE model until the length of
path exceeds dA, or no B-edge is selected. If dB ≤ dA (Lines 13–16, Algorithm 2), it returns True and
Algorithm 1 returns current LRR set Rj (Line 14, Algorithm 1). In Algorithm 1, if node u is selected
into Rj, it moves from v to u and repeats process until distance from current selected node to v on gA
exceeds τ (Line 18, Algorithm 1), or no A-edge is selected (Line 16, Algorithm 1). This process ensures
that, if node u is added to the set Rj, the previous nodes on PA(u, v) are not affected by SB.
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Algorithm 2: Check the distance from u to B on gB—CheckBP(u, gB, dA).
Input: Graph G = (V, E, wA, wB), B-seed set SB ⊆ V, τ, gB, dA
Output: gB and Check

1. Check← False; dB ← 0
2. repeat
3. if exists an B-edge (u, v) in gB then
4. v← u; dB ← dB + 1
5. else
6. Select a B-edge (u, v) using Competitive live-edge model
7. if a edge (u, v) is selected then
8. v← u; dB = dB + 1
9. Add B-edge (u, v) into gB

10. else
11. break ; // If no B-edge is selected
12. end
13. if v ∈ B then
14. Check← True
15. break
16. end
17. end
18. until dB ≥ dA;
19. return gB and Check

5.2. Polling-Based Algorithm for Maximum Bound Functions

We now introduce an approximation algorithm for finding maximum lower and upper function
in previous subsection in which all nodes have heterogeneous cost, namely PBA. Our algorithm is
based on polling method, which was proposed for IM problem [2,4–6]. We describe our algorithm for
maximizing the lower bound function, and it is similar to applying for maximizing the upper bound
function. The details of our algorithm are depicted in Algorithm 3.

Algorithm 3: Polling-Based Approximation algorithm (PBA).
Input: Graph G = (V, E, wA, wB), budget L > 0, and ε, δ ∈ (0, 1)
Output: A-seed set SA

1. Λ = Nmax · kmaxε2/n, t← 1, Nmax ← N(ε, δ
3 )

OPTu
kmax

, tmax =
⌈

log2
Nmax

Λ

⌉
2. Generate Λ URR sets by Algorithm 4 and add them intoR1

3. repeat
4. < SA,CovRt(SA) >← Greedy(Rt, L)
5. if CheckQS(Rt,CovRt(SA), δ, ε) = True or |Rt| ≥ Nmax then
6. return SA
7. else
8. t← t + 1
9. Rt ← CheckQS(Rt,CovRt(SA), δ, ε)

10. end
11. until |Rt| ≥ Nmax;
12. return SA;
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Algorithm 4: Generate URR set.
Input: Graph G = (V, E, wA, wB), B-seed set SB ⊆ V, τ

Output: a URR set Rj

1. Select randomly a node v ∈ V \ SB
2. Rj ← v; dA ← 0
3. while dA ≤ τ do
4. Select an A-edge (u, v) by using Competitive live-edge model
5. if An edge (u, v) is selected then
6. v← u ; dA ← dA + 1
7. If (v ∈ Rj or v ∈ SB) then break
8. Add v into Rj

9. else
10. break
11. end
12. end
13. return Rj;

5.2.1. Description of PBA

PBA first generates a collection R1 of Λ URR sets. The main phrase of PBA contains several
iterators (at most tmax). In each iterator, the algorithm first finds the candidate solution SA by using
Greedy algorithm (Algorithm 5) to solve Budgeted Maximum Coverage (BMC) problem [20] (Line 6).
It provides an approximation ratio of (1− 1√

e ). We denote Greedy(R, L) as Greedy algorithm with the
input data consisting a collection URR sets R and budget L > 0. Then, SA is checked for quality in
Algorithm 6, which independently generates more |Rt| URR, adds them toRc, calculates

CovRc(SA) = ∑
Rj∈Rc

min{|SA ∩ Rj|, 1} (20)

Algorithm 5: Greedy algorithm for Budgeted Maximum Coverage problem—Greedy(R, L).
Input: URR setR, budget k
Output: Seed set SA

1. S← ∅
2. U ← ⋃

Rj∈R Rj

3. repeat
4. v← arg maxu∈U\S

(
CovR(S ∪ {u})− CovR(S)

)
/c(u)

5. if c(S ∪ {u}) ≤ L then
6. S← S ∪ {u}
7. end
8. U ← U \ u
9. until U = ∅;

10. vmax ← arg maxu∈U|c(u)≤L CovR(u)
11. S1 ← arg maxS′∈{S,vmax} CovR(S

′)

12. return S1;
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and uses it to calculate parameters ε1, ε2. We next calculate the lower-bound of I(SA): fl(S,Rc, ε1),
and upper-bound of optimal solution fu(OPTu,Rt, ε2). If current solution SA meets approximation
guarantee condition that

fl(SA,Rc, ε1)

fu(OPTu,Rt, ε2)
≥ 1− 1√

e
− ε (21)

the algorithm returns SA. If not, it moves to the next iterator and stops when the number of URR sets
is at least Nmax.

Algorithm 6: Check quality of solution (CheckQS).
Input: Rt,CovRt(SA), δ, ε

Output: True or (False andRt+1)
1. δ1 = δ

3tmax
, ε1 = ε,

2. cov← CovRt(SA)

3. Rc ← Rt

4. for i = 1 to |Rt| do
5. Generate a URR set Rj by Algorithm 4 and add it toRc

6. If Rj ∩ SA 6= 0, then cov← cov + 1
7. end
8. a← cov−1

ln(2δ−1
1 )

9. If a = 2
3 return False andRc

10. ε1
1 ←

1
a− 2

3

(
4
3 −

√
2a + 4

9

)
, ε2

1 ←
1

a− 2
3

(
4
3 +

√
2a + 4

9

)
11. ε1 ← min{ε′ ∈ {ε1

1, ε2
1}|ε′ > 0}

12. ε2 ←
√

2(1+ε1)|Rc | ln 3tmax
δ1

|Rt |Uc(S)

13. fl(SA,Rc, ε1)← n0
(1+ε1)|Rc |CovRc(SA)

14. fu(SA,Rt, ε2)←
n0CovRt (SA)

|Rt |(1−
√

e)(1−ε2)

15. if fl(SA)
fu(OPTu)

≥ 1− 1√
e − ε then

16. return True
17. else
18. return False andRc

19. end
20. return False;

5.2.2. Theoretical Analysis

Now, we prove that PBA returns a (1− 1/
√

e− ε)-approximation solution with probability at
least 1− δ.

We observe that Xj ∈ [0, 1]. Let random variable Zi = ∑i
j=1(Xj −E[Xj]), ∀i ≥ 1. For a sequence

random variables Z1, Z2, . . ., we have E[Zi|Z1, . . . , Zj−1] = E[Zi−1] + E[Xi − µX ] = E[Zi−1]. Hence,
Z1, Z2, . . . is a form of martingale [34]. Therefore, we obtain the same results as in [6].
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Lemma 5 ([6]). For any T > 0, ε > 0, µ is the mean of Xj, and an estimation of µ is µ̂ = ∑T
i=1 Xi

T . We have:

Pr[µ̂ ≥ (1 + ε)µ] ≤ exp

(
−Tµε2

2 + 2
3 ε

)
(22)

Pr[µ̂ ≤ (1− ε)µ] ≤ exp
(
−Tµε2

2

)
(23)

Based on Lemma 5, Tang et al. [6] proposed IMM algorithm based
on Reverse Influence Set (RIS) [24] process for solving IM problem. They showed that the number of
random Reachable Reversal (RR) sets, which ensures RIS process returns an (1− 1/e)-approximation
with probability 1− δ, is

θmax = 2n

((
1− 1

e

)√
ln(

2
δ
) +

√(
1− 1

e

)(
ln

2
δ
+ ln

(
n
k

)))2
1

ε2k
(24)

This threshold is also used to obtain stopping condition for IM algorithms [4,7]. However, it does
not guarantee that the candidate solution SA is a (1− 1/

√
e)-approximation under the heterogeneous

selecting costs. In this case, we provide the number of URR sets to guarantee (1− 1/
√

e)-approximation
ratio by the following theorem.

Theorem 4. For ε > 0, δ ∈ (0, 1) is the parameter.If |R| is greater or equal to

N(ε, δ) = 2n0

(
(1− 1√

e
)

√
ln(

2
δ
) +

√(
1− 1√

e

)(
ln

2
δ
+ ln

(
n

kmax

)))2
1

ε2OPTu

Algorithm 5 returns a (1− 1/
√

e− ε)-approximation solution with probability at least 1− δ.

Lemma 6. Let event B1
t =

(
|Rt| ≥ Nmax

)∧ (
U(S) < (1− 1/

√
e− ε)OPTu)

)
then, Pr[B1

t ] <
δ
3 .

Proof. From Theorem 4, since Nmax ≥ N
(

ε, δ
3

)
, the bad event U(S) < (1− 1/

√
e− ε)OPTu happens

with probability at most δ
3

Lemma 7. For each 1 ≤ t ≤ tmax, let fl(SA,Rc, ε1) =
n0

|Rc |(1+ε1)
CovRc(SA). We have: Pr[ fl(SA,Rc, ε1) ≤

U(SA)] ≥ 1− δ1

Proof. We denote Ûc(SA) as an estimation of U(SA) over Rc. In each iterator t, after ending the for
loop (Line 7) in Algorithm 6, we have

CovRc(SA) = Υ(ε1, δ1) = (1 + ε1)

(
2 +

2
3

ε1

)
ln

2
δ1

1
ε2

1

It satisfies the stopping rule theorem in [35], therefore it guarantees that

Pr[Ûc(SA) ≤ (1 + ε1)U(SA)] = Pr[µ̂c ≤ (1 + ε1)µ] ≥ 1− δ1

Hence, Pr[ fl(SA) ≤ U(SA)] ≥ 1− δ1

Lemma 8. Assume that the bad event in Lemma 7 does not happen. Let fu(SA,Rt, ε2) =
n0CovRt (SA)

|Rt |(1−
√

e)(1−ε2)
.

We have: Pr[ fu(SA,Rt, ε2) ≥ U(S∗U)] ≥ 1− δ1.
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Proof. Since the bad event in Lemma 7 does not happen, we have µ(SA)(1 + ε1) ≥ µ̂c(SA). Applying
Lemma 5 for optimal set S∗U , with random variable Xj, the mean µ(S∗U) = U(S∗U)/n0, and |Rt| samples

Pr[Ût(S∗U) < (1− ε2)U(S∗U)] = Pr[µ̂t(S∗U) < (1− ε2)µ(S∗U)]

≤ exp

(
−
|Rt|ε2

2µ(S∗U)
2

)
≤ exp

(
−
|Rt|ε2

2µ(SA)

2

)

= exp

(
−
|Rt|ε2

2µ̂c(SA)/(1 + ε1)

2

)
=

δ

3tmax
= δ1

Now, since Greedy algorithm returns a (1− 1/
√

e)-approximation solution, we have:

Ût(SA) =
n0

|Rt|
CovRt(SA) ≥

n0

|Rt|
(1− 1/

√
e)CovRt(S

∗
t )

≥ n0

|Rt|
(1− 1/

√
e)CovRt(S

∗
U) = (1− 1/

√
e)Ût(S∗U)

≥ (1− 1/
√

e)(1− ε2)U(S∗U)

where S∗t is an optimal solution of instance (Rt, L) of maximum coverage problem. Therefore,

fu(SA,Rt, ε2) =
Û(S)

(1−1/
√

e)(1−ε2)
≥ U(S∗U) with probability at least 1− δ1.

Theorem 5. Given 0 ≤ ε, δ ≤ 1, PBA algorithm returns the set node S satisfying:

Pr[U(SA) ≥ (1− 1/
√

e− ε)U(S∗U)] ≥ 1− δ (25)

Proof. Assume that none of the bad events in Lemmas 6–8 happen in any iterator t = 1, 2 . . . , tmax.
We apply the union bounding the probability of bad events, and the probability of this assumption is
at least

1−
(

δ

3
+ δ1 · tmax + δ1 · tmax

)
= 1− δ (26)

Under this assumption, we show that PBA algorithm returns a solution satisfying:

U(SA) ≥ (1− 1/
√

e− ε)U(S∗U) (27)

If the algorithm stops with condition |Rt| ≥ Nmax, the solution S satisfies Equation (27) due to
Lemma 6. Otherwise, PBA algorithm stops at some iterator t, t = 1, 2, . . . , tmax, in which the CheckQS

on Line 5 returns “True”. Since the bad events do not happen and the condition on Line 12 of
Algorithm 6 is true, we have

U(SA)

OPTu
≥ fl(SA,Rc, ε1)

fu(SA,Rt, ε2)
≥ 1− 1√

e
− ε (28)

This completes the proof.

5.2.3. Improved Guarantees with Tightened Bound

Lemma 8 provides an upper bound of OPTu, in which we use the inequality CovRt(SA) ≥
(1− 1/

√
e)CovRt(S

∗
t ). However, this upper bound is tight in the worst case [20], but loose for specific

instances of budgeted maximum coverage problem. We propose another upper bound of CovRt(S
∗
t )

that is much tighter in practice, as explained in the following. In Greedy algorithm, we denote Si at
iterator i. The following lemma provides a tighter bound of CovRt(S

∗
t ).
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Lemma 9. Assume that the number iterators in this algorithm is k and ui is the node added at ith iterator.

Letting g(Rt, Sk) =
L·CovRt (Sk)

c(uk)
+
(

1− L
c(uk)

)
CovRt(Sk−1), we have

CovRt(S
∗
t ) ≤ g(Rt, Sk) ≤

CovRt(S)
1− 1/

√
e

(29)

Proof. From Lemma 1 in [20], we have

CovRt(Sk)− CovRt(Sk−1) ≥
c(uk)

L
(CovRt(S

∗
t )− CovRt(Sk−1)) (30)

Rearranging Equation (30) yields CovRt(S
∗
t ) ≤ g(Rt, Sk). On the other hand,

g(Rt, Sk)− CovRt(Sk) =
(

1− c(uk)
L

)
(g(Rt, Sk)− CovRt(Sk−1))

= ∏k
i=1

(
1− c(ui)

L

)
g(Rt, Sk)

(31)

It follows that

g(Rt, Sk) =
CovRt(Sk)

1−∏k
i=1

(
1− c(ui)

L

) ≤ CovRt(Sk)

1− 1/
√

e
(32)

By Lemma 9, we have the new upper bound OPTu as follows:

f a
u(SA,Rt, ε2) =

n0

|Rt|(1− ε2)
g(Rt, Sk) (33)

5.3. Sandwich Approximation

We apply Sandwich Approximation framework in [16] to design our algorithm, namely SA-PBA.
Let SU and SL be solutions selected by PBA algorithm for maximizing L and U within the total cost at
most L, respectively. S′A is a solution for original problem. We denote Î(SA) as a (δ′, ε′)-approximation
of I(SA), i.e.,

Pr[(1− ε′)I(SA) ≤ Î(SA) ≤ (1 + ε′)I(SA)] ≥ 1− δ′ (34)

The sandwich approximation algorithm operates as follows. First, we find a solution to the
original problem with any strategy. Second, we find an approximate solution to the lower bound and
the upper bound by PBA algorithm. Last, we return Ssa = arg maxS∈{SL ,S′ ,SU} Î(S) as the solution of
SPBA algorithm. The details of our algorithm are shown in Algorithm 7.

Algorithm 7: Sandwich Approximation base on PBA algorithm (SPBA).

Input: Graph G = (V, E, wA, wB), budget L > 0, and ε, δ, ε′, δ′ ∈ (0, 1)
Output: Seed set SA

1. SU ← PBA(L, G, L, ε, δ)

2. SL ← PBA(U, G, L, ε, δ)

3. S′ ← a solution for maximizing I by any algorithm.
4. S← arg maxS∈{SU ,SL ,S′} Î(S)
5. return S;
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The following theorem shows the approximation ratio of our algorithm.

Theorem 6. Let S∗ be the optimal solution, and Ssa be a solution returned by Algorithm 7. We have:

I(Ssa) ≥ max
{

I(SU)

U(SU)
,
L(S∗L)
I(S∗A)

}
(1− ε′)

(1 + ε′)

(
1− 1√

e
− ε

)
OPT (35)

with probability at least 1− 2δ− δ′.

Proof. Due to U(S∗U) ≥ U(S∗A) ≥ I(S∗A), we have:

Î(SU) = Î(SU)
U(SU)

U(SU) ≥ I(SU)
U(SU)

(
1− 1√

e − ε
)
U(S∗U)

≥ I(SU)
U(SU)

(1− ε′)
(

1− 1√
e − ε

)
I(S∗A)

(36)

On the other hand,

Î(SL) ≥ (1− ε′)I(SL) ≥ (1− ε′)L(SL)

≥
(

1− 1√
e − ε

)
L(S∗L)

≥ L(S∗L)
I(S∗A)

(1− ε′)
(

1− 1√
e − ε

)
I(S∗A)

(37)

Since (1− ε′)I(Ssa) ≤ Î(Ssa) ≤ (1 + ε′)I(Ssa), we have:

I(Ssa) ≥
1

1 + ε′
Î(Ssa) ≥ max

{
I(SU)

U(SU)
,
L(S∗L)
I(S∗A)

}
· (1− ε′)

(1 + ε′)
(1− 1√

e
− ε) ·OPTu

Applying union bound of probabilities, the inequality in Equation (38) happens with probability
at least 1− 2δ− δ′.

6. Experiments

We experimentally evaluated and compared the performance of our algorithm to other algorithms,
namely baseline algorithms and influence maximization methods, on two aspects: solution quality
and the scalability from various network datasets.

6.1. Experimental Settings

6.1.1. Datasets

We performed our experiments on six real-world datasets: Gnutella, Enron, Epinions, Email-Eu,
DBLP and Wiki.The basic statistics of these networks are summarized in Table 2.

Table 2. Datasets.

Dataset Nodes Edges Type Avg. Degree

Gnutella [36] 6301 20,777 Directed 3.29
Enron [37] 36,692 183,831 Undirected 5.01

Epinions [38] 75,879 508,837 Directed 6.7
Email-Eu [36] 265,214 420,045 Directed 1.58

DBLP [39] 317,080 1,049,866 Undirected 5.01
Wiki [40] 1,791,489 28,511,807 Directed 6.7

6.1.2. Algorithm Compared

We compared our algorithm with influence maximization BCT algorithm and several baseline
algorithms, which are described as follows
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• BCT: An influence maximization algorithm under the heterogeneous selecting cost. The reason
we chose BCT to compare is that BCIM is a variant of IM and BCT considers of nodes with
arbitrary costs.

• Degree: This algorithm selects nodes with the highest degree and we keep on adding the
highest-degree nodes until total costs of the selection of nodes exceeds L.

• Random: This algorithm randomly selects nodes within budget L.

6.1.3. Parameters

In all the experiments, we kept ε = 0.1 and δ = 1/n as general settings. We set ε′ = δ′ = 0.01
and used the stopping condition algorithm in [35] to estimate Î. We assigned the weights of edges in
TCLT model according to LT model in previous studies [4–8,13]. The weight of the edge (u, v) was
calculated as follows,

w(u, v) =
1

|N−(v)|
(38)

Our implementation was written in C++ and compiled with GCC 4.7. All our experiments were
carried out using a Linux machine with a 2 × Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz 8 × 16 GB
DIMM ECC DDR4 @ 2400 MHz

6.2. Results

6.2.1. Comparison of Algorithms under General Case

In this experiment, we compared algorithms when τ = 5, the budget L varied from 0 to 100
and the costs of node were uniformly distributed in [1.0, 3.0]. Figure 6 shows the performance
of all algorithms on Gnutella, Enron, Epinions, Email-Eu, DBLP and Wiki networks. On average,
we observed that our algorithm SPBA always had the best performance. SPBA was 10–30% better
than the result of BCT. This is because BCT only considers the number of influenced nodes and
ignores the competitive influence under time constraint τ. It also confirmed that IM’s algorithms do
not have good performance for BCIM problem. Random algorithm had the worst performance of all
cases. Degree algorithm performed well on the Enron dataset but had bad performance on the other
datasets. SPBA was up to 7.7 times better than Degree. The reason is that Degree only uses the topology
properties of the social network but can not consider competitive diffusion process. In the opposite,
our algorithm takes advantage of the upper and lower bounds of objective function to obtain the
approximation ratio. This explains why our algorithm had good performance while the others had
poor performance in many cases.

6.2.2. Comparison of Algorithms under Unit-Cost Setting

To show more clearly the performance of these algorithms, we conducted experiments on the
unit-cost case (i.e., all node costs are equal to 1) on Gnutella, Enron, Epinions and Email-EU datasets.
We set τ = 5 and L varied from 1 to 100. Figure 7 displays the results of all algorithms. Once again,
we found that our algorithm SPBA gave the best performance. SPBA was 1.06–1.76 times better than
BCT and 1.2–17.2 times better than the result of Degree. These results are also consistent with what
was observed in the previous case.
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Figure 6. Comparison between different algorithms under general cost setting.
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Figure 7. Comparison between different algorithms under unit-cost setting.
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6.2.3. Comparison of Running Time

Figure 8 shows running time of algorithms on six datasets. SPBA had the longest running
time on any datasets. This is because the running time of SPBA consists of total running time of
PBA(L, G, L, ε, δ), PBA(U, G, L, ε, δ) and calculating Î(·). Random and Degree algorithms are simple
heuristic algorithms thus their costs are low. This resulted in their shortest running time. Although BCT

is based on polling method, it ran faster than our algorithm. The reason for this result is due to the
following reasons. Firstly, the sampling process of BCT and our algorithm are different. The sampling
complexity of BCT is mainly dependent on the number of randomly selected node while the sampling
process in our algorithm is more complicated because it must check the influence paths from SB.
Secondly, to obtain a data approximation, our algorithm must solve three problems with polling based
method. It is worth noting that SPBA is scalable with million-scale networks. For Wiki network,
which has 1.79 millions nodes and 28.5 millions edges, our algorithm finished in 90 s.
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Figure 8. Running time of algorithms for BCIM problem.



Appl. Sci. 2019, 9, 2274 24 of 29

6.2.4. Impact of τ

Considering the importance of early competitive influence in viral marketing, we were very
interested in the role of time constraint in influence. We compared our solution with three other
algorithms while varying τ from 3 to 5. Figure 9 shows results of algorithms when L = 50. SPBA was
clearly still the best performer. Specifically, our SPBA was 1.01–1.23 times better than BCT and up to
2.5 times better than Degree.
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Figure 9. Comparison between different algorithms when τ varies.

7. Conclusions

In this paper, we investigate BCIM problem, which finds the seed set of a player to maximize
their influence while their competitors are conducting similar strategies. We first propose TCLT model
to capture the competitive influence of two competitors on a social network and formulate BCIM in
this model. We provide the hardness results and properties of objective function. A randomized
SPBA-based approximation is proposed for finding the solution of BCIM. Experiments on real world
social networks were conducted. The results show that our proposed algorithm outperformed
the other heuristics.
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Appendix A

Proof of Theorem 3. We use the inductive method according to two models when t = 0, 1, 2..., τ.
In the step t = 0, we have A0 = A′0 and B0 = B′0. Assume that, at step t ≥ 0, the two models give
the same distribution of A-active set and B-active set nodes, which are At and Bt. For TCLT model,
we consider a node v that has not been activated by the end of step t, i.e., v /∈ At ∪ Bt. We divide the
state of v in step t + 1 into two cases:
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Cases 1: Total A-influence weights exceed threshold θA(v) while the total B-influence weights is
smaller than θB(v) in step t + 1. The probability that this case happens is:

P1,t+1(v) =

(
∑u∈At\At−1

wA(u, v)
)(

1−∑u∈Bt\Bt−1
wB(u, v)

)(
1−∑u∈At−1

wA(u, v)
)(

1−∑u∈Bt−1
wB(u, v)

) (A1)

Cases 2: Total A-influence weights exceed threshold θA(v) while the total negative influence
weights also exceed than threshold θB(v). The probability that this case happens is:

P2,t+1(v) =

(
∑u∈At\At−1

wA(u, v)
)(

∑u∈Bt\Bt−1
wB(u, v)

)(
1−∑u∈At−1

wA(u, v)
)(

1−∑u∈Bt−1
wB(u, v)

) (A2)

In this case, TB-WPP rule is used to determine state of v. According to this rule, the probability
node v is A-activated at step t + 1 is equal to

P1,t+1(v) + pA(v|At−1, Bt−1) · P2,t(v) (A3)

On CLE model, we assume that A′t and B′t are the set of A-active set and B-active set nodes at step
t. For v /∈ B′t ∪ A′t, the probability that v has an in-edge from A′t and does not have an in-edge from B′t
(called P′1,t(v)) is equal to

P′1,t(v) =

(
∑u∈A′t\A′t−1

wA(u, v)
)(

1−∑u∈Bt\B′t−1
wB(u, v)

)(
1−∑u∈A′t−1

wA(u, v)
)(

1−∑u∈B′t−1
wB(u, v)

) = P1,t(v) (A4)

We denote P′2,t(v) as the probability v has both in-edge from A′t and in-edge from B′t. We have

P′2,t(v) =

(
∑u∈A′t\A′t−1

wA(u, v)
)(

∑u∈B′t\B′t−1
wB(u, v)

)(
1−∑uA′t−1

wA(u, v)
)(

1−∑u∈B′t−1
wB(u, v)

) = P2,t(v) (A5)

According to CLE model, the probability v is A-activated in this case is P′2,t(v) · pA(v|A′t−1, B′t−1).
Thus, the probability v is A-activated at step t + 1 is

P′1,t(v) + P′2,t(v) · pA(v|A′t−1, B′t−1) = P1,t(v) + P2,t(v) · pA(v|At−1, Bt−1) (A6)

Due to A0 = A′0 = A, by step-by-step induction, we reach the conclusion that the random CLE

model producing the same distribution over A-active sets as the TCLT model at any hop t = 0, 1, . . . , τ.
Similarly, we obtain two models produce the same distribution over B-active sets.

Proof of Theorem 4. We first show that, for any parameters ε1 > 0 and θ1 ∈ (0, 1): If

|R| ≥ θ1 =
2n0 ln(1/δ1)

OPTuε2
1

(A7)

then

Û(S∗U) ≥ (1− ε1) ·OPTu (A8)

with probability at least 1− δ1. Indeed, applying Lemma 5, we obtain

Pr[Û(S∗U) ≤ (1− ε1)U(S∗U)] = Pr
[

n0
T ∑T

j=1 Xj ≤ (1− ε1)µ · n0

]
= Pr [µ̂ ≤ (1− ε1)µ] ≤ exp

(
− ε2

1µT
2

)
= δ1

(A9)
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For the instance (R, L), we denote S as solution Greedy, and S∗0 as an optimal solution.
Since Algorithm 5 returns a (1− 1/

√
e)-approximation solution, the following event happens with

probability at least 1− δ1:

Û(S) ≥ (1− 1/
√

e)Û(S∗0) ≥ (1− 1/
√

e)Û(S∗U) ≥ (1− 1/
√

e)(1− ε1)Û(S∗U) (A10)

We next show that for ε2 > 0, ε2 = ε− (1− 1/
√

e)ε1 and δ2 ∈ (0, 1). If Equation (A8) holds, and

T ≥ θ2 =
2(1− 1/

√
e) ln(( n0

kmax
)/δ2)

OPTl(ε− ε1(1− 1/
√

e))2 (A11)

the following inequality holds with probability at least 1− δ2

Û(S) ≥ (1− 1/
√

e− ε) ·OPTl (A12)

Since Equation (A8) holds, we have

Û(S) ≥ (1− 1/
√

e)(1− ε1)U(S∗U) = (1− 1/
√

e− ε)OPTu + ε2OPTu (A13)

Applying Equation (A13) and combining with Lemma 5, we have:

Pr[U(S) ≤ (1− 1/
√

e− ε) ·OPTu] ≤ Pr[Û(S)−U(S) ≥ ε2 ·OPTu]

= Pr
[

n0
T ∑T

i=1 Yi − n0µ ≥ ε2 ·OPTu

]
= Pr

[
1
T ∑T

i=1 Yi − µ ≥
(
OPTuε2

n0µ

)
· µ
]

= Pr
[
µ̂− µ ≥

(
OPTlε2

n0µ

)
· µ
]

≤ exp

(
−
(
OPTuε2

n0µ

)2
Tµ

2+3·
(
OPTuε2

n0µ

)
)

≤ exp
(
− ε2

2 ·OPT2
u

2n2
0µ+ 2

3 ε2n0OPTu
· T
)

≤ exp
(
− ε2

2 ·OPT2
u

2n0(1−1/
√

e−ε)·OPTu+
2
3 ε2n0OPTu

· T
)

≤ exp
(
− (ε−(1−1/

√
e)ε1)

2·OPTu
2n0(1−1/

√
e) · θ2

)
= δ2/( n0

kmax
)

(A14)

Due to kmax = max{k : ∃S ⊆ V, c(S) ≤ L}, there are at most ( n0
kmax

) candidate solutions.
By applying union bound, the inequality in Equation (A12) happens with probability at least
1 − δ2. From the above results, we found that, if T ≥ max{θ1, θ2}, Algorithm 5 returns a
(1 − 1/

√
e)-approximation solution with probability at least 1 − (δ1 + δ2). By setting θ1 = θ2 =

θ/2, ε2 = ε− (1− 1/
√

e)ε1, and

ε1 =
ε
√

ln(2/δ)

(1− 1/
√

e)
√

ln(2/δ) +

√
(1− 1/

√
e) ln

(
2( n0

kmax
)/δ
)

we obtain θ1 = θ2 = N(δ, ε). Hence, if T ≥ N(δ, ε), Algorithm 5 returns a
(1− 1/

√
e− ε)-approximation solution with probability at least 1− (δ1 + δ2) = 1− δ.



Appl. Sci. 2019, 9, 2274 27 of 29

References

1. Kempe, D.; Kleinberg, J.M.; Tardos, É. Maximizing the spread of influence through a social network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146. [CrossRef]

2. Borgs, C.; Brautbar, M.; Chayes, J.T.; Lucier, B. Maximizing Social Influence in Nearly Optimal Time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,

Portland, ON, USA, 5–7 January 2014; pp. 946–957. [CrossRef]
3. Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen, J.M.; Glance, N.S. Cost-effective outbreak

detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Jose, CA, USA, 12–15 August 2007; pp. 420–429. [CrossRef]

4. Nguyen, H.T.; Thai, M.T.; Dinh, T.N. Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing
in Billion-scale Networks. In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD Conference 2016, San Francisco, CA, USA, 26 June–1 July 2016; pp. 695–710. [CrossRef]

5. Tang, Y.; Xiao, X.; Shi, Y. Influence maximization: Near-optimal time complexity meets practical efficiency.
In Proceedings of the International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
22–27 June 2014; pp. 75–86. [CrossRef]

6. Tang, Y.; Shi, Y.; Xiao, X. Influence Maximization in Near-Linear Time: A Martingale Approach.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, 31 May–4 June 2015; pp. 1539–1554. [CrossRef]

7. Nguyen, H.T.; Thai, M.T.; Dinh, T.N. A Billion-Scale Approximation Algorithm for Maximizing Benefit in
Viral Marketing. IEEE/ACM Trans. Netw. 2017, 25, 2419–2429. [CrossRef]

8. Chen, W.; Yuan, Y.; Zhang, L. Scalable Influence Maximization in Social Networks under the Linear
Threshold Model. In Proceedings of the 10th IEEE International Conference on Data Mining, Sydney,
Australia, 14–17 December 2010; pp. 88–97. [CrossRef]

9. Chen, W.; Wang, C.; Wang, Y. Scalable influence maximization for prevalent viral marketing in large-scale
social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 1029–1038. [CrossRef]

10. Nguyen, H.; Zheng, R. On Budgeted Influence Maximization in Social Networks. IEEE J. Sel. Areas Commun.
2013, 31, 1084–1094. [CrossRef]

11. Bharathi, S.; Kempe, D.; Salek, M. Competitive Influence Maximization in Social Networks. In Proceedings
of the Internet and Network Economics, Third International Workshop, WINE 2007, San Diego, CA, USA,
12–14 December 2007; pp. 306–311. [CrossRef]

12. Lu, W.; Bonchi, F.; Goyal, A.; Lakshmanan, L.V.S. The bang for the buck: Fair competitive viral marketing
from the host perspective. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013; pp. 928–936. [CrossRef]

13. Chen, W.; Collins, A.; Cummings, R.; Ke, T.; Liu, Z.; Rincón, D.; Sun, X.; Wang, Y.; Wei, W.; Yuan, Y. Influence
Maximization in Social Networks When Negative Opinions May Emerge and Propagate. In Proceedings of
the Eleventh SIAM International Conference on Data Mining, SDM 2011, Mesa, AZ, USA, 28–30 April 2011;
pp. 379–390. [CrossRef]

14. Liu, W.; Yue, K.; Wu, H.; Li, J.; Liu, D.; Tang, D. Containment of competitive influence spread in social
networks. Knowl.-Based Syst. 2016, 109, 266–275. [CrossRef]

15. Bozorgi, A.; Samet, S.; Kwisthout, J.; Wareham, T. Community-based influence maximization in social
networks under a competitive linear threshold model. Knowl.-Based Syst. 2017, 134, 149–158. [CrossRef]

16. Lu, W.; Chen, W.; Lakshmanan, L.V.S. From Competition to Complementarity: Comparative Influence
Diffusion and Maximization. PVLDB 2015, 9, 60–71. [CrossRef]

17. Carnes, T.; Nagarajan, C.; Wild, S.; van Zuylen, A. Maximizing Influence in a Competitive Social Network:
A Follower’s Perspective. In Proceedings of the Ninth International Conference on Electronic Commerce,
Minneapolis, MN, USA, 19–22 August 2007; pp. 351–360.

18. Wang, X.; Zhang, Y.; Zhang, W.; Lin, X. Dominated competitive influence maximization with time-critical
and time-delayed diffusion in social networks. J. Comput. Sci. 2018, 28, 318–327. [CrossRef]

http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1137/1.9781611973402.70
http://dx.doi.org/10.1145/1281192.1281239
http://dx.doi.org/10.1145/2882903.2915207
http://dx.doi.org/10.1145/2588555.2593670
http://dx.doi.org/10.1145/2723372.2723734
http://dx.doi.org/10.1109/TNET.2017.2691544
http://dx.doi.org/10.1109/ICDM.2010.118
http://dx.doi.org/10.1145/1835804.1835934
http://dx.doi.org/10.1109/JSAC.2013.130610
http://dx.doi.org/10.1007/978-3-540-77105-0_31
http://dx.doi.org/10.1145/2487575.2487649
http://dx.doi.org/10.1137/1.9781611972818.33
http://dx.doi.org/10.1016/j.knosys.2016.07.008
http://dx.doi.org/10.1016/j.knosys.2017.07.029
http://dx.doi.org/10.14778/2850578.2850581
http://dx.doi.org/10.1016/j.jocs.2017.10.015


Appl. Sci. 2019, 9, 2274 28 of 29

19. Yan, R.; Zhu, Y.; Li, D.; Ye, Z. Minimum cost seed set for threshold influence problem under competitive
models. World Wide Web 2018. [CrossRef]

20. Khuller, S.; Moss, A.; Naor, J. The Budgeted Maximum Coverage Problem. Inf. Process. Lett. 1999, 70, 39–45.
[CrossRef]

21. Chen, W.; Lakshmanan, L.V.S.; Castillo, C. Information and Influence Propagation in Social Networks; Synthesis
Lectures on Data Management, Morgan & Claypool Publishers: Williston, VT, USA, 2013.

22. He, X.; Song, G.; Chen, W.; Jiang, Q. Influence Blocking Maximization in Social Networks under the
Competitive Linear Threshold Model. In Proceedings of the Twelfth SIAM International Conference on Data
Mining, Anaheim, CA, USA, 26–28 April 2012; pp. 463–474. [CrossRef]

23. Valiant, L.G. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 1979, 8, 410–421.
[CrossRef]

24. Borodin, A.; Filmus, Y.; Oren, J. Threshold Models for Competitive Influence in Social Networks.
In Proceedings of the Internet and Network Economics—6th International Workshop, WINE 2010, Stanford,
CA, USA,13–17 December 2010; pp. 539–550. [CrossRef]

25. Wang, X.; Zhang, Y.; Zhang, W.; Lin, X. Efficient Distance-Aware Influence Maximization in Geo-Social
Networks. IEEE Trans. Knowl. Data Eng. 2017, 29, 599–612. [CrossRef]

26. Song, C.; Hsu, W.; Lee, M. Targeted Influence Maximization in Social Networks. In Proceedings of the 25th
ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN,
USA, 24–28 October 2016; pp. 1683–1692. [CrossRef]

27. Li, Y.; Zhang, D.; Tan, K. Real-time Targeted Influence Maximization for Online Advertisements. PVLDB
2015, 8, 1070–1081. [CrossRef]

28. Lin, Y.; Chen, W.; Lui, J.C.S. Boosting Information Spread: An Algorithmic Approach. In Proceedings of the
33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22 April 2017;
pp. 883–894. [CrossRef]

29. Goyal, A.; Lu, W.; Lakshmanan, L.V.S. CELF++: Optimizing the greedy algorithm for influence maximization
in social networks. In Proceedings of the 20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, 28 March–1 April 2011; pp. 47–48. [CrossRef]

30. Jung, K.; Heo, W.; Chen, W. IRIE: Scalable and Robust Influence Maximization in Social Networks.
In Proceedings of the 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium,
10–13 December 2012; pp. 918–923. [CrossRef]

31. Goyal, A.; Lu, W.; Lakshmanan, L.V.S. SIMPATH: An Efficient Algorithm for Influence Maximization under
the Linear Threshold Model. In Proceedings of the 11th IEEE International Conference on Data Mining,
ICDM 2011, Vancouver, BC, Canada, 11–14 December 2011; pp. 211–220. [CrossRef]

32. Budak, C.; Agrawal, D.; El Abbadi, A. Limiting the spread of misinformation in social networks.
In Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India,
28 March–1 April 2011; pp. 665–674. [CrossRef]

33. Tong, G.A.; Wu, W.; Guo, L.; Li, D.; Liu, C.; Liu, B.; Du, D. An efficient randomized algorithm for
rumor blocking in online social networks. In Proceedings of the 2017 IEEE Conference on Computer
Communications, INFOCOM 2017, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [CrossRef]

34. Chung, F.R.K.; Lu, L. Survey: Concentration Inequalities and Martingale Inequalities: A Survey. Int. Math.
2006, 3, 79–127. [CrossRef]

35. Dagum, P.; Karp, R.M.; Luby, M.; Ross, S.M. An Optimal Algorithm for Monte Carlo Estimation. SIAM J.
Comput. 2000, 29, 1484–1496. [CrossRef]

36. Leskovec, J.; Kleinberg, J.M.; Faloutsos, C. Graph evolution: Densification and shrinking diameters. TKDD
2007, 1, 2. [CrossRef]

37. Leskovec, J.; Lang, K.J.; Dasgupta, A.; Mahoney, M.W. Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters. Int. Math. 2009, 6, 29–123. [CrossRef]

38. Richardson, M.; Agrawal, R.; Domingos, P.M. Trust Management for the Semantic Web. In Proceedings of
the Semantic Web—ISWC 2003, Second International Semantic Web Conference, Sanibel Island, FL, USA,
20–23 October 2003; pp. 351–368. [CrossRef]

http://dx.doi.org/10.1007/s11280-018-0607-9
http://dx.doi.org/10.1016/S0020-0190(99)00031-9
http://dx.doi.org/10.1137/1.9781611972825.40
http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1007/978-3-642-17572-5_48
http://dx.doi.org/10.1109/TKDE.2016.2633472
http://dx.doi.org/10.1145/2983323.2983724
http://dx.doi.org/10.14778/2794367.2794376
http://dx.doi.org/10.1109/ICDE.2017.137
http://dx.doi.org/10.1145/1963192.1963217
http://dx.doi.org/10.1109/ICDM.2012.79
http://dx.doi.org/10.1109/ICDM.2011.132
http://dx.doi.org/10.1145/1963405.1963499
http://dx.doi.org/10.1109/INFOCOM.2017.8056957
http://dx.doi.org/10.1080/15427951.2006.10129115
http://dx.doi.org/10.1137/S0097539797315306
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1080/15427951.2009.10129177
http://dx.doi.org/10.1007/978-3-540-39718-2_23


Appl. Sci. 2019, 9, 2274 29 of 29

39. Yang, J.; Leskovec, J. Defining and Evaluating Network Communities based on Ground-truth. CoRR 2012,
42, 181–213.

40. Yin, H.; Benson, A.R.; Leskovec, J.; Gleich, D.F. Local Higher-Order Graph Clustering. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, 13–17 August 2017; ACM: New York, NY, USA, 2017; pp. 555–564. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3097983.3098069
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Influence Maximization
	Competitive Influence Maximization

	Preliminaries
	Competitive Linear Threshold (CLT) Model
	Competitive Influence Maximization

	Models and Problem Definition
	Time Constraint Competitive Linear Threshold (TCLT) Model
	Budgeted Competitive Influence Maximization Problem
	Competitive Live-Edge (CLE) Model

	Our Proposed Algorithm for BCIM Problem
	Lower and Upper Bound  Functions
	Upper Bound Function
	Lower Bound Submodular Function

	Polling-Based Algorithm for Maximum Bound Functions
	Description of PBA
	Theoretical Analysis
	Improved Guarantees with Tightened Bound

	Sandwich Approximation

	Experiments
	Experimental Settings
	Datasets
	Algorithm Compared
	Parameters

	Results
	Comparison of Algorithms under General Case
	Comparison of Algorithms under Unit-Cost Setting
	Comparison of Running Time
	Impact of 


	Conclusions
	
	References

