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Abstract: To accurately predict the optimum supplemental modal damping ratio of the cable and the
corresponding size of the inertial mass damper (IMD), combined effects of the cable sag, the cable
flexural rigidity, and the boundary conditions on the control performance of the cable with the IMD
are well investigated in this refined study. An analytical model of the cable-IMD system considering
these effects is developed. The equation of motion of the cable-IMD system is transformed into a
complex eigenvalue problem through the finite difference method. Experimental results from a scaled
cable model with an IMD are then used to verify theoretical solutions. Three typical cables in actual
cable-stayed bridges are selected for case studies. The results show that the theoretically predicted
modal damping ratios of the cable with an IMD, taking into account the sag and the flexural rigidity,
agree well with those identified from experimental results, while would be often overestimated with
a taut-cable model. Moreover, experimental damping ratios of the cable always fall between those
theoretically calculated with fixed ends or pinned ends for each case. Finally, to be conservative in
actual design, it is recommended to use the cable-IMD system model with fixed ends to calculate
the required damper size and predict the resulting modal damping ratio of the cable, since the
corresponding theoretical solution often gives the lower bound of supplemental damping ratio of
the cable.

Keywords: inertial mass damper; stay cable; modal damping ratio; flexural rigidity; sag;
boundary condition

1. Introduction

Long steel stay cables, commonly used in cable-stayed bridges, are highly susceptible to dynamic
excitations due to their high flexibility and low inherent damping [1–5]. Large oscillations may reduce
life span of cables and have detrimental effects on public confidence in the safety of the bridge [6,7].
Structural vibration control methods, including passive control [8], semi-active control [9,10], and active
control [11], have been well developed and used for protecting structures against dynamic loading.
For stay cables, modifying aerodynamic cable surface [12], connecting multiple cables together [13],
installing external dampers [14,15], and combining external dampers with cross-ties [16,17], have been
proposed to eliminate such vibrations. Among them, transversely attaching a passive viscous damper to
the stay cable has been widely implemented in practical applications [18,19]. However, the supplemental
damping induced by passive viscous dampers would be insufficient to eliminate vibrations effects of
super long stay-cables since the damper location is typically restricted to the vicinity of the bridge deck
for aesthetic and practical reasons [20,21].
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As a more efficient solution, active or semi-active control, especially MR-based smart damping
technology has attracted extensive attention from the community [22,23]. The MR damper can
produce a damper force-deformation relationship with the negative stiffness behavior that benefits
damper efficiency when the linear quadratic regulator (LQR) algorithm is employed [24–27]. Recently,
an innovative mobile tuned mass damper (TMD) system, consisting of a mobile TMD device and a
semi-active MR damper, has shown a better control performance than its passive counterparts when
the fuzzy control algorithms were employed [28]. However, active or semi-active control requires an
external stable power supply, a sensing system, a controller, etc. [29–32], which is complicated and
costly. To solve this problem, great efforts have been devoted to seeking innovative passive dampers
with similar negative stiffness mechanism.

Passive negative stiffness dampers (NSDs), the superposition of negative stiffness devices with
passive viscous dampers, have been theoretically and experimentally proved to be able to provide
superior achievable modal damping to the cable over that of traditional passive viscous dampers [33–38].
Recent study has also shown that the combined effects of a concentrated mass and a viscous damper can
also behave like that of the passive NSD [39]. However, its control performance seems to be sensitive
to the extra mass attachment on the cable. As an alternative, many inerter-based devices have been
developed, and their control performance advantages have been well demonstrated for civil engineering
structures [40–48]. In particular, the behaviors of typical inertial mass dampers (IMDs) [49–51] or tuned
inerter dampers (TIDs) [52,53] to suppress cable vibrations have been theoretically investigated and
identified through an ideal taut-cable model. The results indicated that similar to the NSD, the IMD
can also show negative stiffness that benefits damper efficiency. Moreover, there is no instability issue
for the IMD, while it would be observed when passive negative stiffness of the NSD is extremely larger.
A TID system, where the traditional tuned mass damper (TMD) mass is replaced by an inerter, can
offer the potential for much higher mass ratios than that of the TMD.

To facilitate efficient damper design and accurately predict the dynamic behavior of a cable
with a passive or semi-active damper, the influences of the cable sag and the cable flexural rigidity
on the damper efficiency have been investigated. It was found that nearly symmetric vibrations
of the cable, especially in the first mode, were significantly affected by the cable sag, while the
antisymmetric vibrations were hardly affected by the cable sag [54–56]. As for cable flexural rigidity,
it has negative effects on the control performance for each mode of the cable [57,58]. The presence of
cable flexural rigidity results in the smaller maximum achievable damping ratio and the higher optimal
damping coefficient than those predicted by the taut-cable model for the case of fixed-fixed boundary
condition [59,60]. The significance of boundary conditions on the dynamic behavior of cable-damper
system was also addressed [61,62]. Results have shown that the adverse effect of flexural rigidity
becomes more significant when the boundary conditions of the stay cable change from pinned-pinned
to fixed-fixed ends. A recent study by the authors has further examined the control performance
of the IMD on a sagged cable [63]. However, the effects of the flexural rigidity and the boundary
condition of a cable on the vibration mitigation performance of an IMD have not been evaluated.
Therefore, this refined study extends the aforementioned work by the authors to further investigate
the combined effects of the cable sag, the cable flexural rigidity and the boundary condition on the
control performance of the cable with the IMD.

In the current study, an analytical model of the cable-IMD system considering cable sag and
cable flexural rigidity for different boundary conditions is developed. The equation of motion of the
cable-IMD system is then transformed into a complex eigenvalue problem using the finite difference
method. Subsequently, the data from a series of vibration control experiments on a scaled cable model
with an IMD previously conducted by the authors are used to further verify the validity of theoretical
results above. Finally, case studies on three typical cables in actual cable-stayed bridges are carried out
to further explore combined effects of the cable sag, the cable flexural rigidity, together with boundary
conditions on the control performance of the IMD.
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2. Formulation of the Cable-IMD System

Consider an inclined cable with sag and flexural rigidity as shown in Figure 1. The coordinate
system is defined such that the x-axis and the y-axis are along the cable chord OO’ and the transverse
direction, respectively. An IMD is attached at the location of xd away from the cable lower end.
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Figure 1. Analysis model of an inclined cable with an inertial mass damper (IMD) (a) pinned-pinned
ends (b) fixed-fixed ends.

After introducing the assumptions that: (1) the sag-to-span ratio is sufficiently small; (2) the
cable vibrates only in the x y-plane and its motion in the x-direction is negligible; (3) the cable has a
uniform cross-section along its length; (4) the static profile of the cable is a second-order parabola [64].
The equation of motion of the cable-IMD system shown in Figure 1 can be expressed as

EI
∂4y(x, t)
∂x4

− T
∂2y(x, t)
∂x2 +

λ2T
l3

∫ l

0
y(x, t)dx + c

∂y(x, t)
∂t

+ m
∂2y(x, t)
∂t2 + FIMDδ(x− xd) = 0 (1)

where EI is the flexural rigidity of the cable, y(x, t) is the in-plane transverse cable motion due to
vibration at location x and time t, T is the tension force along the chord OO’, l is the length of the cable,
c is the viscous damping per unit length, m is the cable mass per unit length, δ(·) is the Dirac delta
function. FIMD is the damper force of the IMD with the expression as

FIMD = me
∂2y(xd, t)

∂t2 + cd
∂y(xd, t)

∂t
(2)

where me and cd denote the inertial mass and the damping coefficient of the IMD, respectively. λ2 is
the non-dimensional parameter for sag extensibility

λ2 =
(mgl cosθ)2

T3
EA

Le/l
(3)

where g is the gravity acceleration, EA is the extensional rigidity of cable, θ is the inclination angle,
and Le is the static (stretched) length of the cable

Le ≈ l(1 +
(mgl cosθ/T)2

8
) (4)

The Equation (1) can be discretized using the finite difference method given by Tabatabai and
Mehrabi [59] and further considering the corresponding boundary conditions (i.e., y(0, t) = y(l, t) =
y(0, t)′′ = y(l, t)′′ = 0 for pinned ends or y(0, t) = y(l, t) = y(0, t)′ = y(l, t)′ = 0 for fixed ends.
The ( )′ and ( )” denote the first and second derivatives with respect to x, respectively.). For a discretized
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cable with N equal elements and n = N−1 internal nodes between two cable ends, the transverse
displacement of the cable can be expressed as

y(x, t) = w(x)ept (5)

where p = −ωn(ξn ± i
√

1− ξ2
n) is the complex eigenvalue pair and w =

[
w1 w2 · · · wn

]T
is the

corresponding eigenvector. ωn is modal frequency, ξn is modal damping ratio and wi is displacement
of the ith internal node.

Therefore, the discretized equation in the matrix form can be derived as

Kw + pCw + p2Mw = 0 (6)

where K =
[
ki j

]
n×n

, C =
[
ci j

]
n×n

, M =
[
mi j

]
n×n

are the stiffness matrix, the damping matrix and the
mass matrix, respectively. According to the reference [59], the stiffness matrix is defined as

K = K1 +
λ2Ta

l3
B (7)

K1 =



Q U W 0
S U W

S U
. . .

. . . . . . W
sym S U

Q


n×n

(8)

where
S =

6EI
a4

+
2T
a2

U = −
4EI
a4
−

T
a2

W =
EI
a4

Q =

 5EI
a4 + 2T

a2 for the pinned end condition
7EI
a4 + 2T

a2 for the fixed end condition

where a = l/N is discretized element length of the cable; B = [1]n×n is full unit matrix. Since the IMD
properties are linear, the IMD can be treated as an inherent element of the cable-damper system, and
the effects of the IMD can be easily integrated in the mass matrix and damping matrix of the cable. If an
IMD is attached at the jth internal node, the mass and damping matrix of the cable can be expressed as

M = Im + me/aγTγ (9)

C = Ic + cd/aγTγ (10)

where I is a n × n identity matrix, γ =
(
γ1 γ2 · · · γn

)
is the IMD load vector and γi ={

1 i = j
0 i , j

}
.

Equation (6) can be transformed into an equivalent complex eigenvalue problem shown in the
following form

A
¯

w = −pB
¯

w (11)
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where
¯

w =

[
w
pw

]
2n×1

, A =

[
K 0
0 −M

]
2n×2n

, B =

[
C M
M 0

]
2n×2n

.

Therefore, the modal frequency ωn =
∣∣∣p∣∣∣ and the modal damping ratio ξn = −Re(p)/

∣∣∣p∣∣∣
of the cable can be found by Equation (11). Actually, the inherent cable damping for the real
cable is sufficiently small, which is always neglected for cable vibration control design with
dampers [15,20,35,51,57,58]. Thus, the inherent cable damping was assumed to be zero in the following
theoretical eigenvalue analysis.

3. Verification of Theoretical Results

To further verify the accuracy of the finite difference method for the cable-IMD system,
the experimental data from the free vibration tests of the model cable with an electromagnetic inertial
mass damper (EIMD) were used. The detailed description of the experiment can be referenced to
Wang et al. [65]. The main properties of the model cable are shown in Table 1. An EIMD, which mainly
consists of a rotary generator, a ball screw, a liner guide way and a flywheel, was attached transversely
to the model cable at 0.114 m (i.e., 1% of the cable length) away from the anchorage. In the experiment,
the equivalent damping coefficient and the inertial mass of the EIMD were adjusted by changing the
load resistance of the generator and the size of the flywheel, respectively. The equivalent damping
coefficient and inertial mass of the EIMD were identified by the least square method according to the
measured displacement and the force of the EIMD. Modal damping ratios of the model cable were
identified through fitting the envelope curve of the free decay cable responses with an exponential
function. In the theoretical calculation, the cable is divided into 200 equally spaced segments with
199 internal nodes (N = 199), and the EIMD locates at the second internal node.

Table 1. Properties of the model cable.

Parameter Value

Cable length l (m) 11.4
Cable cross-section area A (cm2) 1.374
Mass per unit length m (kg/m) 9.5

Elastic modulus E (GPa) 200
Flexural rigidity EI (N/m2) 42.95

Static tension T (kN) 19.2
Inclination angle θ (◦) 0

Sag parameter λ2 4.513

The theoretical and experimental supplemental modal damping ratios in the first two modes of
the cable are compared in Figures 2 and 3. For the convenience of comparison, theoretical results for
the taut cable model are also shown. It is noteworthy that a taut-cable model generally overestimates
the supplemental modal damping ratios of the cable in most cases. Nevertheless, the supplemental
modal damping ratios theoretically predicted by the refined model of the cable-IMD system agree well
with those identified from experimental results. Furthermore, experimental damping ratios always
fall between theoretical results with fixed ends or pinned ends for each case, which implies the cable
anchorages in the experiment were not ideally fixed or pinned. It is also observed that the difference
of the optimum supplemental modal damping ratios and the corresponding damping coefficients
between the cable with fixed and the cable with pinned increases with the increase of the inertial mass
of the IMD. This demonstrated that the effect of boundary conditions would be amplified with the
increase of inertial mass of the IMD. Hence, the results clearly indicate that considering the effects of
the cable sag, the cable flexural rigidity, and the boundary condition is essential to give a more accurate
prediction in evaluating the vibration control performance of a stay cable with an IMD and designing
an optimum IMD for cable vibration mitigation.
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Tables 2 and 3 summarize the first two supplemental modal damping ratios obtained in the
theoretical calculation and experimental tests. As expected, the discrepancies between experimental
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and theoretical results based on the taut-cable model are significant. Moreover, the errors between the
theoretical results of the refined model and experimental results are particularly considerable when the
inertial mass approaches the optimum value. For instance, the discrepancies are over 80% in some cases.
A possible explanation for the discrepancies is that there are inevitable experimental identification
errors in important parameters, such as the supplemental modal damping ratio, the inertial mass and
the equivalent damping coefficient of the IMD. Another possible explanation is that the differences
between theoretical model and test model cause the discrepancies between the theoretical and test
results. Identifications of the cable flexural rigidity and the cable sag and the uncertainty of boundary
conditions are also possible error sources. And the effect of boundary conditions would be amplified
with the increase of inertial mass of the IMD. The uncertainty of boundary conditions can cause large
errors between experimental and theoretical results when the inertial mass approaches the optimum
value. Similar observations can also be found in cable vibration control with a negative stiffness
damper [35].

Table 2. The first supplemental modal damping ratio obtained in the theoretical calculation and
experimental tests [65].

Case
Inertialmass

(kg)
Damping

Coefficient (Ns/m)

Source

Experiment
(%)

Theory (%)

EI = 0,
λ2 = 0

With EI and λ2

Pinned end Fixed end

1 102.6
4659 0.23 0.37 0.27 0.13
3117 0.18 0.26 0.19 0.09

2 140.5
4778 0.28 0.40 0.30 0.14
3356 0.21 0.30 0.22 0.10

3 259.7
5488 0.31 0.54 0.42 0.18
4636 0.35 0.49 0.38 0.16

4 422.0
4968 0.48 0.71 0.58 0.22
3197 0.41 0.53 0.44 0.15

Table 3. The second supplemental modal damping ratio obtained in the theoretical calculation and
experimental tests [65].

Case
Inertial

Mass (kg)
Damping

Coefficient (Ns/m)

Source

Experiment
(%)

Theory (%)

EI = 0,
λ2 = 0

With EI and λ2

Pinned end Fixed end

1 102.6
2884 0.65 0.74 0.70 0.29
4160 0.61 0.81 0.84 0.39

2 140.5
2921 0.82 1.02 0.92 0.35
4536 0.77 1.00 1.06 0.48

3 259.7
1847 2.01 5.02 2.28 0.46
3704 1.23 1.98 2.35 0.77

4 422.0
3298 2.01 0.81 1.76 2.40
4015 1.90 0.84 1.74 2.31

4. Case Studies

Previous studies often introduce a dimensionless parameter ξ = L
√

T/EI for flexural rigidity to
investigate the individual effects of flexural rigidity or the combined effects of sag and flexural rigidity
on the dynamic properties of a stay cable with a damper [57–61]. However, the dynamic properties
of the stay cable may have obvious differences even that the dimensionless bending-stiffness ξ for
various cables are the same. Alternatively, three typical cables (a short cable, a medium cable and a
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long cable) in actual cable-stayed bridges are selected as example cables to explore the influence of
the sag and the flexural rigidity with different boundary conditions on the control performance of
the cable with the IMD in this section. It should be pointed out that the lengths of short, medium
and long cables are relative values and their definitions are mainly referred to the Xu and Yu [54].
The properties of three typical cables in cable-stayed bridges are shown in Table 4. An IMD is assumed
to be attached to each cable at a distance of the 1% length from its lower end without considering
practical application especially for the long cable. The modal damping ratios in the first four modes of
each cable are obtained using the finite difference method above. The damping coefficient cd and the
inertial mass me of the IMD can be normalized as,

cd,n =
cd

T/(xd(ω
0
n))

= nπ
cd
√

Tm

xd
l

, me,n =
me

T/(xd(ω
0
n))

2 ,ω0
n =

nπ
l

√
T
m

(12)

where cd,n and me,n are the dimensionless damping coefficient and the dimensionless inertial mass of
the IMD, respectively; ω0

n is the nth modal frequency of an undamped taut cable.

Table 4. Properties of three typical cables in cable-stayed bridges.

Parameters Short Cable
(Dongting Lake Bridge)

Medium Cable
(Stonecutters Bridge)

Long Cable
(Sutong Bridge)

Cable length l (m) 114.7 306.7 576.8
Mass per unit length m (kg/m) 51.8 98.6 100.8

Flexural rigidity EI (N/m2) 3.842 × 103 5.525 × 106 2.309 × 106

Axial stiffness EA(N) 1.255 × 109 2.429 × 109 2.409 × 109

Inclination angle θ (◦) 37.0 30.5 22.5
Sag parameter λ2 0.0915 0.9365 2.2101

Tension force T (kN) 3095 5530 6708

Figures 4–7 present the supplemental modal damping ratios in the first four modes of the short
cable versus damping coefficients for various inertial masses of the IMD. The single impact of cable sag
or cable flexural rigidity and their combined effects on the performance of the cable with the IMD are
given. For the convenience of comparisons, theoretical results with the taut cable model are also shown.
All curves for the first four modal damping ratios of the short cable almost coincide with each other
when the dimensionless inertial mass is the same, indicating that presences of the cable sag, the cable
flexural rigidity and the boundary condition have negligible effects on the control performance of the
IMD in mitigating short cable vibration. It is mainly because the short cable with low cable sag and
low flexural rigidity used here is close to the taut cable model assumption. Hence, the taut cable model
is still suitable for the short cable to rapidly design an optimum IMD and evaluate corresponding
control performance.
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Figures 8–11 present the supplemental modal damping ratios in the first four modes of the medium
cable versus damping coefficient for various inertial masses of the IMD. The maximum achievable
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damping ratios in the first mode are highly sensitive to the cable sag while those in the higher modes
are hardly affected. Generally, the cable sag reduces the optimal modal damping ratios. However,
the optimal first modal damping ratios of the cable begin to increase when the inertial mass shown in
Figure 8d is adopted. Compared to the cable sag, the flexural rigidity has almost the same effect on
all concerned cable modes. For the case of fixed-fixed boundary condition of the cable, the flexural
rigidity tends to reduce the maximum modal damping ratios. Moreover, the adverse effect of the cable
flexural rigidity on damper efficiency will be amplified with the increase of the inertial mass of the
IMD. While for the case of pinned-pinned boundary condition of the cable, unlike the results of the
fixed-fixed cable, the flexural rigidity can increase the maximum achievable damping ratios of the
cable for the IMD with small inertial mass (me,n ≤ 0.3). However, the maximum achievable damping
ratios begin to decrease when medium inertial mass (0.6 ≤ me,n ≤ 0.9) is adopted. It is also found that
the flexural rigidity will result in larger optimal damping coefficients whether the boundary conditions
of the medium cable are fixed or pinned. In general, considering combined effects of the cable sag and
the flexural rigidity, the maximum achievable damping ratio of the fixed-fixed cable with the IMD will
be the lower bound, while the corresponding optimal damping coefficient will be the upper bound.
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Figures 12–15 present the supplemental modal damping ratios in the first four modes of the long
cable versus damping coefficient for various inertial masses of the IMD. Similarly to the medium
cable, both the cable sag and the cable flexural rigidity mainly have adverse influences on the IMD
effectiveness for cable vibration control. Moreover, the maximum achievable damping ratio of the
cable-IMD system considering the influence of the cable sag and the cable flexural rigidity in the case
of fixed boundary conditions provides relatively conservative predictions. Unlike the medium cable,
the cable sag plays a dominant role in the dynamic behavior of an IMD to suppress cable vibrations
for the lower modes of interest, especially for the first mode, while the presence of the cable flexural
rigidity has fewer effects on the performance efficiency of the long cable with the IMD.
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for various inertial masses: (a) me,4 = 0; (b) me,4 = 0.3; (c) me,4 = 0.6; (d) me,4 = 0.9.

5. Conclusions

In this paper, a refined free vibration analysis has been conducted to evaluate the IMD efficiency
in suppressing cable vibration. An analytical model of cable-IMD system has been developed based on
finite difference method. The accuracy of the finite difference method has been verified via experimental
results from a scaled cable modal with an IMD. The effects of the cable sag, the cable flexural rigidity
and the boundary conditions on the cable control performance have been evaluated via three typical
cables in actual cable-stayed bridges.

The theoretically predicted modal damping ratios based on the refined model of cable-IMD system
agree well with those identified from experimental results, while they would be often overestimated
based on a taut-cable model. Moreover, the experimental modal damping ratios generally fall between
those theoretically predicted with fixed ends or pinned ends of the cable.

The cable sag has significant effects on the first mode whereas it has almost no effects on the
higher modes of the cable. Moreover, the influence of the cable sag becomes more remarkable with the
increase of cable length. Nevertheless, the cable flexural rigidity has effects on each mode of interest,
and it has the most significant impact on the medium cable, followed by the long cable. The effects of
cable sag and cable flexural rigidity on the control performance of the short cable with low cable sag
and low flexural rigidity can be neglected.

Considering the combined effects of the cable sag and the cable flexural rigidity, the maximum
achievable modal damping ratio of a fixed-fixed cable always provides a more conservative prediction
than its pinned-pinned counterpart. Thus, it is recommended to consider the refined model of the
cable-IMD system with fixed-fixed ends for predicting the optimum IMD size and corresponding
attainable modal damping ratio. However, the taut-cable model is still suitable to rapidly design an
IMD and predict the IMD efficiency for short cables with low cable sag and low flexural rigidity.
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