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Abstract: In this work, we focus on the misalignment problem in person re-identification.
Human body parts commonly contain discriminative local representations relevant with identity
recognition. However, the representations are easily affected by misalignment that is due to varying
poses or poorly detected bounding boxes. We thus present a two-branch Deep Joint Learning (DJL)
network, where the local branch generates misalignment robust representations by pooling the
features around the body parts, while the global branch generates representations from a holistic
view. A Hierarchical Feature Aggregation mechanism is proposed to aggregate different levels of
visual patterns within body part regions. Instead of aggregating each pooled body part features
from multi-layers with equal weight, we assign each with the learned optimal weight. This strategy
also mitigates the scale differences among multi-layers. By optimizing the global and local features
jointly, the DJL network further enhances the discriminative capability of the learned hybrid feature.
Experimental results on Market-1501 and CUHKO3 datasets show that our method could effectively
handle the misalignment induced intra-class variations and yield competitive accuracy particularly
on poorly aligned pedestrian images.

Keywords: person re-identification; misalignment; hierarchical feature aggregation

1. Introduction

Typical person re-identification (re-ID) systems [1-3] can be broken down into three modules,
i.e., person detection, person tracking, and person retrieval. It is generally believed that the first two
modules are independent computer vision tasks, thus most re-ID methods focus on the last module,
i.e., person retrieval. In this paper, if not specified, person re-ID refers to the person retrieval module.
Defined as a classical image retrieval problem, person re-ID is considered as a process of matching
identity classes between person-of-interest (query) and detected objects (large galleries) across cameras,
which is a fundamental task in several fields such as surveillance, robotics, multimedia and forensics.
It has been an area of intense research in the past few years.

Despite years of great efforts, person re-ID remains a challenging task due to the dramatic appearance
variations in illumination, human pose, occlusion, and background. The varying poses or poorly detected
bounding boxes often lead to misalignment of detected pedestrians (e.g., excessive background and
missing or mis-aligned body parts), which is a critical challenge to robust person re-ID systems. The useless
background noise and information loss due to misalignment can significantly compromise the feature
learning and matching process. Figure 1 shows examples of mis-aligned pedestrian images.
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Figure 1. Examples of mis-aligned pedestrian images in Market-1501 dataset caused by pose variations

and detection errors. The corresponding image patches of same identity are semantically unmatched
(e.g., human head to background).

To handle this problem, early works [4-8] extract features from predefined image patches such
as grid cell and horizontal stripes to construct the globally aligned representations for person re-ID.
These methods subjectively suppose that every person appears in a similar pose within a tightly
surrounded bounding box, ignoring the complex realistic conditions. Thus, they fail to perform
well on more difficult databases [5,9]. More reasonable body part partition fashion [10-13] has then
been exploited to generate finely aligned representations. With the development of pose estimation
techniques [14-18], the above mentioned works have been re-studied. The adapted methods either
intuitively perform affine transformation in order to get standard pose-aligned images (PoseBox) [19]
or implicitly learn the proper transformation parameters and generate modified pose images with
the help of impactful spatial transformer network [20]. However, highly-accurate pose estimation
was required to prevent abnormal pose-normalized pedestrian images. To mitigate the problems,
we proposed in [21] to apply alignment on feature level by pooling the features around the body
parts. Alignment on feature level can not only avoid unnecessary geometric deformation in image but
also make full use of the context-aware information encoded in middle convolution layers that can
compensate detection errors. Meanwhile, the pooling operation also favors translation and rotation.
All these factors make our method more robust to pose estimation errors compared to previous
image-level-alignment-based methods. Recent methods [22,23] share similar insights with us in
implementing feature level alignment.

Hierarchical-based learning methods are widely used in many tasks. The methods in [24,25] use
the hierarchical Hidden Markov Model (HMM) to estimate and synthesize the motion of fingers or
full-body while the method in [26] proposes a Bayesian hierarchical model to learn and recognize
natural scene categories. These works adopt hierarchies of models to describe the intermediate states
or themes of complex motions and scenes. The method in [27] takes advantage of Convolutional
Neural Networks to learn hierarchies of features for Scene Labeling. Such hierarchies of features
assemble pixel inputs into elements from low-level details to high-level semantic concepts and form
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good internal representations that are helpful for various visual perception tasks. Similar to these
hierarchical-based learning methods, we propose to aggregate features from body parts with different
levels of semantics.

Specifically, we construct a deep joint learning (DJL) network to learn misalignment robust feature
representations from body parts for person re-ID. We propose to locally align the human bodies based
on their landmarks, and pool the features around the body parts on feature maps rather than on
original images. This way, our method can effectively handle the misalignment induced intra-class
variations even though semantically corresponding body parts are not well aligned on the original
images or the detected landmarks deviate from their true positions. As features from multiple layers
abstract different level visual patterns of the same pedestrian image, we adopt a Hierarchical Feature
Aggregation mechanism to enrich the feature representations for a pedestrian image by aggregating
body part features with different levels of semantics. Besides, a Region Re-weighting strategy is applied
to learn the importance weight of each body part as well as to mitigate the scale differences [28] among
multiple convolution layers. Evaluation experiments on two public benchmark databases prove the
effectiveness of our proposed method compared with existing state-of-the-art methods.

This paper is an extended version of our previous conference paper [21] with the following
incremental contributions: (i) We further explore the identification performance of multiple layers for
re-ID tasks from low-level to semantic-level and propose a Hierarchical Feature Aggregation (HFA)
mechanism to take full advantage of different levels of features. (ii) We adopt a Region Re-Weighting
(RRW) strategy to learn optimal weight of each body part as well as to mitigate the scale difference of
multiple layers. (iii) We get further performance boost, obtaining 88.39% and 85.90% on Market-1501
and CUHKO3 datasets. The rest of this paper is organized as follows. Section 2 reviews related work
on deep learning based person re-ID methods, global and local features for re-ID and the pedestrian
misalignment problem. Section 3 introduces in detail our proposed method, and Section 4 then reports
our evaluation experiments. Finally, Section 5 concludes the paper.

2. Related Works

2.1. Deep Learning for Person Re-ID

Early methods solve the person re-ID problem mainly from two aspects, feature extraction
and metric learning. Typical features used for person re-ID include color histograms [29-31],
color names [9,32], local binary patterns (LBP) [30,33], gabor features [34] and scale invariant local
ternary patterns (SILTP) [29,35]. Some researchers apply metric learning methods to seek for effective
distance metrics for computing similarity between detected persons [6,29,30,36,37]. The emerging
deep learning (DL) technology provides effective approaches for learning both feature representations
and distance metrics. These DL-based person re-ID methods are dominating the re-ID community.
Recently, attributes [38], transfer learning [39,40], re-ranking [41], mutual learning [42] and different
levels of supervision [40,43,44] have also been studied.

2.2. Global and Local Features

Human visual system leverages both global (contextual) and local (saliency) information
concurrently [45,46]. This observation supports that global and local features have correlated
complementary information in different contexts. Most deep learning methods for person re-ID [47-49]
follow the classical image classification mode [50], which favors intrinsically in learning global
feature representations. However, these methods ignore the importance of local information.
Some methods [5,6,51] utilize local information by decomposing images into horizontal stripes and
learning effective local features in each patch. These local stripes in essence globally align the images
of detected persons, and are thus still sensitive to misalignment of human bodies in different images.
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2.3. Pedestrian Misalignment

Pedestrian misalignment caused by detectors or pose variations is a main challenge for feature
matching across images. Most previous works partition pedestrian bounding box into grids or
horizontal stripes to handle misaligned pedestrian images [5,9,29,51]. Nevertheless, these methods
only work under the assumption of slight vertical misalignment but not for severe misalignment.
Some methods [11,12] use the pictorial structure to construct well aligned pedestrian images. However,
they only use local body parts while ignoring the global context, which results in suboptimal
feature learning.

The recent PIE method [19] proposes a PoseBox fusion (PBF) CNN architecture that takes the
original image, the PoseBox, and the pose estimation confidence as input to achieve a globally
optimized tradeoff between the global and local feature representations. The PoseBox structure
is similar to the pictorial structure [11,12] in enabling well-aligned pedestrian matching. The PDC
method [52] first crops part regions and then transforms each part by a Pose Transformation Network
(PTN) to automatically learn transformations such as translation, rotation and scale. The PTN outputs
the final transformed part images and hence learns partly aligned representations. These methods all
attempt to solve the misalignment problem at image level, with few exceptions that directly handle
learned features. For example, Zhao et al. [22] followed human body structure to iteratively decompose
and fuse features from different semantic region; Li et al. [53] exploited attention models to implicitly
learn effective part representations without guidance of body part locations; and Wang et al. [23]
encoded human poses in feature maps through bilinear pooling which aggregates appearance and
part maps to compute part-aligned representations. Our method differs from them in the following
three aspects.

e  Our work constructs the “PoseBox” at feature level instead of the image level. We find that
the image level PoseBox would lose their discriminative property due to pose estimation errors.
In addition, the affine transformation employed by the PIE method may result in unwanted
geometric distortion and deteriorating the intrinsic structure of human body. Figure 2 shows
some examples of good and bad PoseBox constructed by PIE. Instead of image level affine
transformation, we directly pool local body part features on feature maps, and organize them
in a fixed order for feature level alignment (concatenate each body part features along channel
dimensions). Meanwhile, we propose to model the spatial dependencies between those local
body parts through cross-channel convolution computation. Thanks to the capability of CNN
feature maps in context-aware semantic information, we suppose that the feature level alignment
would be more robust to pose estimation errors.

e  We apply max pooling inside local body part regions so as to find the most salient local details.
HFA mechanism and RRW strategy are proposed to make the best of multi-level body part features.
Our joint optimization of both global and local features further enhances the discriminative
capability of learned feature representations for person re-ID.

e By avoiding complicated affine transformation, we can obtain pose aligned features in a simple
and efficient way. Moreover, our method can be easily integrated with different person re-ID
networks, and effectively enhance their identification accuracy.
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Good PoseBox Bad PoseBox

Figure 2. Examples of good and bad PoseBox constructed by PIE: (Top row) original bounding boxes
with detection errors/occlusions; and (Bottom Row) corresponding PoseBoxes.

3. Proposed Method

As shown in Figure 3, our proposed DJL network consists of three main components: the global
branch base network, the local branch sub-network, and the multi-loss module. First, the input
human body image is segmented into a number of body part regions (Section 3.1). The global
branch base network extracts global representations from the original image (Section 3.2). The local
branch sub-network then constructs misalignment robust local features according to the segmented
body part regions and middle layer feature maps generated by global branch. With three Softmax
losses, the multi-loss module optimizes global and local features jointly (Section 3.3). In this section,
we introduce first the process of body part segmentation, then the global branch base network,
and finally the proposed DJL network.

3.1. Body Part Segmentation

We first segment human body parts through deep pose estimation method CPM [16]. CPM outputs
the coordinates of a set of 14 body parts and the corresponding confidence scores, i.e., head, neck,
left and right shoulders, left and right elbows, left and right wrists, left and right hips, left and right
knees, and left and right ankles. Several previous works [4,6,19] show that the torso and legs make
the largest contributions and that integration of the head may introduce noise due to the unstable
head detection. In this paper, we thus choose ten of the body parts as region boxes for local feature
extraction, including left and right shoulders, left and right elbows, left and right hips, left and right
knees, and left and right ankles. Figure 4 shows an illustration of the chosen body parts.
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Figure 3. The proposed DJL network with InceptionNet as the base network. The input to DJL includes
a pedestrian image and the human body landmarks. We segment ten body part regions according to
the landmarks (Section 3.1). A local branch sub-net (Section 3.3) is specially designed in this paper
to pool and aggregate multi-level body part representations from the feature maps generated by the
global branch base network (Section 3.2). The multi-loss module then optimizes the global and local

features jointly.

Figure 4. Examples of the segmented ten body parts used in our DJL network.



Appl. Sci. 2019, 9, 2255 7 of 20

3.2. Base Networks

We utilize the widely used AlexNet [50], Residual-50 [54] and InceptionNet [48] as the base
networks in our proposed method. We refer readers to respective papers for detail network descriptions.
We adopt Identification model in this paper and edit the last FC layer to have the same number of
neurons as the number of distinct IDs in the training set. As described in [49], the identification model
yields superior performance to verification model for the reason that the former makes full use of
the re-ID labels while the latter takes limited relationships into consideration, i.e., whether two input
images belong to the same person.

3.3. The Deep Joint Learning Network

Two pairs of feature maps extracted by the base network are provided in Figure 5 to give insights
into the model design. We observe that high responses are mostly concentrated on the local body
parts and they often present attribute-relevant information (e.g., clothing type, color, accessories, etc.),
and, when reasonably exploited, those body part features may be helpful to distinguish individuals.
Motivated by this, we integrate body part features from low level to semantic level, resulting in
misalignment-robust representations for matching.

(a) (b) (d)

Figure 5. Two examples to show the effectiveness of the local body part features: (a) two images of the

same person; (b) corresponding feature maps of (a); (c) two different persons; and (d) corresponding
feature maps of (c).

3.3.1. Network Structure

The input to the DJL network contains a pedestrian image and its ten body parts. Each body
part is represented by its position. The global branch of DJL is composed by the base networks,
as previously described in Section 3.2. Its objective is to extract global features of pedestrians.

The local branch aims to learn misalignment-robust feature representations from low level to
semantic level. It consists of several similar modules, each of which takes as input the output feature
maps of a specific middle convolution layer from base network and generates local descriptors of that
level. As shown in Figure 3, for a single module, Rol pooling layer [55] is adopted to learn sparse
representations of each local body part. The Rol pooling layer uses max pooling to convert the features
inside any region of interest window of size h x w into a small feature map with a fixed spatial extent
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of H x W, where H and W are layer hyper-parameters. It works by dividing the i x w Rol window
into an H x W grid of sub-windows of approximate size 1/ H x w/W and then max-pooling the values
in each sub-window into the corresponding output grid cell. Pooling is applied independently to each
sub-window as in standard max pooling. Figure 6 shows an illustration of the Rol pooling operation.
Given the middle-layer feature maps and coordinates of body part regions, we perform Rol pooling
inside each region to select the most discriminative features. Then, those local body part features are
concatenated along channel dimensions in a fixed order, and a global average pooling layer and a
convolution layer follow to get the dimension-reduced local descriptors.

Feature map

h 4 Max pooling H{ u
:|~ h/H

Rol window !
w/ W

Figure 6. Illustration of the Rol pooling operation.

The multi-loss module consists of three full connection (FC) layers before Softmax loss
computation. The sum of the three Softmax losses is used for loss computation. Dimensions of
these FC layers are the number of distinct IDs in the training set. In Figure 3, as denoted by the red
FC layer, the learned hybrid feature representation for final matching is defined as the concatenated
FC7 activations (FC_ local + FC7). The motivation of our multiple loss module is to integrate the
discriminative power of global and local features.

3.3.2. Hierarchical Feature Aggregation

Inspired by neuroscience, reasoning across multiple levels of hierarchies has been proven
beneficial in some computer vision problems [24,26,27,56,57]. On the one hand, it has been
demonstrated that details can be well captured by low-level features from shallow convolution layer
rather than by high-level features. On the other hand, high-level features from deeper convolution
layer get complementary semantic information as neurons in these layers have lager receptive fields.
We thus adopt a Hierarchical Feature Aggregation mechanism to pool features from shallow to
deep convolution layers of base network and aggregate the learned local descriptors from detail to
semantic. For example, as shown in Figure 3, we perform Rol pooling at Inception_ 3a, Inception_ 2a,
Inception_ 1a for InceptionNet with different pooling scales (H x W). The output spatial extents are,
respectively, 1 x 1,3 x 3, and 5 x 5. Here, we adopt coarse spatial division 1 x 1 in deep layers and
fine spatial division 5 x 5 in shallow layers to capture fine-grained features corresponding to local
salient details. Finally, the pose aligned body part features from each module are concatenated to form
the final multi-level local descriptors (denoted by FC_ local). We also adopt a Region Re-Weighting
strategy (see Section 3.3.3) to make the Hierarchical Feature Aggregation mechanism more effective.
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3.3.3. Region Re-Weighting

For the reason that pose estimation method (CPM) may induce ill-positioned body parts and
different body part regions may have different importance for person re-identification, we intend
to learn the importance weight of each body part region during training procedure. We call this
strategy Region Re-Weighting (RRW). RRW performs an element-wise product between body part
region features and the corresponding region weights. Formally, for each pooled body part feature of
d-dimension X; = (xj1,- - - , x;j4), we introduce a weight parameter w;, which scales per region features
asY; = (w; - xj1,- -+ ,W; - Xjg). During training, letting L be the loss we want to minimize, we use back
propagation and chain rule to compute derivatives with respect to the weight factor w; and body part
features X;.

oL oL oL & oL

> = o " W — =) — Xj 1<i<10 (1)
aXi aY,- ! awi j=1 aylj g ( )

As mentioned in [28], scales and norms of feature vectors from multiple layers may be quite
different, and directly concatenating multi-level features may leads to poor performance as the “larger”
features dominate the “smaller” ones. We find that combining RRW with HFA makes the training
more stable and enables further performance improvements.

7

4. Experiments
4.1. Datasets and Protocol

4.1.1. Datasets

This study used CUHKO3 [5] and Market-1501 [9] datasets for evaluation. The Market-1501 dataset
is featured by 1501 IDs (750 for training and 751 for testing) with 32,668 cropped pedestrian bounding
boxes. It contains 3368 query images and 19,732 gallery images (including 2793 distractors). For each
query, we aimed to retrieve the ground-truth images from the 19,732 candidate images. This dataset
is one of the largest benchmark datasets for person re-identification. Pictures were captured by six
cameras: five high-resolution cameras and one low-resolution camera. The CUHKO3 dataset contains
13,164 cropped pedestrian bounding boxes of 1360 identities (1160 for training, 100 for validation
and 100 for testing) captured by six cameras. Each identity appears in two disjoint camera views (i.e.,
4.8 images in each view on average). The bounding boxes of the pedestrians used in this study were
generated by the DPM detector [58] instead of human annotated. This was to make the evaluation
results more practical as in real-world automatic person re-ID systems.

4.1.2. Protocol

Cumulative Matching Characteristic (CMC) curve and mean average precision (mAP) are
commonly used metrics for evaluating person re-ID methods. The CMC curve reflects retrieval
precision, while the mAP reflects the recall. On CUHKO03, we followed Li et al. [5] to repeat 20 times of
random 1160/100 training/test splits and report the results under the single-shot evaluation setting.
On Market-1501, the standard training/test split (750/751) was used.

4.2. Implementation Details

This work was implemented using Caffe [59], an open source deep learning framework.
Original images were resized to 256 x 256 (then randomly cropped to 227 x 227 for AlexNet
and 224 x 224 for Residual-50). As for InceptionNet, original images were resized to 160 x 64
(then randomly cropped to 144 x 56). All input images were mirrored randomly for data augmentation.
Both AlextNet and Residual-50 were pre-trained on ImageNet dataset [60], while InceptionNet was
directly trained from scratch (refer to [48]).
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4.2.1. Training Base Networks

We adopted the mini-batch stochastic gradient descent (SGD) algorithm to update the network
parameters. The batch size was set to 64 for AlexNet, 16 for Residual-50 and 100 for InceptionNet.
The maximum number of training epochs was set to 50, 62, and 232 for AlexNet, Residual-50,
and InceptionNet, respectively. AlexNet was trained with an initial learning rate of 0.001 and then
reduced by 10 every 20 epochs. Residual-50 was trained with learning rate initialized at 0.001 and
reduced by 10 every 25 epochs. For InceptionNet, the initial learning rate was set to 0.1 and was
decreased by 4% for every four epochs until it reached 0.0005. The learning rate was then fixed at this
value for a few more epochs until convergence.

4.2.2. Training DJL Network

Once the base network was pre-trained, we fine-tuned our Deep Joint Learning network. During
training, the coordinates of body parts were transformed along with random image cropping and
mirror operation. We set the position of invisible parts as zero. We empirically set the w/h of each
body part region as 24/16 for InceptionNet (32/32 for AlexNet and Residual-50). When a body part
was invisible, the features corresponding to its region were set to zero. The learning rate policy was
changed to decay polynomially from 0.01 with the power parameter set to 0.5 and the whole network
was trained for only around 20 epochs.

4.2.3. Testing

Given a pedestrian image of fixed size (227 x 227 for AlexNet, 224 x 224 for Residual-50,
and 144 x 56 for InceptionNet), we extracted as features the FC7 activations for AlexNet,
Pool5 activations for Residual-50, and FC7 activations for InceptionNet. We measured the similarity
between two pedestrian images by the Euclidean distance between the L2-normalized features of them.

4.3. Performance Evaluation

We defined a simple version DJL network (DJL-S) which only contained one module in its
local branch and compared it with the complete DJL network (DJL-HFS) with Hierarchical Feature
Aggregation mechanism and Region Re-Weighting strategy. We adopted DJL-S structure with different
base networks to validate the generalization ability of the proposed method and compared with the PIE
method for the sake of fairness. We choose Conv4, Res4a and Inception_3a feature maps to generate the
local features for AlexNet, Residual-50 and InceptionNet, respectively. Here, the output spatial extent
of the Rol pooling layer was 1 x 1. To show the effectiveness of the Hierarchical Feature Aggregation
as well as Region Re-Weighting strategy, further experiments were designed for InceptionNet based
implementation with DJL-HFA structure.

4.3.1. Improvement over Base Networks

We first evaluated the proposed DJL-S network using various base networks on Market-1501
and CUHKO3 benchmarks. The overall results are shown in Tables 1 and 2. The improvements over
both AlexNet and Residual-50 base networks were significant. When using AlexNet, Rank-1 accuracy
on Market-1501 rose from 57.75% to 67.64% and mAP rose from 33.80% to 43.60%. On CUHKO3
dataset, Rank-1 accuracy rose by +18.92% for AlexNet. When using Residual-50, Rank-1 accuracy
on CUHKO3 arrived at 80.83%. On Market1501, consistent improvement could also be observed.
Best performance appeared using InceptionNet [48], which obtained Rank-1 accuracy of 85.12% on
Market-1501 and 84.25% on CUHKO3. These results prove the effectiveness of our DJL-S network.

4.3.2. Comparison with The PIE Method

Our method shares a similar nature with the recent PIE [19] method, which learns pose invariant
embedding from both well aligned PoseBox and original image. We compared our method with it
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under the same experimental settings. Rank-1 accuracy improvement over base networks was used as
the measurement criteria here. According to the results in Table 3, our observation was two-fold.

Table 1. Comparison with the three base networks, AlexNet, Residual-50 and InceptionNet on
Market-1501 (by adopting the proposed DJL-S structure) in terms of identification accuracy (%) and

mAP (%).
Market-1501

Method

Rank-1 Rank-5 Rank-10 Rank-20 mAP
AlexNet 57.75 77.52 84.47 89.46 33.80
Residual-50 72.42 86.49 91.03 94.42 48.01
InceptionNet 79.66 91.51 94.54 96.50 56.59
Proposed (AlexNet) 67.64 84.80 89.88 93.53 43.60
Proposed (Residual-50) 78.86 90.38 93.91 96.35 55.49
Proposed (InceptionNet)  85.12 93.91 95.69 97.51 64.82

Table 2. Comparison with the three base networks, AlexNet, Residual-50 and InceptionNet on CUHK03
(by adopting the proposed DJL-S structure) in terms of identification accuracy (%).

CUHKO03
Method
Rank-1 Rank-5 Rank-10 Rank-20

AlexNet 53.03 79.53 87.82 94.21
Residual-50 61.79 85.46 92.31 97.86
InceptionNet 80.85 95.90 98.17 99.48
Proposed (AlexNet) 71.95 90.30 9491 98.16
Proposed (Residual-50) 80.83 95.92 98.66 99.54
Proposed (InceptionNet)  84.25 97.40 98.86 99.67

Table 3. Rank-1 accuracy improvement (%) over base networks compared with the PIE method.

Market-1501 CUHKO03
Base Network

DJL-S PIE DJL-S PIE
AlexNet +9.89 +9.12 +18.92 +2.65

Residual-50 +6.44 +5.66 +19.04 +5.50

First, for both base networks, DJL-S achieved better accuracy than PIE on both databases.
This validated the superiority of our proposed local body part features as we did alignment at feature
level instead of image level. As for PIE, image level alignment by affine transformation performed
worse due to pose estimation errors. The higher accuracy achieved by our proposed method might be
owing to two factors. For one thing, we pool body part features on the feature maps that are generated
by the middle convolution layers in the base network. These layers have larger receptive fields and
thus capture more context-aware information that can compensate misalignment errors of detected
persons. For another, discriminative detail information can be learned through max-pooling operation
inside local body part regions, which should be helpful to identify individuals with slight difference.

Second, we found that our method obtained significant improvement on CUHKO03. We speculate
that the higher image resolution in CUHKO3 benefited the learned features. We discuss this in detail
in Section 4.3.4.

4.3.3. Comparison with More State-of-The-Arts

We compared our DJL with the current state-of-the-art DL-based methods. For ease of
comparison, those methods are summarised into two categories: Pose-irrelevant DL-based methods
and Pose-relevant DL-based methods. Their results on Market-1501 and CUHKO3 are shown in
Tables 4 and 5. The proposed DJL-S structure achieved comparable Rank-1 accuracy among the
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methods, i.e., 85.12% and 84.25% on Market-1501 and CUHKO3, respectively. When adopting DJL-HFS
structure and combining other re-ranking method (RK) [41], the performance was further boosted,
reaching 88.39% on Market-1501. Furthermore, our Deep Joint Learning pipeline can be easily
integrated with other state-of-the-art person re-ID networks.

Table 4. Comparison with state-of-the-arts on Market-1501. Rank-1 accuracy (%) and mAP (%) are
shown. The best result is marked in bold while the second best in gray.

Methods Rank-1 mAP
Pose-irrelevant DL-based Methods

APR [38] 84.29 64.67
DLCE [49] 79.51 59.87
DML [42] 87.73 68.83
Gate-SCNN [7] 65.88 39.55
JLML [51] 85.10 65.50
X-Corr [61] - -
Ours

DJL-S 85.12 64.82
DJL-HFA 85.99 65.65
DJL-HFA(RK) 88.39 79.97
Pose-relevant DL-based Methods

DLPA [53] 81.0 63.4
MSCAN [62] 80.31 57.53
PABP [23] 88.8 74.5
PDC [52] 84.14 63.41
PIE [19] 78.65 53.87
PIE + KISSME [19] 79.33 55.95
Spindle [22] 76.90 -

Table 5. Comparison with state-of-the-arts on CUHKO03. Rank-1 accuracy (%) is shown. The best result
is marked in bold while the second best in gray.

Methods Rank-1
Pose-irrelevant DL-based Methods

APR [38] -
DLCE [49] 83.4
DML [42] -
Gate-SCNN [7] 68.10
JLML [51] 80.60
X-Corr [61] 72.04
Ours

DJL-S 84.25
DJL-HFA 85.90
DJL-HFA(RK) 85.12
Pose-relevant DL-based Methods

DLPA [53] 81.6
MSCAN [62] 67.99
PABP [23] 88.0
PDC [52] 78.29
PIE [19] 62.40
PIE + KISSME [19] 67.10

Spindle [22] -
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4.3.4. Further Analysis and Discussion

Body part segmentation

To evaluate the impact of body part segmentation errors on our method, we randomly disturbed
the position of each body part during training. Here, we adopted two settings: small disturbance
(Disturb-small) and violent disturbance (Disturb-violent). We translated the coordinates of each
body part up to 6% of input image size for small disturbance and 30% for violent disturbance.
Tables 6 and 7 show the results of DJL-S on Market-1501 and CUHKO3, respectively. Generally,
accuracy changed a little under slight disturbances (from 67.64% to 68.82% for AlexNet on
Market-1501) while varied dramatically under large disturbances (still better than base networks).
This demonstrates that our proposed method can effectively cope with human body misalignment.
Low resolution

We evaluated the impact of image resolution on our method. Experiments were conducted
on CUHKO03. We down-sampled all images in CUHKO3 to half of their original size and used
those low resolution images for training and testing. The results in Table 7 show that low image
resolution degrades the performance of DJL-S.

Rol pooling effects at different layers

An important part of our method is to apply the Rol pooling operation to different middle layers.
In Tables 8 and 9, we systematically explore the identification performance of different middle
convolution by performing Rol pooling on each of them. We experimented with various network
structures (AlexNet, Residual-50 and InceptionNet) and found that pooling at relative deeper
layer obtains better performance improvements over the base networks. This observation shows
that deeper, semantic CNN features contribute more to person re-ID task.

Hierarchical Feature Aggregation and Region Re-Weighting

We evaluated the effects of Hierarchical feature aggregation and Region Re-Weighting using the
base Inception network with different variants of DJL: DJL-S, DJL-S + RRW, DJL-HFA(w/o
RRW), and DJL-HFA. DJL-S denotes pooling body part features from a single convolution
layer (Inception_3a). DJL-S + RRW further combines RRW strategy with DJL-S. DJL-HFA (w/o
RRW) means DJL-HFA without applying RRW strategy, and DJL-HFA is the full version of our
proposed method. As depicted in Tables 10 and 11, the DJL-S + RRW achieves performance
gain in Rank-1 accuracy compared with the DJL-S network on both Market-1501 and CUHKO03
datasets. When adopting DJL-HFA(w/o RRW), the Rank-1 accuracy improved on CUHKO03
dataset while dropped slightly on Market-1501 dataset. We believe the performance drop is due
to the inconsistent scale and norm of multiple layers (the “larger” features would dominate the
“smaller” ones) [28]. As Region Re-Weighting would automatically learn the scale of features
during training procedure, we speculate that integrating RRW with HFA would achieve more
performance gain in Rank-1 accuracy. The results in Tables 10 and 11 also demonstrate this:
the Rank-1 accuracy arrived at 85.99/85.90 on Market-1501/CUHKO03 when using DJL-HFA.
Furthermore, we give some illustrations about the learned weight parameters in Table 12,
which show the scale and importance differences across multiple layers regions.
Complementary effects

We evaluated the effects of individual local feature (FC_local), global feature (FC7) as well as
their combination on Market-1501 and CUHKO3. The results on the two databases are shown
in Figure 7. These results demonstrate that, although global and local feature representations
alone are competitive for re-ID, further performance gain can be obtained by combining them
using our proposed method. This proves that our proposed method can effectively explore the
complementary discriminative information in global and local features for more accurate person
re-ID. Two example results are shown in Figure 8. As can be seen, even when the probe and gallery
pedestrian images have obviously different poses (i.e., they are not well aligned), our proposed
method can still correctly retrieve the corresponding gallery images among the first ten ranks.
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Figure 7. CMC curves on Market-1501 and CUHKO3 when using local, global and hybrid features
(global+local) extracted by DJL-S (based on InceptionNet).
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Figure 8. Example person re-ID results by using the base Residual-50 network (Res-50) and the
proposed DJL network on Market-1501 database. Correct retrievals are surrounded with green
bounding boxes while wrong retrievals are surrounded with red bounding boxes.



Appl. Sci. 2019, 9, 2255 15 of 20

Table 6. Identification accuracy (%) and mAP (%) of the proposed method with different base networks
on Market-1501 when different disturbances are applied to the segmented body parts. The best results
under different settings are marked in bold.

Market-1501

Base Network Setting
Rank-1 Rank-5 Rank-100 Rank-20 mAP
Base 57.75 77.52 84.47 89.46 33.80
Proposed 67.64 84.80 89.88 93.53 43.60
AlexNet Disturb-small 68.82 84.95 89.31 93.50 44.89
Disturb-violent 64.79 82.21 88.15 92.22 40.84
Base 72.42 86.49 91.03 94.42 48.01
Proposed 78.86 90.38 93.91 96.35 55.49
Residual-50 Disturb-small 77.76 89.88 92.96 96.02 54.62
Disturb-violent 75.95 88.60 92.37 95.19 52.71
Base 79.66 91.51 94.54 96.50 56.59
InceptionNet Proposed 85.12 93.91 95.69 97.51 64.82
Disturb-small 84.53 93.79 95.93 97.54 64.89
Disturb-violent 83.61 93.65 95.99 97.60 63.44

Table 7. Identification accuracy (%) of the proposed method with different base networks on CUHK03
when different disturbances were applied to the segmented body parts and when low resolution images
were used. The best results under different settings are marked in bold.

CUHKO03
Base Network Setting
Rank-1 Rank-5 Rank-10 Rank-20
Base 53.03 79.53 87.82 94.21
proposed 71.95 90.30 94.91 98.16
AlexNet Disturb-small 68.31 89.19 93.86 97.07
Disturb-violent 62.07 84.84 91.49 96.03
Low-resolution 60.35 83.71 90.59 95.49
Base 61.79 85.46 92.31 97.86
proposed 80.83 95.92 98.66 99.54
Residual-50 Disturb-small 80.53 96.45 99.01 99.71
Disturb-violent 73.40 93.23 96.75 99.25
Low-resolution 75.58 93.68 97.28 99.15
Base 80.85 95.90 98.17 99.48
proposed 84.25 97.40 98.86 99.67
InceptionNet Disturb-small 83.38 97.49 98.81 99.52
Disturb-violent 82.41 97.42 98.84 99.69

Low-resolution 82.80 97.12 98.64 99.63
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Table 8. Identification accuracy (%) and mAP (%) of the proposed method with performing Rol pooling
at different middle layers on Market-1501. The best result over various pooling layers is marked
in bold.

Market-1501
Rank-1 Rank-5 Rank-10 Rank-20 mAP

Base Network Pooling Layer

Conv3 66.30 84.29 89.58 93.23 42.75

AlexNet Conv4 67.64 84.80 89.88 93.53 43.60
Convb 69.83 85.66 90.65 94.00 45.17

Res3a 77.02 89.88 93.29 95.87 54.17

Residual-50 Res4a 78.86 90.38 93.91 96.35 55.49
Resba 79.48 91.30 94.51 96.20 57.53

Inception_la 82.90 92.99 95.16 97.00 61.24

InceptionNet Inception_2a 84.59 94.83 96.53 98.19 65.89
Inception_3a 85.12 93.91 95.69 97.51 64.82

Table 9. Identification accuracy (%) of the proposed method with performing Rol pooling at different
middle layers on CUHKO3. The best result over various pooling layers is marked in bold.

CUHKO03
Base Network Pooling Layer
Rank-1 Rank-5 Rank-10 Rank-20
Conv3 68.13 89.12 94.84 97.94
AlexNet Conv4 71.95 90.30 94.91 98.16
Convb 74.22 91.25 95.37 98.64
Res3a 77.40 94.63 98.44 99.57
Residual-50 Resda 80.83 95.92 98.66 99.54
Resba 83.97 96.97 98.67 99.61
Inception_la 82.66 96.66 98.42 99.33
InceptionNet Inception_2a 83.01 96.98 98.75 99.53
nception_3a 84.25 97.40 98.86 99.67

Table 10. Effects of Region Re-Weighting and Hierarchical Feature Aggregation using the base Inception
network on Market-1501. Identification accuracy (%) and mAP (%) are reported. The best Rank-1 result
is marked in bold.

Market-1501

Methods
Rank-1 Rank-5 Rank-10 Rank-20 mAP
DJL-S 85.12 93.91 95.69 97.51 64.82
DJL-S + RRW 85.21 93.74 95.78 97.60 65.38
DJL-HFA (w/o RRW) 84.95 94.15 96.38 97.74 65.29
DJL-HFA 85.99 94.15 96.29 97.77 65.65

Table 11. Effects of Region Re-Weighting and Hierarchical Feature Aggregation using the base Inception
network on CUHKO3. Identification accuracy (%) is reported. The best Rank-1 result is marked in bold.

CUHKO03
Methods
Rank-1 Rank-5 Rank-10 Rank-20
DJL-S 84.25 97.40 98.86 99.67
DJL-S + RRW 84.29 97.15 98.80 99.67
DJL-HFA (w/o RRW) 84.72 97.17 98.40 99.34

DJL-HFA 85.90 97.79 98.90 99.40
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Table 12. The learned weights of ten body parts at different pooling layers. The initial weight parameter
of each body part region was set to 10.

Pooling Layer
Body Parts - - -
Inception_la Inception_2a Inception_3a

Rshoulder(w0) 8.30 721 5.56
Lshoulder(w1) 8.35 7.20 5.39
RElIbow(w2) 8.96 8.97 6.60
LEIbow(w3) 9.97 8.49 6.56
RHip(w4) 8.68 7.24 5.21
LHip(wb) 8.66 7.54 5.76
Rknee(w6) 9.99 7.67 6.07
Lknee(w?7) 8.70 7.81 5.46
RAnkle(w8) 10.09 9.24 8.82
LAnkle(w9) 9.92 9.86 8.56

5. Conclusions

This paper proposes a Deep Joint Learning (DJL) network to learn better feature representation
from both entire image and local body parts. The local features are pooled from the feature maps
generated by the convolution layers, which capture the salient details and are robust to handle
pedestrian misalignment. Hierarchical Feature Aggregation mechanism and Region Re-Weighting
strategy effectively improve our feature representation by optimally aggregating body parts features
from low-level to semantic-level. Multiple Softmax losses are used to integrate the discriminative
power of global and local features. Extensive evaluations on Market1501 and CUHKO03 benchmarks
validated the advantages of the proposed DJL network.
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