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Featured Application: The methodology presented in this paper is directly intended for
application in the area of turbojet engines. This paper presents the design of an automated
system which can create diagnostic information using data from an infrared thermal camera,
utilizing methods of computational intelligence and expert systems, which can be considered as
a novel approach. The developed system segments infrared images use a self-organizing feature
map and an expert system to automatically extract diagnostic information about the technical
state of a turbojet engine. The diagnostic system was developed using a small iSTC-21v turbojet
engine with a thrust of 500 N in laboratory conditions and can be simply modified for application
to other engine types. The system is not limited to engines and can be considered for application
in other technical systems which produce heat, such as generators, transmissions, and electronic
circuit boards.

Abstract: There are only a few applications of infrared thermal imaging in aviation. In the area
of turbojet engines, infrared imaging has been used to detect temperature field anomalies in order
to identify structural defects in the materials of engine casings or other engine parts. In aviation
applications, the evaluation of infrared images is usually performed manually by an expert. This
paper deals with the design of an automatic intelligent system which evaluates the technical state
and diagnoses a turbojet engine during its operation based on infrared thermal (IRT) images. A
hybrid system interconnecting a self-organizing feature map and an expert system is designed for
this purpose. A Kohonen neural network (the self-organizing feature map) is successfully applied
to segment IRT images of a turbojet engine with high precision, and the expert system is then
used to create diagnostic information from the segmented images. This paper represents a proof
of concept of this hybrid system using data from a small iSTC-21v turbojet engine operating in
laboratory conditions.

Keywords: expert systems; infrared thermography; intelligent diagnostics; image segmentation;
neural networks; thermal imaging camera; turbojet engines

1. Introduction

Infrared thermography (IRT) is one of the many diagnostic methodologies currently applied
in various types of industry and research [1]. It can be used to detect so-called invisible defects
in a non-destructive way. Compared to traditional areas of IRT applications, such as biomedical
applications [2], energetics, buildings, and other constructions [3–6], the application of this methodology
in aviation is still at an early stage [1].
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The advantages of IRT have been fully demonstrated in pre-flight and post-flight aircraft checks,
where damage (e.g., water in honeycomb structures of composite parts), is monitored by thermal
imaging cameras [7,8]. In aviation, extensive research and development is being conducted on the IRT
diagnostics of corrosion in aluminum materials [9,10], and especially composite structures [11–13].
In aircraft operation, it is possible to use IRT to detect air leaks inside the cabin [14], abnormal strain
in individual parts of aircraft casings, fuselage, and wheel attachments [15], damage to electrical
wiring and insulation [16,17], etc. In aviation, IRT is also used for rescue, firefighting, and surveillance
operations [18,19]. Other applications of IRT diagnostics can be found in the area of unmanned vehicles,
whose thermal imaging cameras are used to inspect power lines [20], pipelines [21], buildings [22],
constructions [23], vegetation [24], etc. Thermography has also recently found an application in the
design of stealth aircraft [25].

For the diagnostics of aviation engines, IRT is mainly used to check their composite covers [26].
Another area where IRT is applied, which is closer to the topic of this paper, is the diagnostics of
turbojet engines; infrared images of the diagnosed engines’ gas turbines are compared to standard IRT
images of engines without defects, which allows temperature field anomalies to be detected and thus
allows defects to be identified [27]. These defects can be damage to the turbine blades, combustion
chamber disturbance, disturbance to the homogeneous field of fuel burning, etc. [28].

Aircraft engine diagnostics and health monitoring [29–31] can be divided into two basic processes:
ground diagnostics and on-board diagnostics with their associated systems. On-board, or online,
diagnostics involve the checking of engine components and thermodynamic processes during the
operation of the engine [32]. These components include individual engine parts, such as compressors,
combustion chambers, and turbines and associated accessories, while thermodynamic process checks
include reviewing parameters such as temperature, pressure, rotational turbo-compressor speed, and
vibrations. Ground, or offline, diagnostics [33,34] involve tribo-technical analysis, non-destructive
checking methods, and checks by thermal cameras as mentioned earlier.

This article aims to develop a progressive method for the online evaluation of the technical state
of a turbojet engine using infrared thermal imaging. Contrary to traditional methods, in which a
comparative analysis of thermal images is performed on some normalized samples, this paper proposes
an intelligent adaptive method which can discriminate anomalous areas of thermal images and create
resulting diagnostic information automatically without any human input or previous training.

Since the output of a thermal imaging camera is a digital image, computer vision techniques and
methodologies should be used to automatically process this output. In order to extract meaningful
information from a thermal image for a diagnostic system, a pattern recognition/classification
approach has to be applied. Many methodologies and an array of methods can be used for this
purpose [35,36]. These include traditional methodologies, which perform pattern recognition using
deterministic image-processing methods such as filtering, feature analysis, and support vector
machines. [37]. However, the most successful methodologies for image classification come from
the area of computational intelligence. These include artificial neural networks, which have been
widely and successfully applied in image processing, pattern recognition, and diagnostic tasks [38,39].
The most complex neural networks, such as convolutional neural networks, are able to classify any
pattern in an image with high precision, as well as detect objects [40]. However, these approaches are
computationally complex and require large amounts of data and training [41]. In order to create a
successful diagnostic method for pattern recognition in IRT images, a simpler methodology should be
used, since such images are more homogeneous than traditional images; they have fewer colors, lower
resolution, and are well structured, with well-defined edges. The motivation for this study was to
develop a methodology which does not require a large amount of computationally intensive training
to successfully segment infrared images using intelligent adaptive algorithms.

Accordingly, in this paper, the field of neural networks with uncontrolled learning is explored.
One of the methods that has been successfully used in pattern recognition and image segmentation is
self-organizing feature maps (SOFMs), which comply with the demand for simplicity, uncontrolled
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learning, and good classification results. SOFMs can be transformed and formalized into the form of a
Kohonen neural network [42,43]. Kohonen neural networks have been successfully applied in image
segmentation tasks, the detection of specific areas in geographic maps [44–46], and the detection of
cracks and corrosion in materials [47]. The results obtained from these applications represent a solid
foundation and an inspiration for this approach to be applied in the segmentation of infrared images
for the detection of anomalies in the temperature fields of different objects.

The results of pattern recognition and image segmentation come in the form of classes present in
the image. In order to extract knowledge from this information, the classes have to be interpreted.
This can be done by simply labeling the classes; however, in the field of technical systems, this may
not be sufficient. In technical objects, some areas are naturally hot and some are naturally cold, and
therefore there needs to be some inference system which interprets the displacement and size of the
classes from thermal images, and generates diagnostic information, which in the simplest case can
be the determination of whether the diagnosed object is in a normal or an abnormal operational
state [48,49]. The traditional approach is to consider a diagnosed system as healthy if it operates within
some specific limits; otherwise, a failure is indicated [48,49]. This is a natural approach, and can be
used when dealing with a technical system where parameters which determine the technical state
(temperature, vibrations, etc.) can be simply measured, such as a jet engine. However, to extract
diagnostic information from a classified image, a more complex approach needs to be used [49,50].
Diagnostic expert systems are a natural candidate for extracting diagnostic information from complex
data, and have been applied in the diagnostics of turbojet engines [49,50]. The aim of the present
study is to create a specialized approach for the creation of a rule-base of an expert system which can
transform class information in an infrared image into useful diagnostic information, thus creating
hybrid architecture.

The functionality of this approach has been evaluated and designed specifically for application to
turbojet engines, and the approach can be considered as novel compared to other intelligent approaches
in turbojet engine diagnostics, which are applied to data measured by the engines’ sensors and do not
deal with visual/infrared image information [51–53]. The aim of this paper is to explore the design
of this new approach and prove its functionality by applying thermal vision-based diagnostics in an
automated adaptive system in the area of turbojet engine diagnostics. The approach can be expanded
and applied to almost any technical system which has been observed by an infrared camera. The
hybrid architecture of our approach, which combines a Kohonen neural network and a specialized
expert system with a designed rule-base, can be considered as a novel and original contribution of our
research. A proof of concept is presented using real data from an iSTC-21v turbojet engine tested and
operated in laboratory conditions.

2. Methodology

2.1. Using Infrared Imaging for Diagnostics

Every object whose temperature is above absolute zero radiates thermal energy. IRT systems
measure this energy to create thermal infrared images. These images can be used to identify heat
radiation anomalies of an object, which are usually characterized by increases or decreases in the
radiated temperature [8,9,13]. The basic principle of IRT diagnostics is shown in Figure 1, with the
following general meaning:

• Image: an object to be captured by a thermal camera.
• Classification: monitoring the object, scanning it, obtaining infrared data, classifying hot and cold

parts as well as possible problematic areas.
• Diagnostic information: evaluating infrared thermal images, for example, identifying defects or

deficiencies, deciding about the technical state of the engine.
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Figure 1. Procedure for the detection of temperature anomalies in engine casings by analyzing an
infrared image.

The aforementioned principle is a standard principle when using human expertise to obtain
diagnostic information from infrared images. Examples of applications in aviation are pre-flight and
post-flight engine checks, where the engine’s casing is checked for defects and cracks caused by freezing
water or material deficiencies. In such cases, the evaluation of thermal images and the detection of
anomalies is strictly dependent on human expert knowledge [49].

When a human expert inspects infrared images of a technical object, he or she basically performs
two operations. First, he/she discriminates different areas of the thermal image and classifies them
into categories according to their temperature. They next use their expert knowledge to inspect
hot or cold areas for some anomalies according to their position and temperature. The traditional
approach is to superimpose the obtained infrared image over a standardized infrared image of an
object without defects and evaluate the differences between the two images [54]. The whole process
can therefore be formalized into two basic parts—image processing and classification, and knowledge
acquisition. A variety of methods exist to solve both problems, as mentioned in the introduction,
and are suitable to identify and evaluate anomalies. As previously stated, one aim of this study was
to develop an autonomous diagnostic system which is able to learn and locate anomalies without
any prior knowledge (e.g., normal faultless operation IRT images). The other aim was to make the
system autonomous.

The general concept of the intelligent diagnostic system can be expressed by the scheme shown in
Figure 2. The data acquisition part of the approach is usually done using the infrared camera, and
the image pre-processing can be done before the data are fed into a classifier. The effects of the image
pre-processing and filtering are not directly investigated in this study; however, the methodology is
designed to be relatively robust in order to use image data of reasonable quality with low noise levels.
Infrared cameras usually pre-process the image data in order to compensate for air humidity and
other environmental effects. The robustness is achieved by the application of an intelligent adaptive
algorithm, and the design therefore consists mainly of the classifier part by finding a methodology and
selecting its structure, input/output relations, and the training algorithm in the case of the application
of neural networks. Information about classes in the thermal image can be further used to evaluate the
technical state of the investigated object (in this case, a jet engine), and a diagnostic expert system is a
natural candidate for the completion of this task. The basis of the proposed methodology is therefore
centered around:

• Image processing classification system: involving a SOFM.
• Knowledge acquisition system: an expert system for the evaluation of the technical state of

an engine.



Appl. Sci. 2019, 9, 2253 5 of 22

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 23 

The other advantage of the designed system is that it does not use the absolute temperature 
data obtained from the camera, which are dependent on many environmental and material factors, 
but rather only uses image data, which describe relative temperatures and relations as well as the 
displacement of the temperature field of the investigated object. 

 

Figure 2. The conceptual design of the diagnostic system. 

2.2. Self-Organizing Feature Maps in Image Segmentation and Classification 

SOFMs are characterized by their outstanding properties in clustering (classification), data 
visualization, probability density estimation, etc. Kohonen artificial neural networks are one of the 
most widely used SOFMs [42]. 

Kohonen artificial neural networks (KNN) map a high-dimensional input space/layer (xi for i = 
1, 2, ..., n, where n is the number of inputs) onto an output space/layer (Nj = 1, 2, ..., m, where m is the 
number of neurons) with fewer or an equal number of dimensions. KNN contains only a single layer 
of neurons—the Kohonen layer. The number of neurons n, which is the network’s parameter, is 
optional and usually equals the number of target classes. The inputs to the network are 
interconnected with all neurons in the Kohonen layer. This means that every neuron has information 
from all the inputs. Synaptic weights leading to each neuron (designated as a weight vector, wij, of 
the neuron) can be understood as coordinates, which indicate the location of the neuron in the array 
(Figure 3). Neurons are mostly organized in a regular two-dimensional grid/matrix or 
one-dimensional row/vector array. 

 

Figure 3. The structure of a Kohonen network. 

Figure 2. The conceptual design of the diagnostic system.

The other advantage of the designed system is that it does not use the absolute temperature
data obtained from the camera, which are dependent on many environmental and material factors,
but rather only uses image data, which describe relative temperatures and relations as well as the
displacement of the temperature field of the investigated object.

2.2. Self-Organizing Feature Maps in Image Segmentation and Classification

SOFMs are characterized by their outstanding properties in clustering (classification), data
visualization, probability density estimation, etc. Kohonen artificial neural networks are one of the
most widely used SOFMs [42].

Kohonen artificial neural networks (KNN) map a high-dimensional input space/layer (xi for i = 1,
2, ..., n, where n is the number of inputs) onto an output space/layer (Nj = 1, 2, ..., m, where m is the
number of neurons) with fewer or an equal number of dimensions. KNN contains only a single layer of
neurons—the Kohonen layer. The number of neurons n, which is the network’s parameter, is optional
and usually equals the number of target classes. The inputs to the network are interconnected with
all neurons in the Kohonen layer. This means that every neuron has information from all the inputs.
Synaptic weights leading to each neuron (designated as a weight vector, wij, of the neuron) can be
understood as coordinates, which indicate the location of the neuron in the array (Figure 3). Neurons
are mostly organized in a regular two-dimensional grid/matrix or one-dimensional row/vector array.
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There are lateral links (local connections) between the neurons in the Kohonen layer (dashed line
in Figure 3), which means that any particular neuron affects other neurons in its neighborhood.

In order to segment an IRT image, a layer that has 1×m neurons (Figure 4) is proposed. Using
this type of array, it is possible to segment thermal infrared images into m different segments, which
can be labeled as different areas of the temperature field (cold, hot, etc.). Thus, if a higher number of
neurons is used, the classification will be more detailed.
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In the most simplified way, the self-organization process (Kohonen learning) consists of four main
steps: initialization, competition, cooperation, and adaptation [55]:

• Initialization: Random values are set for all neuron weights. The input vector from the input
space is selected.

• Competition: From the inputs, the discriminant function (Equation (1), below) of a particular
neuron is computed. A Kohonen unit computes the Euclidean distance between an input
xi and its weight vector wij. The winning neuron is the one with the smallest value of the
discriminant function.

• Cooperation: The winning neuron influences its adjacent neurons (i.e., the weight vectors of
adjacent neurons are influenced), however this influence decreases with increasing distance to
other neurons.

• Adaptation: The excited neurons decrease their values of the discriminant function in relation
to the input pattern through adjustment of the associated weights. The response of the winning
neuron to the subsequent application of a similar input pattern is enhanced. The process will stop
if the maximum number of iterations is reached.

d j =
∑m

i=1

(
xi −wi j

)2
(1)

The self-organization process is graphically depicted in Figure 5, where blue dots represent
neurons, green dots represent input vectors, and red lines represent connections between neighboring
neurons. The temperature field has five areas, which are indicated by five neurons. In this simplistic
example, the labeling is performed by coloring the neurons and the corresponding training data, which
activates the neurons. In this manner, the blue area after adaptation represents the coldest area in the
temperature field and the red area the hottest area.
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2.3. Expert Diagnostic Systems

An expert system consists of a knowledge base, an inference engine (solving or deducing), an
input/output data interface (user interface or links to other systems and tools), a working memory, and
an explaining or communication module in the form of a user interface. These elements are shown in
Figure 6. A very important part of every expert system is its inference engine, which uses data from
the knowledge base (knowledge gained from an expert) and specific problem-oriented data [56].
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The inference engine and the knowledge base represent the core of every expert system. The
inference engine provides the mathematical means to evaluate the rules in the knowledge base to reach
a conclusion about the state of the diagnosed object [58–60]. In applications for turbojet engines, the
knowledge base contains rules defining the technical state of the turbojet engine based on the outputs
from the segmentation algorithm (i.e., the Kohonen neural network). The design of the diagnostic
system interconnected with a SOFM, which was used in the present study, is shown in Figure 7.
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In this diagnostic system, the knowledge is represented by IF->THEN rules, which can be written
in a simple way as IF E THEN H, as follows:

E→ H (2)

where E represents an observation (evidence) and H represents a hypothesis.
Rule-based systems differ from classical logic systems in their non-monotonic “thinking” and

their ability to process uncertainties. In rule-based systems, inference is based on the rule of modus
ponens (direct thinking) [61], which is described as:

E, E→ H
H

(3)

This means that, if the E assumption is true and the rule implies E→H, then the conclusion H is
true. In the case of an inference network, the conclusions are represented by facts, which correspond
to assumptions of other rules. These inference networks are mostly used in domains where the
number of possible solutions is limited (e.g., diagnostic problems or classification problems). The
benefit of inference networks is that they can be easily implemented. The following model rules
(Equation (4)) [61] can be formalized in an inference network structure as shown in Figure 8 [61]:

A ∧ B→ P, B ∧ D→ Q, P→ X, Q ∧ R→ Y, C→ P, C ∧ E→ R, Q→ X (4)
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2.4. Experimental Setup for Design of the Infrared Imaging-Based Diagnostics System

In order to design an infrared imaging-based diagnostic system for use with turbojet engines and
to construct a working knowledge base, a small iSTC-21v turbojet engine, developed in the Laboratory
of Intelligent Control Systems of Aircraft Engines at the Faculty of Aeronautics, Technical University of
Košice (Figure 9), was used [62]. This is a single-stream, single-shaft turbojet engine with a single-stage
one-sided radial compressor, an annular combustion chamber, and a single-stage non-cooled gas
turbine with a variable exhaust nozzle with full authority intelligent electronic digital control system
developed from the TS-21 engine (Ljulka-Saturn, Rybinsk, Russia). A schematic of the measurement
and data acquisition system is shown in Figure 10, and the arrangement of the camera is shown in
Figure 11 [62].
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Figure 11. The arrangement of the FLIR Thermovision A40 thermal imaging camera in the laboratory.

A digital data acquisition system was used to observe the state of the engine [62]. Various sensors
and data acquisition (DAQ) devices serve this purpose and send all the data to the control personal
computer (PC). This PC contains a control system created in the LabVIEW (National Instruments
Corporation, Austin, TX, USA) and Matlab/Simulink (MathWorks, Natick, MA, USA) software which
is able to control and visualize the engine’s performance, save and track all measured parameters, and
update the control algorithms.

For the design of the IRT diagnostics system, the following parameters are utilized:

• n (rpm)—speed of the engine’s shaft.
• T2 (◦C)—air temperature at the output of the radial compressor.
• T3 (◦C)—gas temperature at the input to the gas turbine.
• T4 (◦C)—gas temperature at the output of the gas turbine.

These parameters represent the inner state and temperature of the engine. The interior temperature
was measured by a thermal sensor contained in the engine. The temperature of the engine’s casing
was measured by a thermal camera; this temperature can be correlated with the inner temperature
although it has different dynamics.

To measure the thermal temperature field around the engine, a FLIR Thermovision A40 thermal
imaging camera was used (FLIR Systems, Wilsonville, OR, USA), and a stationary IR camera was
used for scanning during long measurement processes, where continuous measurement in real time is
necessary. The IR detector of the camera is a 320 × 240 focal plane array uncooled microbolometer. Its
spectral range is 7.5 to 13 µm, its instantaneous field of view (IFOV) is 1.3 mrad, its noise equivalent
temperature difference at 60 Hz is 0.08 ◦C at 30 ◦C, its measurement uncertainty is ±2 ◦C or ± 2%, its
temperature sampling frequency is 60 Hz, and its observable temperature range is from −40 to 1500 ◦C.
The camera was controlled via the PC using the ThermaCAM Researcher software (FLIR Systems,
Wilsonville, OR, USA) through the FireWire interface. One of the settings when capturing a video is
the choice of color palette, which is used to convert the levels of the infrared spectrum into the visible
spectrum. This selection is mainly important when there are small temperature differences between
parts of an object or its surroundings. In the case of an object with a wide range of temperatures, such
as a turbojet engine, the standard iron-bow palette is a suitable option [63]. As the engine is a dynamic
object, the displacement of its thermal field needs to be evaluated continuously. The camera allows
uncompressed video to be captured at 25 frames per second in audio video interleave (AVI) format
using the selected color palette. The video can then be decomposed into single frames in uncompressed
bitmap (BMP) format. The resulting pictures contain IR images of the engine with the assigned RGB
pixel values from the selected color palette during its operation. Full color resolution of the camera can
be obtained only when taking static images of the engine, which is not an option for the application,
but a video with this resolution would definitely improve the resulting IR images. It can be concluded
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here that parameters of the camera are sufficient for application on an object operating in a wide
temperature range, where fine temperature resolution is not that important.

The thermal fields were captured and observed during the whole engine operational process,
from its start-up to the time of full thrust, as shown by the measured basic parameters displayed
in Figure 12. The infrared camera was positioned 1.5 m from the engine and was turned on 0.5 h
before the measurement in order to allow the temperature of its sensor to equalize with that of the
environment. Before the measurement, the values of the background air temperature, air humidity, and
the emissivity of the engine surface were determined and inputted in the camera. The environment in
the laboratory had a relatively stable humidity (around 50%) and temperature (around 21 ◦C) during
the experiments with no direct sunlight. These parameters can have an impact on the precision of the
IRT measurements, but can be quite well-controlled in a laboratory environment [39]. The measured
state parameters (n (rpm), T2 (◦C), T3 (◦C), T4 (◦C)) for a single run of the iSTC-21v engine in laboratory
conditions are shown in Figure 12.
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3. Thermal Image Segmentation and Classification

3.1. Design and Training of the Kohonen Self-Organizing Feature Map

The Kohonen SOFM was used for the segmentation of the IRT images obtained with the thermal
camera at a resolution of 320 × 240 pixels as described in Section 2.4. Each pixel was defined as
a five-dimensional vector P_i (t) = {R,G,B,x,y}, where R, G, and B represent the values of the color
spectrum {R,G,B} = <0,255> and x and y represent the coordinates of each pixel where x = <0,320>;
y = <0,240>. The engine’s temperature as evaluated and processed by the camera was not taken into
account, since it may contain errors created by the camera compensating for environmental conditions
and assigning different temperatures to a single color, thus confusing the classifier. In order to evaluate
the technical state of the engine, the relative temperature-field displacement was used as it is holds
the most important diagnostic information. The dynamic range of the camera was set in the interval
<0,500> ◦C and was fixed. These parameters define the design of the SOFM. The pilot testing showed
that these multi-dimensional vectors should be classified into five classes. As proposed in Section 2.2,
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a feature map with a single row is able to acceptably segment the IRT image, with low demands of
computational time and complexity, which was one of the design goals.

The classes are labeled as Ni and represented by different colors as follows:

• N1: the hottest and most critical part of the IRT image, red.
• N2: a hot and critical part of the IRT image, yellow.
• N3: a hot and non-critical part of the IRT image, green.
• N4: a low-temperature and non-critical part, cyan.
• N5: the temperature of the surrounding objects (not a part of the diagnosed object), blue.

The structure of the network can be visualized as shown in Figure 13. The training parameters
which were found to be efficient were set as defined in Table 1, and the standard Kohonen network
learning rule was used [42,43].
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Table 1. Training parameters.

Topology function Grid
Distance computation Direct

Initial neighborhood size 3
Initial learning rate 0.9
Training iterations 500

A training dataset was prepared to train the network as follows. The engine was run for 120 s and
thermal images were recorded at two frames per second, as the pilot experiments showed that this
timing is sufficient since the dynamics of the temperature of the engine casing have a time constant
of 1.2 s. The training sample therefore contained a set of 240 thermal images. The run of the engine,
which was used to obtain the IRT images is shown in Figure 14. To demonstrate the ability of the
trained Kohonen SOFM, five operational points are shown in Figure 14, where the network was tested
if it produced sensible results. The first operational point, Op1, corresponds to the lowest evaluated
rotational speed of the engine 42,058 rpm, and the last, Op5, corresponds to the highest rotational speed
(i.e., 50,289 rpm).

The classifications of the five example images are shown in Figure 15a, and the created segment
areas are shown in Figure 15b. Following expert examination of the infrared images and heuristic
evaluation of the temperature field, it can be concluded that the Kohonen network works as expected
and is able to sensibly assign the hottest and coldest parts of the object to each of the five classes/segments.
In order to quantify the results, the number of activations of each neuron are summed, giving the total
segment areas S1, . . . , S5 corresponding to each of the classes N1, . . . , N5. This can be formalized
as follows:

Si =
∑p

j=1
x j; x = {0; 1} (5)

where p is the number of activations of the i-th neuron.
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Figure 15. The segmented thermal images produced by the Kohonen map.

In this way, the size of each class and the total area of each temperature segment can be obtained.
As can be seen in Figure 16, the total area of the segments in the three hottest classes increased as
the engine speed and temperature increased. As it is not possible to define the exact areas which
correspond to each class (as in traditional image segmentation where, for example, a river area is clearly
defined), a system for the objective evaluation of the trained classifier performance was designed, and
is described in the next section.
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In order to properly evaluate the functionality of the classifier, five testing infrared images were
divided into 60 segments. The artificially created spherical temperature field anomaly for each class
was moved across all segments, giving a total of 300 testing images for each class and 1500 testing
images in total. The division of the image into segments when the artificial anomaly was included is
shown in Figure 18.

The results are summarized in the confusion matrix shown in Table 2; the first row represents
the real class of the anomaly and the first column represents the class output by the network. The
contingency table gives a clear picture of the network’s ability to correctly segment the infrared images.

The network achieved a very good accuracy for the first two classes, and only misclassified
objects for the three hottest classes. The lowest obtained accuracy was for the classification of class N5,
which was the coldest class and mostly represented the surroundings of the engine, which are of a
low temperature. This class also contained misclassified objects belonging to class N4, which only
represented relatively cold parts of the engine or its surroundings. The most important classes for
the evaluation of the technical state of a turbojet engine are those which represent its hottest parts,
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that is, N1, N2, and N3. The results could probably be improved by using a larger training dataset or
different Kohonen layer topologies, however they can nevertheless be evaluated as very successful for
the purpose of turbojet engine diagnostics.
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Table 2. The confusion matrix of the trained Kohonen self-organizing feature map (SOFM).

Actual Class

N1 N2 N3 N4 N5

Predicted Class

N1 286 5 2 0 0
N2 10 284 15 1 0
N3 4 10 272 4 6
N4 0 1 10 275 34
N5 0 0 1 20 260

Accuracy 95.3% 94.6% 90.6% 91.6% 86%

Total
Accuracy 91.8% (1377/1500)

4. Expert Diagnostic System Design Based on Infrared Images

4.1. Design of the Expert System

As presented in Figure 15, areas of the segments are not absolutely representative of the engine’s
technical state, as their changes are quite slow as the engine heats up or cools down and the internal
thermal energy is transferred to its casing, which has its own heating and cooling dynamics. The main
task of the expert system is to evaluate the areas of the segments and their changes, and to then present
to the operator some information about the technical state of the engine.

To fulfill this task, the designed expert system needs as an input the total area of the segments and
some indication of how they evolve over time. Temporal changes in the areas of the segments can be
predicted by the computation of derivations/differences between two segmented images in a set time
interval ∆t. The standard derivative equation can be used for this purpose for the i-th neuron and the
total area of the i-th segment Si:

dSi(t) =
Si(t + ∆t) − Si(t)

∆t
(6)

From a diagnostic point of view, it makes sense to investigate only the three hottest states (levels
S1–S3) and their derivations S1_d–S3_d, as they represent the most critical temperatures for the engine.
The time derivation of the surface areas of the segments allows the magnitude of the change in the area
of different temperature regions to be determined and early structural failures to be detected. The
knowledge base of the proposed expert diagnostic system consists of a set of rules that describe normal
and atypical engine operation based on the outputs of the Kohonen SOFM. Each rule Ri (i = 1, 2, ..., 8)
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is designed according to precisely defined intervals of the allowed amount of pixels (area sizes) of
individual color levels and intervals of allowed values of their derivations, based on results for the
normal state and atypical states of the object. The outputs of the rules Ri take Boolean logical values Ri
Є{0; 1}. The rules Ri in Table 3 are defined as follows:

IF Si is the area size <from;to> AND Si_d is the derivative <from;to> => Ri, where Si (i = 1, 2, 3) (7)

Table 3. A partial set of rules in the knowledge base of the proposed expert diagnostic system.

IF S1 IS <13,200; 13,300> AND S1_d is <−5; 50 > => R1
IF S2 IS <3600; 3700> AND S2_d is <−10; 30> => R2
IF S3 IS <7300; 7420> AND S3_d is <−5 ; 45> => R3
IF S3_d IS <46; 160 > – – => R4
IF S3_d IS <−85; −6> – – => R5
IF S2_d IS <31; 140> – – => R6
IF S2_d IS <−120; −11> – – => R7
IF S1_d IS <51; 160> – – => R8

The rules Ri are partial conclusions about the technical state of the investigated engine. In order
to obtain some knowledge about the engine’s technical state, the hypotheses which are to be connected
with these rules have to be defined. In order to keep the rule base simple at first, diagnostic signals
(hypotheses) for a turbojet engine are proposed in Table 4.

Table 4. Technical states of the turbojet engine.

D0 Normal condition
D1 Light overheating
D2 Moderate overheating
D3 Critical overheating
D4 Light structural defect
D5 Critical structural defect

These diagnostic signals (Di; i = 0, 1, 2, ..., 5) are activated by combinations of the proposed rules.
The rules to obtain the diagnostic signals are defined in Table 5.

Table 5. Inference of the diagnostic signals.

IF R1 AND R2 AND R3 => D0
IF R1 AND R2 AND R4 => D1
IF R1 AND R5 AND R6 => D2
IF R3 AND R7 AND R8 => D3
IF R2 AND R5 AND R8 => D4
IF R5 AND R7 AND R8 => D5

The rules, hypotheses, and inputs can be formalized in the form of an oriented graph. The
inference network is defined in Section 2.3. In the case of a turbojet engine with diagnostics based on
the sizes and derivatives of segmented thermal images, the inference network shown in Figure 19 is
proposed based on rules in Tables 3 and 4, which represent the knowledge base of the expert system.
The inference engine then performs a bottom–up search from data of the segments’ sizes Si and their
derivatives Si_d through intermediate rules Rj up to evaluation of the hypotheses Dk.
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4.2. Pilot Testing of the Expert System Using Infrared Thermography (IRT) Inputs

The idea behind the design of the presented expert system is to evaluate its possibilities and
its ability to correctly present diagnostic signals to the engine’s operator or supervisory control
system [64,65]. The designed rule base was therefore constructed to be very simple in order to evaluate
the five pre-defined temperature states represented by hypotheses D. Pilot tests were conducted to
prove that the system works as intended. For real-world engine operation, it was only possible to test
the states D0, D1, D4, and D5. The resulting classifications for these tested situations are shown in
Table 6. States D4 and D5 were artificially induced by quickly adding heating material on the surface
of the engine’s exhaust nozzle, which created anomalies in the temperature field of the engine. The
condition of light overheating was achieved when the engine was running at a high speed setting, (i.e.,
at an operating speed of 50,000 rpm for around 20 s). The rules which were evaluated as true, and the
way the diagnostic signal/hypothesis was obtained, are shown in Table 6. These results suggest that
the diagnostic expert system is able to determine basic states represented by hypotheses D0 , D1, D4,
D5 and that the designed rules work.

Additionally, another test was set up using the data from a single engine run, as shown in Figure 14.
Normal and light overheating states were tested during standard operation of the engine, and are
shown in Figure 20. It can be seen that the expert system selected the state D1 (light overheating)
even though the speed of the engine and the corresponding temperatures had decreased. This was
the correct selection, since the temperature of the casing takes more time to cool down, whereas the
inner gas temperature as measured by internal sensors decreases immediately. This set of pilot tests
showed that the inference engine works as intended and that the expert system is able to produce some
sensible results in the evaluation of the technical state of the engine during normal conditions and to
detect artificially induced structural defects. In order to prove the correctness of the setting of the rules
Ri, as well as the definition of intervals in these rules, a more systematic approach has to be taken. This
will be designed in a follow-up study of the system.
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Table 6. Testing of the expert system for the evaluation of hypotheses D0, D1, D4, and D5.
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5. Conclusions

This article defines a way to use infrared imaging directly in a new area of aviation, namely, in the
evaluation of the technical state of turbojet engines. A concept of a hybrid system combining a SOFM,
namely a Kohonen neural network, and an expert system, is shown to be a promising approach to solve
the problem of thermal image segmentation and to extract knowledge about the technical state of the
engine from the obtained segmented IRT images. The Kohonen neural network defined in this article
is a computationally very simple algorithm, and was able to achieve a precision of higher than 90% in
the segmentation of infrared images obtained by the FLIR A40 camera when introducing an artificial
temperature anomaly. By using the total areas of segmented infrared images corresponding to different
temperatures, and their time derivatives, the technical state of the engine can be extracted and evaluated.
This can be considered as a novel approach, and it has shown promising results as a proof of concept,
which can be further developed and investigated, for example, to take into account environmental or
high noise conditions or the impact of application of different image filtering techniques. Moreover,
accuracy of the classification could also be increased by utilizing a camera with the ability to record a
video with 10 bit color resolution instead of the reduced iron-bow palette for applications, where fine
temperature resolution is important. On the other hand, the developed methodology with an expert
system seems to be robust enough to work well with the reduced color spectrum and the engine is
working in a wide temperature range. The rule base of the expert system proposed in this article can be
further expanded to contain more hypotheses, and can also be developed to use fuzzy logic to evaluate
the rules to improve the precision of the system. It can be considered as a progressive methodology
in the application of computational intelligence and infrared thermography to the area of aviation.
The methodology can also be applied in other fields of technical practice to evaluate the temperature
fields of different technical objects, such as electronic circuit boards, transmissions, rotating machinery,
generators, and electric engines operating in laboratory conditions. The system is designed to be
objective, and does not need any input or examination of the infrared images by humans. It can also be
integrated into a complex situational control algorithm of a turbojet engine in laboratory conditions,
where outputs of the expert system can be used as inputs for the situational classifier and also to tune
adaptive controllers of the engine [62,64,65].
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62. Andoga, R.; Főző, L.; Judičák, J.; Bréda, R.; Szabo, S.; Rozenberg, R.; Džunda, M. Intelligent Situational

Control of Small Turbojet Engines. Int. J. Aerosp. Eng. 2018, 2018. [CrossRef]
63. Cruz-Albarran, I.A.; Benitez-Rangel, J.P.; Osornio-Rios, R.; Dominguez, B.T.; Medina, D.A.R.;

Morales-Hernández, L.A. A new approach to obtain a colour palette in thermographic images. Quant.
InfraRed Thermogr. J. 2019, 16, 35–54. [CrossRef]

64. Roman, R.-C.; Radac, M.-B.; Precup, R.-E.; Petriu, E.M. Data-driven Model-Free Adaptive Control Tuned by
Virtual Reference Feedback Tuning. Acta Polytech. Hung. 2016, 13, 83–96. [CrossRef]
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